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ABSTRACT

Many e-commerce platforms serve as an intermediary between
companies and consumers, receiving a commission per purchase.
To increase sales, these platforms tend to offer as many items
as possible. However, in many situations a reduced subset of the
items should be offered for sale, e.g., when opening an express
delivery branch, starting operations in a new region, or disposing
of redundant items to improve data quality and decrease mainte-
nance costs. In all these cases it is imperative to select a reduced
inventory which maximally covers consumer needs. A naive, yet
popular, solution is to focus on the top selling items. This however
ignores the hidden relations between items, and in particular the
tendency of shoppers to buy, in the absence of an item they are
looking for, a satisfying alternative.

In this paper we introduce the Preference Cover problem, and
investigate its application to practical inventory reduction. Given
a large set of items, a bound on the number of items that can be re-
tained and consumer preferences in terms of items popularity and
suitability as alternatives, the goal is to select a reduced inventory
which maximizes the likelihood of a purchase. We first model the
problem via a dedicated weighted directed graph which captures
the relevant information, then study two problem variants, which
differ in their interpretation of the probabilistic dependencies be-
tween consumer preferences. We prove both variants are NP-hard,
and characterize their approximation hardness. Since in the prac-
tical application the overall number of items and the bound on
the reduced item set are very large - in the order of magnitude of
millions - we propose a highly parallelizable and scalable algo-
rithm along with approximation guarantees. Finally, we present
an end-to-end solution that fits the real-world e-commerce appli-
cation, and provide an extensive set of experiments demonstrating
the efficiency and effectiveness of our solution.

1 INTRODUCTION

Due to the rapid growth of the e-commerce industry, online selling
has become one of the most trending businesses of today. Many e-
commerce platforms serve as an intermediary between companies
and consumers, receiving a commission per purchase. To increase
the number of sales, such sites tend to offer a large number of
items'. Nonetheless, they often pursue complementary objectives
where selecting and offering a reduced inventory is required. Com-
mon such scenarios, reported by our industry collaborators, are
the following:

Launching an express delivery store. When large companies
provide express delivery services (alongside existing services) of-
fering items for same-day-delivery, these items should be available
in different warehouses for immediate shipping. It is not feasible
to ensure immediate availability, in terms of storage space and

INote that “item" here refers to a specific item type from a specific seller, e.g., Silver
iPhone Xs 256GB by Best Buy, rather than to individual instances of this item.
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maintenance overhead, except for a significantly reduced inven-
tory, as seen for example in the Amazon Prime same-day-delivery
catalog, which offers a small percentage of the entire inventory.

Opening a branch overseas. When e-commerce platforms
start operations in new regions, it is often done gradually, initially
offering a small backlog of items. This is in part because one
needs to require the vendors to ship abroad, with regulations
often restricting the number of products that are allowed to be
distributed. A notable example is AliExpress (consumer facing
branch of Alibaba), which due to regulations restricts the number
of items offered for shipping abroad.

Reducing maintenance costs. Maintaining large inventories
incurs substantial data maintenance overhead (e.g., in data clean-
ing, validation, entity resolution and semantic enhancement [5]).
Hence, companies periodically dispose of some small percentage
of items deemed to be least valuable.

These examples demonstrate the need to select a reduced in-
ventory that minimizes the loss in the number of sales. A naive,
yet popular, solution is to focus on the top selling items. This
approach however entirely ignores the hidden relations between
items. In particular, studies show that consumers are flexible, and
when searching for a specific item are often willing to buy in its
absence what they consider to be a reasonable alternative [34]. For
example, in the absence of a specific 19” LG TV a customer may
be willing to settle for a slightly bigger LG TV or for the same
size TV from Samsung. Retaining a set of items which are not
only popular in-and-of-themselves, but are also likely to “cover"”
the inventory and serve as suitable alternatives for omitted items,
can significantly improve the overall satisfaction of the customers.

To model consumer preferences and item alternatives we use
a preference graph - a directed graph with weights on both the
nodes and the edges. The nodes correspond to the items, and the
node weights reflect the items’ purchase popularity (% out of total
sold items). A (directed) edge from item A to item B indicates that,
in A’s absence, consumers consider B as a possible alternative?.
The edge weight reflects the probability that a consumer is willing
to buy B as an alternative to A, if A is missing. (We discuss how
edge weights are derived via customary techniques from click-
stream data, commonly available to e-commerce companies, in
the Experiments Section.)

We use the preference graph to devise effective algorithms for
the selection of items. However, before presenting our results, let
us first illustrate through a simple example how the information
provided in the graph is employed.

Example 1.1. Consider the preference graph depicted in Figure
1. Assume that of the five available items we wish to choose two.
We can see that A is the best selling item (purchased by 33%
of customers) while D is the least sold (6%). We can also see
that consumers interested in E are likely to settle in its absence
for D, but will not transitively buy C. Such behavior is common,
for instance, when D (resp. C) is a one-step upgrade of E (D):
people are often flexible and willing to add a small amount of

2We assume that all transitive relationships, when/if exists, are directly represented
in the graph by single edges.
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Figure 1: Sample graph of items

money in return for an upgrade, but a two-steps delta may be
overly expensive. We can also see that consumers interested in
C (B) will settle in its absence for B (C), and that B is a more
likely replacement for A than C. Selecting the two best-sold items,
A and B, is likely to satisfy about 77% of the customers (those
interested in C, who in its absence are likely to purchase B, and
those interested in A and B). Interestingly, a more careful analysis
(which we only describe here intuitively and will formalize later in
the paper) shows that in fact retaining B and D (the least sold item!)
is the optimal solution, covering 87.3% of requests. Intuitively this
is because B covers most requests for A, B, and C, whereas D
covers itself and most of E. In this simple example the sets of
requests served by the two retained items are disjoint, but a similar
analysis can be applied to general overlapping cases.

The probability of a purchase is contingent on the dependencies
between choosing different alternatives. Such dependencies can be
extremely complicated, hence a practical model should simplify
them in a manner which approximates well real life settings. We
define in this paper two variants of the Preference Cover prob-
lem, which we have observed to be most prevalent in real-world
e-commerce applications (see technical discussion in Section 5.2),
the Independent and the Normalized variants. These variants differ
by the semantics of edge dependencies. The Independent variant
assumes independence between all alternatives. Whereas, the Nor-
malized variant assumes that each consumer considers at most one
item as an alternative she will actually buy, and thus the sum of
weights of outgoing edges from any item is bounded by 1 (hence
the name Normalized). In the experiments section, we show that
both variants capture real-world consumer behavior. We will dis-
cuss the similarity and differences between these two problem
variants (and when each is suitable) in depth in the following
sections and propose effective algorithms to solve both.

To get an idea on what one may hope to achieve in terms of
efficiency, we first study the computational complexity of the two
problem variants. We prove that both are NP-hard but have dif-
ferent approximation bounds. Nevertheless, we devise a single
greedy scheme that, with only minor adaptations, is able to support
both variants, providing in both cases approximation guarantees.
For the Independent variant we also prove this to be the opti-
mal approximation ratio (matching the inapproximability bound
we proved). For the Normalized variant, we show (by proving
equivalence to the Max Vertex Cover problem) that while tighter
theoretical upper bounds do exist, their corresponding algorithms
are not scalable and thus impractical for our setting. Indeed, in
the e-commerce application that we study here, both the overall
number of available items and the number of items to be selected
are very large - in the order of magnitude of millions. Thus, scala-
bility is critical. Our solution consequently trades off the tightness
of approximation guarantee in return for improved performance.

The simple greedy scheme which we use to solve both prob-
lem variants is highly parallelizable and scalable. It further has
the added value of allowing to directly solve the complementary
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minimization problem, where, instead of an upper bound on the
number of items to retain, one is given a lower bound on the per-
centage of item requests that should be covered, and the goal is to
identify the smallest set of items that achieves the required cover-
age. Note that a naive solution for this complementary problem
can be obtained via binary search on the target set size, by running
any algorithm for the original problem. But this incurs a O(log n)
factor overhead, n being the number of available items. Our direct
greedy approach allows to avoid this overhead.
Our contributions can be summarized as follows.

(1) We formulate the Preference Cover problem and propose a
graph-based model to capture it, with two natural possible
variants.

(2) We study the theoretical computational complexity of the
two problem variants and prove their NP-hardness and
approximation hardness.

(3) We propose efficient algorithms to solve both variants, and
prove their approximation guarantees.

(4) To demonstrate the practicality of our approach we describe
the process of creating the preference graph from data
available to actual e-commerce companies, based on well
agreed upon inference methods in e-commerce research.

(5) We present an extensive experimental study, based on real-
world data from a large e-commerce company, for both
variants of the problem, demonstrating the effectiveness
and efficiency of our algorithms.

Finally, we note that in the problem setting that we study
here (which is common to many intermediary platforms [1]) the
commission-per-purchase (or the perceived gain per purchase) is
considered fixed and the intermediary platform is indifferent to
the items’ cost/revenue or required physical storage. Extending
our work to support varying revenues and storage considerations,
in a scalable manner, is an intriguing future work. We overview, in
the Related Work, results in the field of operational research that
incorporate such factors but in more complex models that do not
lend to practical big data solutions. Other lines of work that bear
resemblance to ours are recommendation systems and query re-
sults diversification. However, as we explain in the Related Work,
the optimization problems they study differ from ours, yielding
different complexity results and algorithms.

A first prototype of our system was implemented with help of
our industry collaborators, and demonstrated at CIKM’19 [15].
The short paper accompanying the demonstration gives only a
brief overview of the system architecture, whereas the present
work provides a comprehensive description of the underlying
model, algorithms and applications.

Paper outline. Section 2 provides the necessary definitions and
formalism behind our problem. Sections 3 and 4 each study one of
the two variants of our problem. Implementation and experimental
studies are presented in Section 5. Finally, the related work appears
in Section 6, and we conclude in Section 7.

2 PRELIMINARIES

We introduce here the Preference Cover problem. We start by
formally describing the general model along with two concrete
variants - the Independent and the Normalized variants.

Recall that the main motivation for our problem is an e-commerce
setting, where consumers are interested in specific items but, if not
available, may be willing to settle for some alternatives. Given a
bound on the number of different item types a store may offer, our
goal is to retain those which maximize the likelihood of purchase.



Formally, we represent consumer preferences via a Preference
Graph which, along with an integer k, serve as input for the Pref-
erence Cover problem. A preference graph G = (V, E, Wy, Wg)
is a directed graph with weighted vertices and edges. The vertex
set V corresponds to n items. For each vertex v € V, its weight,
Wy (v) € [0, 1], is defined as the probability of v being requested
by a consumer. The sum of all node weights is therefore 1. We
say that u is a neighbor of v if there exists an outgoing edge
from v into u. The neighbors of a node v are all the items that
are considered by consumers as possible alternatives. For each
edge from v into a neighbor node u, its weight, Wg(v, u) € (0, 1],
implies the probability of u matching a request for v as an alter-
native. We explain later how these edge weights are computed
and interpreted. For simplicity we omit in the sequel subscripts of
weighting functions when clear from context.

Given a number k, our goal is to choose a subset S C V of k
items, marking them as refained. Given a request for item v, if
it is retained, the request is considered matched. Otherwise, if v
is not retained, a request has some probability of being matched
by another retained neighboring item of v, as indicated by the
weights of edges outgoing from v into its retained neighbors. We
define a target function C : 2V — [0, 1], s.t. assuming S is the
retained set of items, C(S) is the probability a request drawn from
the distribution indicated by the node weights is matched. The
Preference Cover problem aims to compute arg maxg |sj=x C(S).
We are ultimately only interested in whether or not a request is
matched, and it makes no difference theoretically which item
matches it. This corresponds to a real-life setting where intermedi-
ary platforms value the selling of each item as equally beneficial,
and accordingly seek to maximize the number of sales.

We term C(-) as the Cover function, and say that the value C(S)
is the cover of S. Similarly, we call the probability a request for v
is matched by a retained set S as the cover of v by S.

An explicit formula for computing C(-) is contingent on the
dependencies, if such exist, between the probabilities indicated
by the edges. In this paper we study two variants of the problem
which, as our analysis of real data indicates, approximate well
common real life scenarios: the Independent variant assumes that
the probabilities modeled by edges are independent, while the
Normalized variant assumes that each consumer considers at most
one item as a most suitable alternative. In both cases, the goal is to
retain the set of items which covers most of the predicted requests
as implied by the preferences model.

In both variants when considering alternatives for a request for
item v, we only take into account v’s immediate neighbors. This is
because, as mentioned earlier, the possible transitive processes of
considering an alternative followed by an alternative to that alter-
native and so on is already taken into account when constructing
the graph and assigning edge weights, which means, intuitively,
that the preference graph is the transitive closure of a graph mod-
eling the probabilities to correspond to such replacement paths.

We now formally describe the two variants we study in this
paper. In the presentation below, given a retained set S we denote
the retained neighbors of node v by R, (S) = {u|(v,u) € E,u € S}

2.1 Independent variant

In the Independent variant we assume complete independence
between the edges. Namely, the probability a given alternative
matches a request is not affected by whether or not a different
alternative matches it. Thus, the probability of the event of not
matching a request for a non-retained item v, which occurs when
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no retained alternative is suitable, is, due to independence, the
product of all such probabilities, [1,er, (5)(1 = W(v,u)). The
probability of the complement of this event, which is matching the
request, is 1 — [T, er, (5)(1 — W(v,u)). We next formally define
the Independent variant of the Preference Cover problem.

Definition 2.1 (IPCy.). Given a preference graph G and an in-
teger k, the Independent Preference Cover problem (IPCy) is
computing arg maxg_|s|—x C(S), where

&=y W+ [W(v) - [] a-wew)
veS veV\S u€eR,(S)

The first addend is due to requests for retained items being
matched with probability 1. The second addend corresponds to
summing over all items not in S, for each such item v adding
the probability it is both requested (W(v)) and covered by S
(1 = TTuer,(s)(1 — W(v, u))). Recall that we are computing the
purchasing probability of a single consumer session, which in
the hypothetical case where all items are available would have re-
sulted in a purchase. The overall expected number of sales, given
only S is retained, is thus the number of such sessions times C(S).
Cases where a consumer is looking to purchase several items, or
several copies of the same items, are modeled as separate sessions.

2.2 Normalized Variant

In the Normalized variant we assume that each consumer considers
at most one item as a suitable alternative (i.e. the item she will
actually buy). Neighbors are therefore dependent, in the sense that
for any requested item v, a retained neighbor matching the request
implies that all other neighbors do not. It follows that the sum of
the weights of all edges outgoing from any given node is at most
1, and given a request for a non-retained item v, the probability
it is matched is 3, cg, (s) W(v, ). We next formally define the
Normalized variant of the Preference Cover problem.

Definition 2.2 (NPCy). Given a preference graph G and an
integer k, the Normalized Preference Cover problem (NPCy) is
computing arg max_|s|-x C(S), where

as)= > woy+ Y [W(u). D W(v,u)]

veS veV\S U€ERL(S)

Here again the first addend, <5 W(v), is due to requests
for retained items being matched with probability 1. The second
addend corresponds to summing over all items not in S, and for
each such item v adding the probability it is both requested (W (v))
and covered by S ( X, cr, (s) W(v, u).

We discuss the choice of these particular variants and which
real-life settings they correspond to in Section 5. Intuitively, the
Independent variant asserts that the opinion on the suitability of
a given alternative is not demonstrated to be strongly dependent
for most consumers on their opinion of other alternatives. The
dependencies are either insignificant overall or tend to cancel out
when summed over the entire user base. In contrast, the Normal-
ized variant is suited for domains where it is demonstrated that
consumer requests are often very specific in nature, and the num-
ber of suitable alternatives is very small, which the Normalized
variant models as a single alternative at most per request (though
this can be a different alternative per each request for the same
item). Finally, note that the weight of a node does not necessarily
represent the probability of a premeditated and explicit request for
the item, rather, more generally, the probability, given all items
are available and a purchase is made, of this specific item being
the one purchased.



2.3 Set functions

We next present some general definitions and results pertaining
to set functions (f : 2V SR, given universe V), which will be
useful in the following sections for formally characterizing C(-).

Definition 2.3. f is nonnegative if VS C V: f(S) > 0.
Definition 2.4. f is monotone if VS C V,Vv € V:
fSU{v}) = f(S).
Definition 2.5. f is submodularif VS C T C V,Vv € V: f(SU
{ob) = f(8) = f(TU{o}) - f(T).
The following is a key result in submodular optimization.

LEMMA 2.6 ([22]). Given universe V, k < |V|, and a nonneg-
ative, monotone submodular function f : 2V - R, there exists
a polynomial algorithm achieving an approximation ratio of at
least (1 — %) in maximizing f(-) over subsets of size k. This algo-
rithm, at each of its k iterations, selects an element maximizing
the marginal gain to f(-).

2.4 Related problems

Finally, we present definitions and results pertaining to related
problems, which will also serve us in the formal analysis.

Definition 2.7. In the Directed Max Dominating Set Problem
(DS} ) the input is a directed graph and a number k, and the goal
is to find a subset of the vertices of size k such that the number of
vertices adjacent to this subset is maximized.

Definition 2.8. In the Max Vertex Cover Problem (VCy) the
input is a number k and an undirected graph (self edges allowed)
with positive weights assigned to its edges, and the goal is to select
a subset of the vertices of size k such that the weight of edges
incident to this subset is maximized.

We now provide hardness results pertaining to the above prob-
lems. The following theorem was proven in [21] for undirected
graphs, but trivially extends to directed graphs, as undirected
graphs are a special case where for each edge there exists a paral-
lel edge in the opposite direction.

THEOREM 2.9. [21, 25] The DSy problem is NP-hard. It has
no polynomial approximation algorithm of a factor higher than
(1-1/e), unless P = NP. The problem is NP-hard even when the
maximal degree in the graph is bounded by a constant.

THEOREM 2.10. [14, 27] The VCy. problem is NP-hard, and
is hard to approximate to within (1 — §) factor for some (small)
& > 0, unless P = NP. Moreover, VCy. is NP-hard even for graphs
of degree at most 3.

Tighter approximation hardness bounds for VCy. are not known,
and existing algorithms are discussed in Section 3.2. We also note
that the NP-hardness of the bounded degree cases in both of the
above theorems was proven by [14] and [25] for the minimiza-
tion versions of the Vertex Cover (VC) and Dominating Set (DS)
problems, resp. In the minimization versions the goal is to find
the smallest set covering the entire graph. However, the hardness
extends to our top-k versions, as VC (resp. DS) can be solved by
solving VCy. (resp. DSy.) at most n times for varying values of k.

In each of the following two sections we study in detail one
of the two variants of the Preference Cover problem. We analyze
the Normalized variant first, as it is more complicated technically.
Moreover, part of the discussion of the Normalized variant (in
particular the proposed algorithm) applies, with minor adaptations,
to the Independent variant as well.
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Table 1: Approximation ratios of the greedy algorithm and
best known polynomial algorithms for VCy,

Range of k/n Greedy Algorithm | Best Known

o(1) (1-1/e) 0.75+¢ (SDP) [11]
0(1), [0, ~0.39) | (1—1/e) 0.92 (SDP) [19]
(x0.39,20.72) | (1-(1- %)) 0.92 (SDP) [19]
(=~0.72,0.74) 1-(- %)2) ~0.93 (SDP) [17]
[0.74, 1] (1-(-5? (1-(-5HH1]

3 NORMALIZED VARIANT

3.1 Theoretical Analysis

We begin this section by studying the complexity and the ap-
proximation hardness of NPCj., the Normalized variant of the
Preference Cover problem. In both these respects we prove an
equivalence to the VCy problem, which has been studied exten-
sively in the literature, implying in particular that both upper and
lower bounds on the approximation of VCy apply for NPCy. as
well. We then discuss algorithms for solving NPCy.. Here again
we utilize the equivalence to VCj. to adapt its known algorithms
to our setting. Concretely, we present the currently best known
approaches in terms of the approximation ratio guarantee, which
vary for different ranges of k, and discuss their performance w.r.t.
scalability. We note the trade-off between performance and ap-
proximation guarantees, and as our goal is to provide a scalable
solution for big data settings, we focus on a fast algorithm, for
which we provide an efficient parallelizable implementation, and
demonstrate it to be highly scalable in our experiments. More-
over, its approximation factor is the best known for high values
of k, and is not far off for lower ranges. We further argue that all
algorithms known to provide a better approximation guarantee
for lower ranges are not scalable at all. We discuss additional
advantages of our approach in Section 3.2.

THEOREM 3.1. The NPCy. problem is hard to approximate to
within a (1—9) factor for some (small) § > 0, unless P = NP. The
problem is NP-hard, even when the maximal degree (disregarding
edge orientation) is 3. Furthermore, any a-approximation algo-
rithm for VCy. implies an a-approximation algorithm for NPCy,
and vice versa.

PROOF. We first reduce NPCy to VCy (Definition 2.8), and
show that any a-approximation algorithm for VCj implies an
algorithm for NPCy. with the same factor. Given an instance [ =
(G, k) of NPCy., we add a self edge to every node whose sum of
outgoing edge weights is less than 1, and assign to it the weight
which completes the total outgoing weight to 1. This added weight
intuitively represents the relative part of requests for this item
which cannot be covered by any alternative. Observe that this
change has no bearing on the cover function C(-), as when a node
is retained, its weight is covered entirely all the same. Next we
reduce this instance I to an instance I’ = (G’, k) of VCy, such
that G’ has the same nodes as G only without weights, the same
edges only without orientation, and the weight of every edge (v, u)
changes from W (v, u) to W(v) - W(v, u) (multiplied by the weight
of its origin node). Note that G’ may have pairs of nodes connected
by 2 parallel edges, if edges in both directions connected these
nodes in G. This is equivalent, w.r.t. VCy, to replacing both edges
with a single edge whose weight is the combined weight of the
original two. However, we do not combine parallel edges, as we
analyze their weight contributions separately.



We now argue that for any choice of a node set S C V, its
cover weight in G’ is equal to the cover C(S) in G. Indeed, let Eg
denote all edges that are outgoing from a node in S in G, then
the sum of weights of the edges in G’ originating from Eg is
exactly Y., es W(v), which corresponds to the first addend in the
formula in Definition 2.2 (each node in S contributes its weight to
C(S)); considering all remaining edges adjacent to S in G’ which
are not in Eg: the sum of weights of all such edges originating
in any given node v ¢ S is W(v) - X ,er, (s) W(v, u) (recall that
Ry(S) = {u|(v,u) € E,u € S}), which, when summing over all
such v ¢ S, is exactly the remaining addend in the formula for
C(S), thus proving the equivalence.

As for the other direction, which is proving that NPCy is just
as hard to approximate as VCyi, from which the NP-hardness
and hardness of approximation follow, assume we are given an
instance I’ = (G’, k) of VCy. We reduce it to an instance [ =
(G, k) of NPC}. such that all nodes in G are the same as in G’, and
the edges are also the same with the orientation chosen arbitrarily.
Now for any node v let M, denote the sum of weights of all its
outgoing edges at this point, then we set W(v) = My, and for every
outgoing edge e from v, we change its weight from its original
weight in G’, denoted by W’(e) to W(e) = % It follows that
the sum of weights of all outgoing edges from any given node,
which has at least one such edge, is 1. We set the weight of any
node without any outgoing edges adjacent to it to 0.

Following this reduction the sum of weights of all nodes, de-
noted by N, is not necessarily 1. This requirement over the sum
of node weights is due to the semantics of the problem, and is
computationally insignificant. Indeed, we can normalize, and di-
vide all node weights by N, and denote the resulting graph G. It
follows that the cover of any solution S, including the optimal
c©)

N
in G, and thus the approximation ratio is not changed. Given an a-

approximation algorithm for NPCy, we run it over the normalized
graph G, and it follows that this solution has the same ratio for the
non-normalized instance I of NPC}.. Finally, observe that if we
reduce I to an instance of VCy, as we described in the first direc-
tion of the proof, we once again get I’ (multiplying edge weights
by the original node weight cancels out their normalization by the
same factor), implying, by the same logic as before, that for any
set S its cover weight in G’ equals C(S) in G. Therefore, the same
node set S guarantees an a-approximation of the original VCj
instance. Note that as the reduction preserves the maximal degree,
it follows that NPCy. is NP-hard for maximal degree 3. O

solution, changes after this normalization from C(S) in G to

Due to the equivalence to VCy, tight inapproximability bounds
for NPCy, are also not known. We discuss below existing approx-
imation algorithms, as VCy. algorithms can be adapted to NPCy
maintaining the same approximation factors. For a recent review
of VCy results see [19].

3.2 Algorithms

In this section we discuss algorithms for NPCy, and focus on the
implementation of a greedy algorithm, which we argue to be by
far the most scalable option, on top of having high approximation
guarantees.

The equivalence of NPCy to VCj combined with the linear
approximation-preserving reductions described in the proof of
Theorem 3.1, imply that when looking for an algorithm for NPCy,
one should examine the algorithms known for VCy, an extensively
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Algorithm 1: Greedy Algorithm
Input: G, k

15=0

2 foreach 1 < i < kdo

3 foreach v € V'\ S do

4 | C(SU ) = Gain(S,v)

5 0 = argmax,, C(S U v)

6 S, C(S) « AddNode(S, 0, C(S))

7 return S, C(S)

studied problem. The algorithms providing the best known ap-
proximation guarantees vary for different ranges of k. Detailed
results are presented in Table 1 (the second column pertains to
a greedy algorithm on which we focus in the sequel). Neverthe-
less, for k < 0.74n, all top algorithms are based on the same core
technique of semidefinite programming (SDP). SDP is a much
more general extension of linear programming (LP). An algorithm
based on LP also exists [2], with an approximation factor of 0.75.
These SDP (and LP) based algorithms are important mainly for
the theoretical analysis of the problem, in particular finding out
the best approximation ratios. On the other hand, these solutions
are not scalable, especially for big data settings, as they are known
for having an impractical running time, even for medium sized
programs [7, 37] (for example, the number of constraints in the
program, as devised in [11], is of order O(n3)).

Another approach is a greedy algorithm, introduced in [16],
and analyzed by [11] to have an approximation factor of max{(1—
1/e), (1-(1— %)2)}. This factor positively correlates with k, and for
k > 0.74n it is the best known guarantee, exceeding a 0.93 factor.
To the best of our knowledge, any algorithm which surpasses
the approximation guarantee of the greedy algorithm, for any
range of k, is based on SDP or LP. The greedy algorithm, unlike
these alternatives, lends itself to an efficient implementation. As
our goal is to provide a practical solution, we focus on the greedy
algorithm, which we implement and evaluate. The implementation
we provide is adapted directly into our setting without a reduction
to VCy. It is parallelizable, and as we prove in the experiments
(Section 5), highly scalable even for graphs containing millions
of nodes. Additional advantages of this approach are discussed
towards the end of this section. As mentioned, Table 1 depicts,
for various ranges of k, the best known approximation factor,
alongside the factor of the greedy algorithm.

Greedy Algorithm The greedy algorithm (Algorithm 1) inci-
dentally applies schematically for both the Normalized and the
Independent variants (with latent distinctions, described in the
next section, devoted to IPCy, the Independent variant). We use
an array I of size n, with an entry I[v] for each v € V, eventually
set to the probability of v being both requested and matched by
the produced solution S (the product of W(v) and the cover of v
by S). The summation of all entries in I, as indicated in Definition
2.2, equals C(S). For simplicity, we assume the preference graph
G and the array I are global variables, with I initialized to zeros.

Algorithm 1 maintains an initially empty solution set S (line 1).
At each of its k iterations (line 2), it goes over all nodes currently
not in S (line 3), and for each such node it computes the gain to
C(S) obtained by adding it to S (line 5). The node that maximized
this gain is then chosen (line 6) and is added to S, with C(S)
updated accordingly (line 7). Finally, after completing k iterations,
S and C(S) are returned (line 8).



Algorithm 2: Gain - Normalized

Algorithm 3: AddNode - Normalized

Input: S, v

Global: G,I
1 g=W()-Iv]
2 foreachu € V\ Ss.t. W(u,v) € E do
3 L g+=W(u) - W(u,v)

4 return g

The procedures Gain (Algorithm 2) and AddNode (Algorithm
3) are conceptually similar as both compute the marginal effects of
adding a given node, with the main distinction being that AddNode
also updates accordingly I and C(S).

In Algorithm 3, line 1 adds to S the node v which was chosen
in Algorithm 1 as maximizing the marginal gain. Line 2 adds to
C(S) the gain in the cover of itself and line 3 updates I[v] to W(v)
as the newly added node covers itself completely. Next we iterate
over all nodes outside of S with an edge into v, and for each such
node u, we compute the marginal gain to its cover by v, and add it
to I[u] and C(S) (lines 5 and 6, resp.). We can see that after each
call to Algorithm 3 the array I is updated with each entry set to
the contribution of covering the corresponding node by S to C(S).
As we mentioned, Algorithm 2 is the same as Algorithm 3, only
focusing solely on the marginal gain, without updating I and C(S).

Although we adapted the greedy algorithm directly to prefer-
ence graphs, without reducing to VCy, it is easy to show along
the same lines as the proof of Theorem 3.1, that a reduction to
VCy would have resulted in choosing the same nodes. Hence, the
approximation factor of max{(1 — 1/e),(1 - (1 — %)2)}, proven
for VCy. in [11], holds here as well.

To illustrate the operation of Algorithm 1, consider the follow-
ing example.

Example 3.2. Recall the preference graph depicted in Figure 1
and assume k = 2. The algorithm first computes the gain obtained
by selecting each node and retains the most beneficial, which
is B (66%, covering W(B), W(C) and 2/3 of W(A)). After B is
retained, the algorithm proceeds to the second and final iteration,
to choose the next node with the highest marginal gain, which is
D. D itself is requested only by 6% of consumers, while A and C
are 22% and 33%, resp. However, B being selected in the previous
step reduces A’s and C’s marginal gain to 11% (the 1/3 of W(A)
corresponding to consumers not accepting B as an alternative
to A) and 0% (all consumers who wanted C are happy to get B
instead), resp. On other hand, D covers 6% (itself) and 15.3%
(9/10 of W(E) - consumers that wanted E, but also agree to have D
as alternative), which gives a total of 21.3%. Finally, the retained
items, B and D, cover 87.3% of consumer preferences (which in
this case is also the optimal possible pair).

Performance Analysis We now analyze the complexity of the
greedy algorithm. Let d(v) denote the incoming degree of a node
v, and let D denote the maximum incoming degree over all nodes.
Observe that in both Algorithms 2 and 3 the number of operations
performed is ©(d(v)) = O(D) (v is the node whose marginal gain
is evaluated). For each of the k iterations, Algorithm 2 is called
O(n) times, hence the overall time complexity is O(nkD).

Furthermore, the algorithm is highly parallelizable. When Algo-
rithm 1 iterates in line 3 over O(n) nodes to compute their marginal
gain, computations for each node are independent, and can be per-
formed in parallel. Moreover, in each such call to Algorithm 2
(or 3) the iteration in line 2 over the O(D) nodes adjacent to the
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Input: S, v, C(S)
Global: G, 1
1S« SU{v}
C(S) += W(v) — I[v]
I[v] = W(v)
foreach u € V' \ S s.t. W(u,v) € E do
C(S) += W(u) - W(u,v)
L I[u] += W(u) - W(u,v)
7 return S, C(S)

a B W N

added node can also be done in parallel. Concretely, for N < nD
threads, the complexity of each of the k iterations becomes O(%)

resulting in an overall O(k + "kTD). The space complexity of the
algorithm (excluding the input, which we treat as read-only), is
O(|V]) for storing I. We can also reduce the space complexity to
O(k) by doing away with I, at the expense of computing the value
I[v] from scratch in line 1 of Algorithm 2 (line 2 in Algorithm
3), which takes O(D) operations, and does not affect the overall
complexity.

Additional Advantages Finally, we identify several additional
benefits of our greedy algorithm. First, we can return I as part
of the output. This enables to efficiently compute, for each non
Wiy
important information about which item requests are affected by
reducing the inventory and to what extent. Moreover, the incre-
mental nature of the greedy approach, when the retained set is
produced in the order in which the nodes were added to it, can
provide solutions to related instances and problems. Namely, an
ordered solution S of size k, also produces the solution for any
k’ < k, which is the first k” nodes in S (the same solution that
running the algorithm with k” would have produced). Therefore,
solving for k = n provides at once the solutions for all k values,
and, moreover, directly provides (an approximated) solution for
the related problem where the goal is to retain the smallest set,
such that the cover exceeds a given threshold.

retained item wu, its cover by S, which equals

This provides

4 INDEPENDENT VARIANT

4.1 Theoretical Analysis

We now study the theoretical properties of IPCy, the Independent
variant, and our proposed algorithm. We first prove our main
result, stating that IPCy. is NP-hard (even given a constant bound
on node degrees), and has a tight approximation factor of (1—1/e)
by a polynomial time algorithm. In fact, this factor is achieved by
the same greedy approach as the one discussed in Section 3 for
NPCy., with small adjustments. The adaptations that need to be
performed to previously presented algorithms and analysis of the
adapted algorithms are then discussed in detail in Section 4.2.

THEOREM 4.1. The IPCy. problem has a tight approximation
bound of (1 — 1/e) in polynomial time, unless P=NP. Moreover,
it is NP-hard, even given a constant bound on the maximal node
degree (disregarding edge orientation).

PROOF. To prove hardness of approximation (and thereby the
NP-hardness), we assume an a-approximation algorithm for IPCy,
and reduce an instance I’ = (G’, k) of DSy to an instance I =
(G, k) of IPCy, such that an a-approximation solution is implied



Algorithm 4: Gain - Independent

Algorithm 5: AddNode - Independent

Input: S, v

Global: G, 1
1 g=W()-I[v]
2 foreachu € V\ Ss.2. W(u,v) € Edo
3| g+=Wwo)- (Wu) - I[u])

4 return g

for DSy.. The hardness results then follow from Theorem 2.9. The
reduction preserves the maximal degree, implying NP-hardness
even given a constant bound on it. Concretely, G has the same
nodes and edges as G’, except all edge orientations are reversed.
All edges are assigned the weight 1, and all nodes are assigned
the weight %

We argue that for any solution S C V, the number of vertices it
dominates® in G is n - C(S) (C(S) is the cover of S in G), proving
the same approximation ratio. To see this, observe that all |S|
nodes in S dominate themselves in G, which corresponds to the
first addend in the formula in Definition 2.1 (the sum of weights

151 The remaining nodes dominated

of nodes in S) which equals

by S in G’ form the set of all nodes outside of S that have an
incoming edge from S, denoted by T. This corresponds to the
remaining addend in the formula for C(S), which (as the edges in
G are reversed w.r.t. G”) is the cover of the set of nodes outside of
S with an outgoing edge into S in G, which equals Y, 7 % = %
Overall, we see that there is a fixed ratio of % between the values
of the target functions of the two problems for any S, proving the
equivalence of the approximation. This proves a (1—1/e) hardness
bound on the approximation of IPCy.

To show this bound is tight, we prove that all conditions spec-
ified in Lemma 2.6 (the function is nonnegative, monotone and
submodular) hold for C(:), implying that a greedy incremental
algorithm maximizing the marginal gain at each of its k iterations
guarantees a (1 — 1/e) approximation. Indeed, these properties are
evident from the formula in Definition 2.1. C(-) is by definition
nonnegative. The addition of any node to the solution maximally
covers itself, and can only increase the cover of any other node
(it decreases the product [T, cr,(5)(1 — W(v,4)) in the formula
for C(S), increasing the overall value), which proves monotonicity.
Finally, C(-) is submodular: given two sets S ¢ T C V and a node
u’, we show that f(SU{u'}) - f(S) > f(TU{u'})— f(T).If u’ be-
longs to any of these two sets then this follows trivially. Otherwise,
as T covered u’ at least as much as S (due to monotonicity), the
complete covering of u” after its addition is at most the same for
T compared to S. As for any other node v (which has an edge into
u’, as otherwise adding u’ can have no effect on it): if v € T and
v ¢ S, then T already covered it completely, and the addition of u’
to T adds nothing. Otherwise (v ¢ T), for S and T, resp., the effect
is that both [],er, (5)(1 = W(v,w)) and [1,er,, (1)(1 — W(v,u))
are multiplied by the (1 — W (v, u’)). As the second product (with
T) is not bigger than the first (with S), then the additive difference
after multiplying it by (1 — W (v, u”)) is also not bigger, leading to
an overall smaller (or equal) increase in the cover (when added to
T). As the increase in the cover of every node is not bigger when
adding to T, submodularity follows.

O

3 A vertex is dominated by a solution S, if it is either in S or has an edge incoming
from some node in S.
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Input: S, v, C(S)

Global: G, 1

S —Su{v}

C(S) += W(v) — I[v]

I[v] = W(v)

foreach u € V' \ S s.t. W(u,v) € E do

C(S) += W, v) - (W(u) - I[u])

L Iu] += W, v) - (W(u) - I[u])

return S, C(S)
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4.2 Greedy Algorithm

We now discuss our proposed algorithm for IPCy.. Here again
we opt for the same greedy approach as presented in Section
3.2 for NPCy, which for IPCy guarantees an optimal (1 — 1/e)
approximation factor, following Theorems 4.1 and 2.9. Moreover,
the algorithm scheme is also depicted in Algorithm 1, with the
distinction that the procedures Gain and AddNode, called, resp.,
in lines 4 and 6, have different implementations (resp., Algorithm
4 instead of Algorithm 2 and Algorithm 5 instead of Algorithm 3).
These procedures, however, remain analogous to their counterparts
for NPCy. (Algorithms 2 and 3), as the adjustments only reflect the
technical difference between the formulas for C(-) in Definitions
2.1 and 2.2. Therefore, we do not discuss the algorithm in detail,
as this is largely covered in Section 3.2, but rather focus on the
distinctions from the NPCy. implementation.

Recall that I is an array, initialized with zeros, with an entry for
each v € V, denoted by I[v], eventually set to the probability of
v being both requested and matched by the produced solution S,
and hence the summation of all entries in I equals C(S). We once
again set it to be a global variable whose value is saved between
calls. In Algorithm 4 line 1 remains the same as in the analogous
Algorithm 2, as in both variants it holds that a retained node
is completely covered by itself. Line 3, however, is different. It
pertains to the marginal gain obtained by adding the node v in the
cover of node u, which has v as a neighbor. Let S and S” denote
the solution set before and after resp., adding v, and let Is[u]
and Ig [u] denote the correct value of I[u] for solutions S and S’,
resp. The marginal gain by v over u is Is:[u] — Is[u], which after
doing the algebra is simplified into W(u, v) - (W(u) — I[u]). This
is the gain appearing in Line 3 of Algorithm 4. The correctness
of this expression follows a straightforward computation, which
we omit to avoid convoluted notation, and instead provide the
intuition. Note that the computation of the probability u not being
covered by S is the product of the probabilities of all its retained
neighbours not being suitable alternatives. This probability can be
easily computed from Is[u] (see the second sum in the formula in
2.1). The only change in S’ is that this product is now multiplied
by the probability v is also not a suitable alternative, which is
(1 = W(u, v)). Therefore, when computing the product pertaining
to S’ (which implies Is/[u]), we can reuse the computed product
for S (implied by Is[u]), and reduce the number of operations in
computing the marginal gain to O(1) per each such u. Moreover,
the similarity of the computations for Is[u] and Is/[u] allows
the simplification of the expression for the marginal gain. The
adjustments made in Algorithm 5 are completely analogous.

Performance Analysis Following exactly the same consider-
ations as in the NPCy. implementation (Section 3.2), both Algo-
rithms 4 and 5 have the same time complexity, hence the overall



Variant: Normalized /
‘ Independent

Data Adaptation
Engine

Raw Data

Figure 2: System Architecture

complexity of the greedy algorithm is O(nkD) here as well (recall
that D denotes the maximal incoming degree of a node in G). The
potential parallelization is also the same, thus the complexity for
N < nD threads becomes O(k + "f\]D ), same as in Section 3.2.
As for the space complexity (excluding the input), while it is also
O(n), due to storing I, in the IPCy. case it is no longer true that we
can do away with I to reduce the space to O(k), without sacrific-
ing efficiency (here the computation of the marginal gain is more
reliant on previous computations). Finally, the additional benefits
pertaining to the incremental nature of the greedy approach remain
the same as for NPCy, as described at the end of Section 3.2.

5 IMPLEMENTATION AND EXPERIMENTS

We start this section by describing the system architecture, focus-
ing on the flow from raw data to a suggested list of k retained
items. Afterwards, we discuss how real-life e-commerce data can
be adapted to construct the preference graph. Then, we describe
the experimental setup, where we introduce the real-life datasets
we used for the experiments, and describe concretely which adap-
tations we made to these datasets to fit our models. Finally, we
present the evaluation results.

5.1 System Architecture

The system architecture, depicted in Figure 2, demonstrates the
end-to-end flow. The system consists of two main modules: the
Data Adaptation Engine and the Preference Cover Solver. The
Data Adaptation Engine takes as input the raw e-commerce data
and the variant (Normalized or Independent), and builds the corre-
sponding preference graph. Detailed discussion about what type
of raw data is necessary, which of the two variants to choose in a
given situation, and how the adaptation is actually performed is
presented in the following section (Section 5.2). The constructed
preference graph is then passed as input to the Preference Cover
Solver, along with k, the desired number of retained items. The
solver runs Algorithm 1, adapted to the specific variant (calling
Algorithms 2 and 3 for the Normalized variant, and Algorithms 4
and 5, resp., for the Independent variant). The solver produces a
list S of retained items (in the order in which the items were added
by the algorithm), accompanied with metadata, such as C(S) (the
cover achieved by S), and the coverage percentage of every item
(implied by the array I, used in our algorithms), i.e. how well the
item is covered by the retained alternatives in S (the coverage of
retained items is obviously 100%). For example, the rightmost
part of Figure 2 highlights the produced set of retained items, B
and D (for the input of k = 2 and the preference graph depicted
in the center of Figure 2, originally introduced in Figure 1 as part
of Example 1.1). The coverage of the non-retained item C is also
100%, since it is completely covered by B. The coverage of items
A and E is 67% and 90% since they are covered by B and D, resp.

Note that, as explained at the end of in Section 3.2, the same
architecture can be used to also solve the complementary problem

Preference graph
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k / threshold

Preference Cover

—>
Solver

Retained items

Coverage: 0.873
A:0.67,B:1,C:1,D:1,E: 0.9

where the goal is to retain the smallest set of items, such that the
cover exceeds a given threshold.

5.2 Adaptation of Raw Data

As mentioned in previous sections, adapting e-commerce data into
our graph model is an essential phase, which is also incorporated
in our architecture. E-commerce platforms collect tracking data
from browsing sessions to learn consumer patterns and preferences
to improve the shopping experience and increase revenue. The
data is often stored in the format of a clickstream, consisting of
the history of events performed by consumers during browsing,
grouped by sessions. The information included in the clickstream
usually contains the session id, date and time, search query, search
page results, clicks, add-to-cart events, purchases and consumer
related information, such as username, IP address, geolocation,
etc. To ensure wide applicability, we assume that the available
clickstreams include only minimal basic information: clicks and
purchases grouped by sessions (which is true for most existing
platforms and datasets [3])%.

Graph construction process We now discuss the process of
constructing a preference graph from the raw data. Recall that our
model captures a session by identifying the “desired” item, which,
if available, is the item the consumer would buy, and otherwise
outgoing edges indicate her willingness to purchase concrete alter-
natives. Therefore, ideally, we would like to have for each session
information identifying the desired item (for example, a search
query specifying it explicitly), as well as a sufficient number of
sessions where the specified item is not available, so as to accu-
rately capture the suitability of alternatives, implied by the items
purchased instead. However, in real life, when considering the
main store which offers the product catalog in its entirety (which
is the source for inferring the what-if probabilities necessary for
curating the store with the limited inventory), it is overwhelmingly
the case that all relevant items in a user session are in-stock. While
this allows to identify the desired item as the one purchased®, and
derive an accurate estimation of each item’s relative popularity, it
is, nevertheless, harder to approximate user preferences pertaining
to alternatives. In light of this limitation, we can use clicks on each
item to estimate its suitability as an alternative to the purchased
item. We note that assuming strong positive correlation between
clicks and an intention to buy is a common practice employed by
analysts in many e-commerce companies, when modeling con-
sumer preferences®, and it is also suggested in relevant studies
[26, 32]. When viewing each click as an intention to buy (as an
alternative), it is possible to overestimate this actual willingness
to make a purchase, likely resulting in a diminished probability
assigned to the event where no alternative is suitable. This can be
4One may also use semantic similarity between items to approximate edge weights,
however we do not pursue this direction here.
5Sessions with no purchase, as all items are assumed to be available, are not driven

by an intention to buy, and hence do not affect our modeling.
©Based on private conversations with analysts in multiple companies.
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Figure 3: Preference graph construction process

addressed by a more refined learning process where more vari-
ables are taken into account, subsequently normalizing the edge
weights by a corrective factor. For example, by considering the
amount of time spent viewing each item [32]. However, discussing
such methods in detail is beyond the scope of this paper.

In view of the discussion above, we construct the preference
graph, given clickstream data containing clicks and purchases per
session, in the following way. The nodes in the graph correspond
to the items. The node weights are assigned the percentage of
purchases of an item out of total number of purchases. An edge
from A to B exists only if the data contains a session where A was
purchased, and B was clicked. The weight assigned to this edge is
the fraction out of all sessions where A was purchased, in which
B was also clicked.

Note that, it may seem at first logical to learn the edges in
the opposite direction, i.e. to assign the weight of and edge from
A to B based on sessions where A was clicked and later B was
purchased, such that the edge direction “matches" the order of
the operations. However, this does not fit the semantics of our
model. Namely, we assume a “requested item" is bought with
probability 1 when in stock, and an edge from A to B refers to
sessions where A is a requested item which is out of stock, and
B is an alternative. Since in most cases (and in the available data
in particular) the items are in stock (examining only data where
a desired item is out of stock will reduce the size of the relevant
sessions to several thousands), clicking on A when available and
then choosing another item implies that A is not the requested
item. The other direction, which we opt for, is arguably more
logical, given sessions where all relevant items are in stock, as the
purchased item is almost certainly the most preferred item, and
clicks on other items serve as considering these items as alterna-
tives. Moreover, when estimating the weights of edges between
A and B, we purposely avoid taking into account sessions where
both A and B were clicked but neither was purchased. This is
because the edges do not represent browsing probabilities (i.e.
the probability B is clicked on next, when currently A is view, or
vice versa), rather purchasing probabilities. Thus, our graph can
intuitively be viewed as a transitive closure of a graph modeling
“browsing" probabilities, with the purchased item viewed last (see
discussion in Section 2). Observe that for items rarely clicked,
the low number of corresponding sessions allows for more noise
and the derived correlations to alternatives are less reliable. How-
ever, rarely clicked items have also (by definition) low weights,
and hence these "noisier" items correspondingly have negligible
influence over solution, as it focuses on more popular items.

How to choose the variant Finally, we explain when each of
our two variants is a suitable choice given the data. We note that
we focus in this work on these two models for edge dependencies,
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as in our inspection of clickstreams, we observed that in almost all
cases one of the variants fits the data (in an approximated manner
described next). Nevertheless, it is of course theoretically possible
for other dependencies to exist, fitting neither of our models. We
leave the adaptation of our techniques to such cases for future
work, as here we focus on dependency schemes we have observed
to be particularly prevalent.

The Normalized variant models the data well when at most one
item, apart from the one purchased, was clicked. In practice it is
unlikely any data perfectly adheres to this rule. However, when
exceptions are rare we consider this to be a good approximation.
In our experiments we applied the Normalized variant when in at
least 90% of the sessions at most one alternative was clicked. In
such datasets, when processing sessions where ¢ > 1 other items
were clicked, we “normalized” by counting each as a %—fraction
of a click.

As for the Independent variant, it fits well when for any 2 al-
ternatives (w.r.t. a given desired item) the fraction of sessions in
which one was clicked remains the same when conditioned on
clicking on the other (counting the fraction only out of sessions
where the other was clicked). Once again, expecting any data
to demonstrate such complete independence is not realistic. We,
therefore, consider the Independent variant to be a reasonable
approximation, when the following condition holds. We use a
common measure for dependence of random variables, known as
Normalized mutual information [31], which produces a value in
[0, 1], such that 1 indicates total dependence and 0 total indepen-
dence. For any given item, we compute this measure for all pairs
of alternatives, and take the average. Finally, we take the weighted
average of these averages over all desired items, corresponding to
the node weights (such that the average is not skewed by rarely
purchased items)”. If this measure is below 0.1, analogously to
the 90% cutoff in the Normalized variant, then we consider the
Independent variant to be a a fitting choice of model.

To illustrate the process described above, consider Figure 3a, de-
picting a tiny sample of sessions taken from a real-life clickstream
of users that purchased an iPhone 8 256GB. This smartphone
comes in 3 different colors: Silver, Gold and Space Gray. The
clickstream consists of these 3 items and 5 sessions, each ending
in a purchase. The corresponding preference graph is depicted in
Figure 3b. There are 2 purchases of the Space Gray iPhone, 2 of
Silver and 1 of Gold. Hence, the node weights are 0.4, 0.4 and 0.2,
resp. Out of the 2 times the Silver iPhone was purchased, each
of the other 2 phones was clicked exactly once. Hence, the edge
weights from Silver to Gold and Space Gray are 1/2. Whereas,
from the 2 sessions where Space Gray phone was purchased, one
had no other clicks, and the other had 1 click on Silver. Hence,
there is an edge from Space Gray to Silver with weight 1/2. Fi-
nally, the Gold iPhone was purchased once, and in that session the
Space Gray phone was clicked as well. Hence, there is a single
edge of weight 1 from Gold to Space Gray. As for the problem
variant, it is clear that the Normalized variant is a good fit, since
no session implies more than one alternative.

Note that given a more detailed clickstream, an e-commerce
platform can construct a more precise graph. For example, one can
analyze the clickstream and combine with the information about
out-of-stock items to find which items were purchased instead.
Another idea for improvement is using the search query text and
filter out items from the clickstream that are not matching the
user’s intent. However, as mentioned before, such information is

70f course, other thresholds and statistical distances can be applied just as well.



Table 2: The datasets used in the experiments

] DS [ Sessions [ Purchases [ Items [ Edges
PE [ 10,782,918 [ 10,782,918 | 1,921,701 [ 9,250,131
PF | 8,630,541 | 8,630,541 | 1,681,625 | 7,182,318
PM [ 8,154,160 | 8,154,160 | 1,396,674 | 5,826,429

[ YC] 9249729 | 259,579 | 52,739 | 249,008

not always available in sufficient volume, hence it can be used
as an enhancement on top of the proposed solution to adjust the
weights. In general, more sophisticated data can be collected, with
more resources invested in its analysis, resulting in a refined mod-
ule for constructing the graph, which comes in place of our Data
Adaptation Engine, with the rest of the architecture remaining
the same. The methods we focus on here are chosen to fit actual
information currently available to most e-commerce platforms.

5.3 Experimental Setup

We implemented our system using Python, and ran the experi-
ments on a server with 128GB RAM and 32 cores. To evaluate
our solution, we have performed a set of extensive experiments,
both on a publicly available real-world dataset and on a bigger
(private) dataset provided by a large e-commerce cornpanyg. We
compare our approach to 4 baselines, using 4 evaluation methods.

Datasets. The first dataset, provided by a large e-commerce
company, contains SM items and 27M sessions, all ending with
a single item purchase (we specifically requested such sessions).
The dataset is private and comes as three independent parts, di-
vided by domains - Electronics (PE), Fashion (PF) and Motors
(PM). Due to its size, this dataset is particularly useful for scala-
bility tests. The second dataset, marked as YC, is a public dataset,
which was provided by the company YooChoose for the Rec-
Sys 2015 Challenge [3]. This dataset contains a clickstream with
approximately 260K sessions ending in a single item purchase,
covering a 6 month period in 2014 (from April 1st to September
30th). We have included this publicly available data, to allow the
reader to reproduce the results.

The summary of these datasets is presented in Table 2. It in-
cludes the number of sessions, purchases, items and edges. Recall
our discussion at the end of Section 5.2 regarding the conditions
we set for each variant to fit a given dataset. It follows that the
YC, PE and PF datasets fit the Independent variant, as in all three
datasets our proposed independence measure is below 0.1. The
PM dataset (whose items are parts and accessories for automo-
biles), however, is better captured by the Normalized variant, as in
its sessions few alternatives were considered prior to purchasing.
In particular, the percentage of sessions implying no more than a
single alternative is above 90%.

Algorithms. We compare 5 different algorithms, over the same
inputs (each input consists of a preference graph and a size bound
k). The experiments are performed separately for both variants
of the problem, and hence the following algorithms have in fact
two versions, each with minor adaptations in accordance with the
difference in the computation of the coverage function. We refer
to the Normalized and Independent versions of the corresponding
algorithm as NAME-N and NAME-I, resp. We next describe our
selected algorithms.

8Company name omitted due to privacy considerations.

531

Greedy - Our proposed greedy algorithm (Algorithm 1).
o BF - A brute-force algorithm that evaluates all subsets of
size k, and returns a set with the highest coverage. We use
this baseline as it is the only one which guarantees the
optimal solution, implying the exact approximation ratios
achieved by our algorithm.
e TopK-W - An algorithm returning the top-k items by
weight. This is the naive baseline that considers each item
individually without taking alternatives into account.
TopK-C - An algorithm that returns the top-k items with
the highest Coverage. This is a refined version of the previ-
ous baseline, which takes alternatives into account, however
not from a global viewpoint as in our solution.
Random - An algorithm that returns k items in a random
manner. This is the simplest baseline.

Note that we did not include any SDP or LP based approxima-
tion algorithms, as they are not at all scalable (see discussion in
section 3.2).

Evaluation Methods. We performed 4 complementary types of
experiments to evaluate our end-to-end solution.

First, to examine the actual approximation factors Greedy at-
tains in practice, we compare its coverage to that of BF, which is
of course optimal. Greedy has a theoretical approximation guar-
antee in each variant, however it refers to the worst case, and
in practice may achieve much better results. Moreover, we show
in these experiments that approximation is necessary, as BF has
impractical running times even on tiny inputs.

To show the quality of our algorithm in terms of the coverage
it obtains on real-life high-scale data, we compare it to all other
baselines, except BF, as it cannot scale to handle real-life data.

To demonstrate the scalability and parallelizability of our so-
lution, in our third set of experiments we run it both on a single
thread, varying the number of items (nodes), as well as on graphs
of fixed size, varying the number of cores.

The fourth set of experiments was performed for the comple-
mentary minimization problem, where we set different thresholds
and aim to find the smallest retained set whose cover exceeds the
given threshold. We compare our adapted algorithm to analogous
adaptations of the other algorithms, to demonstrate its effective-
ness in terms of the size of the retained set.

5.4 Evaluation Results

We present the results for the experiments detailed above.

Comparison to Brute Force. The brute-force algorithm does
not scale to big graphs, since even for n = 30 and k = 15, there
are 155M possible solutions. We show here a representative com-
parison of the algorithms on a subset of the YC dataset, reduced
to 30 products (similar results were obtained for small subsets of
all datasets). Figure 4a depicts the coverage achieved by Greedy
compared to the optimal coverage achieved by BF. Figure 4b
depicts (in log scale) the running times in seconds, over the Nor-
malized variant (the Independent variant showed similar trends,
hence omitted). We can see that the coverage of Greedy is very
close to optimal, while having significantly better running times.

Coverage Quality. We compared all algorithms in terms of
the achieved coverage quality, over all datasets. Figure 4c de-
picts the results on the YC dataset (Independent variant) for k €
{0.1n,0.3n, ..., 0.9n}. The results over all other datasets (which in-
clude the Normalized variant) demonstrate a similar trend, hence
omitted. BF cannot scale beyond small networks, and is excluded
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Figure 4: Experimental results

from this experiment. As expected, Greedy is the top performing
algorithm, while TopK-W and TopK-C lag behind, since they do
not take into account, resp., alternatives, or overlaps in covers by
different items. Random also achieves bad results (taking the best
across 10 executions) as it makes no use of information pertaining
to the popularity of items or their alternatives.

Scalability and Parallelizability. We performed the scalability
tests on graphs of various sizes over all datasets. Note that we
present only the running times of the algorithm, as the graph con-
struction is considered to be an offline phase, hence not included
in the measurements. Figure 4d depicts the running time of Greedy
for n € {10K, 100K, 500K, 1M} and k = 5K, performed on subsets
of the largest dataset (PE), while over other datasets similar trends
were demonstrated, hence not shown here. The parallelizability
analysis of Greedy, depicted in Figure 4e, was performed over
the same dataset and an input graph of fixed size for varying the
number of cores: 1, 4, 8, 16 and 32. The results show almost
perfect parallelization, which scales well as the number of cores
grows. For example, the execution of Greedy on 1 core compared
to 32 cores runs 20x times faster.

Complementary problem. We conclude this section by evaluat-
ing our approach when adapted to the complementary minimiza-
tion problem (as explained at the end of Section 3.2). The goal is
to find the smallest set whose coverage exceeds a given threshold.
Figure 4f depicts the results, in terms of the size of the produced
set, obtained by our algorithm, when executed over the YC dataset
(Independent variant), for thresholds € {0.5,0.6,0.7,0.8,0.9}, com-
pared to the results obtained by TopK-W and TopK-C. These algo-
rithms were also adapted to perform a binary search over a sorted
list of nodes (by the relevant metric - weight or coverage, resp.),
choosing the smallest prefix to exceed the threshold. The results
demonstrate that the superiority of our approach carries over into
this version of the problem, as it outperforms other baselines, pro-
ducing a much smaller set. The results over the other datasets (and
the Normalized variant) are similar.

6 RELATED WORK

E-commerce related problems attracted the interest of many re-
searchers in recent years. Some extensively studied problems are
product classification [9, 33], product ranking in search results

532

[18] and automatic product content generation [10, 24]. Of such
problems close to us in spirit are works on diversity [36], produc-
ing the top k most collectively dissimilar elements, typically out
of a result set to a given search query. This relates to a similar
concept in our problem, where we aim to avoid retaining items
that match the same requests. The resemblance is even greater
when elements are weighted by importance and there is a require-
ment, such as in [8], that each non-selected element is covered by
a similar selected item, relating to our aim of choosing popular
items and items covering as alternatives non-retained items. Nev-
ertheless, there are many differences between their models and
ours. Importantly, unlike in diversification problems, we do not
aim to maximize diversity, rather it is a feature which is, to some
extent, typical of good solutions to our problem, yet not at all
necessary. Moreover, even when diversity is a constraint and the
items are weighted [8], the goal is to maximize the total weight of
the selection, in contrast to our model, where one must also (par-
tially) count weights of adjacent items, which is a crucial property.
Furthermore, as our edges represent choice probabilities (rather
than item dissimilarity), we can support this original concept of
covering neighboring items to a concrete and partial extent, which
along with the aforementioned distinctions lead to vast differences
in the algorithmic solutions and concrete computations.

Another line of work similar to ours is recommendations [28],
as it also deals with selecting a subset of items to increase pur-
chasing probability. However, there are important qualitative and
quantitative differences. Primarily, recommendations are typically
personalized w.r.t. a given user (and often a given product as well),
and deal with a far smaller k. Some works on recommendations
that derive product alternatives [20] may potentially serve as ba-
sis for another method of computing edge weights in preference
graphs. We intend to investigate this approach in future work.

Other existing works in e-commerce that deal with finding top-
k beneficial products to offer [35] focus on setting prices such that
the predicted revenue (including costs) is maximized. However, in
contrast to our models, they do not take into account consumers
opting for alternatives.

Closest to our work is a subfield of Operations Research called
Assortment Optimization. These works typically employ more
complex models such as the Markov chain choice model [4, 23],
multinomial logit model [29] and nested logit model [12]. The



considered Markov chain model bears some resemblance to our
Normalized variant, but is more complicated due to the consider-
ation of varying item revenues and/or multiple-step graph paths
(which are directly captured in our model by transitive edges).
Consequently, their algorithms are also more complex and the
work is geared towards theoretical analysis of the model rather
than practical evaluation. The experiments, when exist, consider
small scale item sets (order of 1000 items) [4], and the results are
not scalable to big data. Furthermore, they mostly use synthetic
datasets, and the process of model derivation from real-life data
(which our end-to-end solution includes), is not considered there.

Our model is inspired by research in behavioral economics. In
particular, [30] observed that consumers experience increased anx-
iety and are less likely to take action when faced with too wide of
a selection. Additionally, [34] demonstrated that consumers, when
searching for a specific item, are often willing to buy in its absence
what they consider to be a reasonably satisfying alternative.

Our work draws on results in classical Top-k cover problems in
graphs [13, 16]. Most notable is the Max Vertex Cover problem
(VCp) [11, 19], which was discussed in detail in Section 3. An
existing direction in the study VCj, whose practical adaptation
to our setting would be an intriguing future work, is devising
algorithms for graphs with bounded degree [13], as this special
case arises in practice in our model. Similar problems include
Max dominating set and Max edge domination [21]. All these
problems can be viewed as special cases of the more abstract
Maximum Coverage problem [6]. Moreover, each of these prob-
lems is strongly related to its more extensively researched variant,
such as the Vertex Cover problem [25], where k is unspecified,
and the goal is to find the smallest subset such that the entire
graph is covered. Theoretical bounds and algorithms can often be
adapted from one variant to the other, which is also the case for
our problem as well, as discussed in Sections 3 and 4.

7 CONCLUSION

This paper introduces the Preference Cover problem, which aims
to select a reduced inventory maximizing the likelihood of a pur-
chase. We model consumer preferences via a preference graph
and study two problem variants, Normalized and Independent,
which differ in their interpretation of the probabilistic dependen-
cies between the suitability of different alternatives. We study their
approximation hardness, and since the overall number of items,
and the bound on the retained set, tend to be very large in this
context (in the order of magnitude of millions), we propose highly
parallelizable and scalable algorithms that come with approxima-
tion guarantees. Finally, we present an end-to-end solution that
maps real-world data into our model, and provide an extensive set
of experiments on multiple datasets, demonstrating the efficiency
and effectiveness of our approach.

In the problem setting studied here (which is common to inter-
mediary e-commerce platforms [1]) the commission-per-purchase
is considered fixed and the goal is to maximize the number of
sales. Extending our work to support varying per-item revenues
and storage considerations is an intriguing future work. Another
interesting direction we are currently pursuing is incremental
maintenance in response to changes over time.
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