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ABSTRACT
Entropy maximization is the only principled approach to com-

bine several (partial) selectivity estimates to an estimate for a

full conjunction. However, this approach has no appearance in

database management systems. We conjecture that the main rea-

son is a lack of implementations with good performance. Indeed,

the originally proposed iterative scaling algorithm has a slow

convergence rate and high complexity in each iteration. As an

alternative, we propose to use a method based on Newton’s algo-

rithm to solve the entropy maximization problem. Further, we

show how this general approach can be implemented very effi-

ciently for both CPUs and GPUs. Our experiments show that our

CPU and GPU implementation is more than 4 orders of magni-

tude faster than the state-of-the-art method for the most complex

problem it could handle. For even more complex problems our

new GPU implementation outperforms our CPU implementation

by more than 43x. In a few milliseconds it is now possible to

compute all partial selectivities for complex conjunctive predi-

cates with 20 or more predicates. We strongly believe that the

proposed implementation is ready for production-grade database

management systems.

1 INTRODUCTION
Query optimizers need precise cardinality estimates to generate

query execution plans of high quality. Basic approaches to esti-

mate result cardinalities rely on the assumptions that values are

uniformly distributed and the selectivities of predicates are inde-

pendent. Increasingly sophisticated techniques were proposed

to address the uniform distribution assumption and also corre-

lation between predicates, see [1, 6] for comprehensive surveys.

However, the space consumption and maintenance effort for all

combinations of multi-column histograms [12], samples [3], or

statistics on views [7] exponentially grows with the number of

columns considered. For this reason, these statistics are genera-

ted only for a few out of all possible column subsets. We address

the challenge how to integrate estimates produced from these

sources of statistics consistently. Note that in general sampling

alone is not sufficient because it can result in highly imprecise

estimates, and thus other synopsis have to be used [11, 15].

Markl et al. [9] observed that the query optimizer makes subop-

timal plan choices despite the rich statistics at hand to find the

optimal plan because fleeing to ignorance seems to be the most
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reasonable choice. They suggested the maximum entropy met-

hod to exploit all available knowledge and to handle inconsis-

tent and missing information in a consistent way. Consider for

example the following scenario. Assume we have three predi-

cates p0, p1, p2 whose selectivities are estimated to be s0 = 0.5,

s1 = 0.5, and s2 = 0.5. Further assume that the combined se-

lectivity for p0 ∧ p1 is s01 = 0.4 and for p1 ∧ p2 is s12 = 0.1.

These selectivities could be estimates produced from single co-

lumn histograms, 2-dimensional histograms, and/or sampling.

The question is what is the selectivity of the whole conjunct

p0 ∧ p1 ∧ p2? The answer given by entropy maximization (as

proposed by Markl et al. [9]) is 0.08, which clearly deviates from

the estimate 0.5 ∗ 0.5 ∗ 0.5 = 0.125 produced under the inde-

pendence assumption. Clearly, the estimate produced under the

independence assumption is inconsistent since it is larger than

the selectivity of p1 ∧ p2. Indeed, it is widely known that the

independence assumption (1) does not hold in general and (2)

leads to bad cardinality estimates and, consequently, (3) leads to

suboptimal query execution plans [8].

In order to derive the missing selectivity values, Markl et al.

propose to find the unique vector x = (x0, x1, . . . x2z−1) (for z
predicates) that maximizes the entropy

H (s) =
∑
i
−xi logxi

subject to the constraints given by the known selectivities. A

formal definition requires some preliminaries and will be given

in Sec. 2. Maximizing entropy can be seen as a generalization of

the independence assumption limited to the case of unknown

selectivities. Since the known selectivities are possibly derived

from several synopsis, the problem may become inconsistent. In

this case, a corrector step is necessary. Since different correctors

have been proposed in the literature (e.g., [9, 10]), we assume in

this paper that the problem on hand is consistent.

To solve the entropy maximization problem, Markl et al. use

iterative scaling. However, this algorithm is known to have very

slow convergence [2, p82] and, additionally, has a relatively high

asymptotic complexity of O(m2 ∗ n) in each iteration, wherem is

the number of known selectivities, z the number of predicates

and n = 2
z
. For example, for eight predicates, iterative scaling

needs on average 260 iterations and 115 ms whereas a Newton-

based algorithm needs 10 iterations and 0.14 ms on a system with

an Intel i7-4790 CPU. For scenarios with even more predicates

iterative scaling quickly becomes too slow to be practical while

our new Newton-based algorithm on the CPU and even more so

on the GPU are able to calculate a solution in a few milliseconds.

Hence, with our method we can avoid strategies like partitioning

the set of predicates to reduce the problem size that can be found

in real-world scenarios [9].
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Notation Description

p0, . . . ,pz−1 z predicates
N = {0, . . . , z − 1} set of all predicate indices

n = 2
z

abbreviation

T ⊆ 2
N

set of indices of known selectivities

m = |T | number of known selectivities

βT vector of known selectivities

C complete design matrix

D (partial) design matrix

s(p) selectivity of predicate p

Bit-wise operations Description

| bit-wise or

& bit-wise and

˜ bit-wise complement

i ⊆ j boolean function returning j = (i |j)

Table 1: Notation

In this paper, we propose to use a Newton-based algorithm

to solve the entropy maximization problem. We formalize the

problem as a series of vector- and matrix operations. However,

a naive implementation of these operations fails to achieve the

performance requirements for this method. Hence, we discuss

in depth how to efficiently implement this algorithm and show

that it is vastly superior to both iterative scaling and the naive

implementation of the Newton method. We elaborate on the

efficient implementation for both the CPU and the GPU.

The rest of the paper is organized as follows. Section 2 for-

mally introduces the problem as a series of vector- and matrix

operations. Section 3 describes and evaluates the (almost) straight-

forward implementation and the optimized implementation of

Newton’s algorithm for the CPU. Section 4 describes and evalua-

tes our GPU implementation of the algorithm. Section 5 reviews

how entropy maximization can be integrated into query optimi-

zers and concludes the paper.

2 PROBLEM FORMALIZATION
In this section, we present an elegant way to formalize the max-

imum entropy method for selectivity estimation. This is a ne-

cessity since standard entropy maximization algorithms require

a matrix-based representation of the problem, which is not yet

readily available. Only this matrix-based representation of the

problem will allow us to derive an efficient algorithms.

2.1 Design Matrix
Since we need a matrix representation of the problem, we need to

heavily deviate from the notation of Markl et al. [9]. However, in

our opinion, the resulting representation is much more elegant.

From the notation of Markl et al. [9], we only keep the letterT to

denote the indices of the known selectivities. For convenience, the

most important parts of the notation are summarized in Table 1.

The lower part contains the notation for bit-wise operations,

which will be required for our efficient implementations.

2.1.1 Conjunctions of (Simple) Predicates (β). Consider a con-
junctive query

p0 ∧ . . . ∧ pz−1

of z predicates. These may be selection predicates or join predi-

cates [9].

Let N = {0, . . . , z − 1} be the set of numbers from 0 to z − 1.

Then, all subsets X ⊆ N can be represented as a bit-vector of

length z denoted by bv(X ) where the set bits indicate the indexes

of those elements of N which are also included in the subset X .
Further, this bit-vector can be interpreted as a binary number.

We make no distinction between the bit-vector and the integer it

represents and use whatever is more convenient. For example,

we use the notation i ⊆ j to denote the fact that i has a ’1’ only
in those positions where j has a ’1’, i.e., j = i |j holds.

For any X ⊆ N define the formula

β(X ) := ∧i ∈X pi

i.e., β(X ) is the conjunction of all predicates pi whose index i is
contained in X . The following table gives a complete overview

for z = 3, where we order bits from least significant to most

significant:

bv(X ) β(X )

1=100 p0
2=010 p1
3=110 p0 ∧ p1
4=001 p2
5=101 p0 ∧ p2
6=011 p1 ∧ p2
7=111 p0 ∧ p1 ∧ p2

where the first column gives the integer value and its bit-vector

representation of the index set X and the second column the

corresponding conjunction of predicates contained in X . We use

β(i) instead of β(X ) if i is the bit-vector/integer representation
of some X .

The selectivity of β(X ), i.e., the probability of β(X ) being true

is denoted by β(X ). A special case occurs for the empty set. The

empty conjunct is always true. Thus β(∅) = β(0) = 1.

2.1.2 Complete Conjuncts (γ ). A conjunction of literals con-

taining all predicates either positively or negatively is called

complete conjunct (atom by Markl et al., also minterm). For n = 3,

the following table contains a list of all complete conjuncts:

i γ (i)

0=000 ¬p0 ∧ ¬p1 ∧ ¬p2
1=100 p0 ∧ ¬p1 ∧ ¬p2
2=010 ¬p0 ∧ p1 ∧ ¬p2
3=110 p0 ∧ p1 ∧ ¬p2
4=001 ¬p0 ∧ ¬p1 ∧ p2
5=101 p0 ∧ ¬p1 ∧ p2
6=011 ¬p0 ∧ p1 ∧ p2
7=111 p0 ∧ p1 ∧ p2

Note that two different complete conjuncts can never be true si-

multaneously. The complete conjuncts have been indexed by their

bit-vector representation, where a positive atom corresponds to

’1’ and a negative atom corresponds to ’0’. For a given X ⊆ N ,

denote by γ (X ) the complete conjunct X :

γ (X ) :=
∧
i ∈X

pi ∧
∧
i<X

¬pi

The probability of a complete conjunct γ (X ) for some X being

true is denoted by γ (X ).

2.1.3 Correspondence between β and γ . For a given X ⊆ N ,

the bit-vectors y of the complete conjuncts γ (Z ) contributing to

β(X ) can be expressed as all the bit-vectors y which contain a

’1’ at least at those positions where the bit-vector representation
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bv(X ) of X contains a ’1’. That is

{y |y ⊇ bv(X )}.

Consider X = {0} (=̂100). Then

β(X ) = s( p0 ∧ ¬p1 ∧ ¬p2 )+

s( p0 ∧ p1 ∧ ¬p2 )+

s( p0 ∧ ¬p1 ∧ p2 )+

s( p0 ∧ p1 ∧ p2 ),

where s(p) denotes the selectivity of the complete conjunct p. For
X = {0, 1} (=̂110):

β(X ) = s(p0 ∧ p1 ∧ ¬p2) + s(p0 ∧ p1 ∧ p2).

As a special case, we get for X = ∅ (=̂000) that all complete

conjuncts contribute to β(∅). Further, the sum of them must

be one. Consequently, we always assume that the empty set is

contained in the set of known selectivities T , i.e., ∅ ∈ T .

2.1.4 Complete Design Matrix C . In case T = 2
N
, all selecti-

vities are known. Define n = 2
z
. Then, we define the complete

design matrix A ∈ Rn,n as

C = (ci , j ) =

{
1 if i ⊆ j
0 else

where we use indices in [0, 2z − 1]. Note that C is unit upper

triangular, nonsingular, positive definite, and persymmetric.

For z = 3, we have

C =

©­­­­­­­­­­­«

1 1 1 1 1 1 1 1

0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

0 0 0 1 0 0 0 1

0 0 0 0 1 1 1 1

0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 1

ª®®®®®®®®®®®¬
This design matrix helps us to go from probabilities for com-

plete conjuncts to selectivities for positive conjuncts. Let b =
(β(0), ..., β(n− 1))t the column vector containing all the selectivi-

ties β(X ) for all X ∈ 2
N

and x = (γ (0), ...,γ (n − 1))t the column

vector containing all the selectivities for all complete conjuncts.

Then,

Cx = b

holds.

2.2 The (Partial) Design Matrix D
We first establish some notation to eliminate rows and columns in

some matrixA. LetA ∈ Rn,n be some matrix. LetT ⊆ {0, . . . ,n−
1},m := |T |, be a set of column indices. Then, we denote byA|c(T )
the matrix where only the columns in T are retained. Likewise,

we denote byA|r (T ) the matrix derived by retaining only the rows

inT . These operations can be expressed via matrix multiplication.

For an index set T withm = |T |, we define the matrix Em,n,T ∈

Rm,n
as

Em,n,T (i, j) =

{
1 if j = T [i]
0 else

whereT [i] denotes the i-th element of the sorted index setT . For
example, form = 4, n = 8, T = {1, 3, 5, 7}, we get

E4,8,T =
©­­­«
0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

ª®®®¬

NewtonA(b(= βT ),T , ϵ)

1 w = 0

2 x = exp(−1)

3 while (δ > ϵ)
4 A = Ddiag(x)Dt

5 solve Ay = b − Dx
6 w =w + y
7 x = exp(Dtw − 1)

8 δ = | |b − Dx | |
9 return (x , Cx )

Figure 1: Newton Variant A [2, p73]

Then, for A ∈ Rn,n

A|r (T ) = Em,n,TA

A|c(T ) = A(Em,n,T )
t

holds. For a given subset T ⊆ {0, . . . ,n − 1} (of known selectivi-

ties), we retain only those rows from the complete design matrix

C for which there is an entry inT . We define the problem specific

(partial) design matrix D for T as

D := C |r (T ) = Em,n,TC ∈ Rm,n
(1)

wherem := |T |. Clearly, the rank of D ism.

2.3 Problem Definition
For z predicates, a given vector βT of known selectivities and

indices T thereof, the idea of Markl et al. is to find the solution

to Dx = βT that maximizes the entropy of the solution vector x
[9]. That is, the problem to solve can be specified as

argmax

x

n−1∑
i=0

−xi logxi subject to Dx = βT and x ≥ 0 (2)

where n = 2
z
. Note that, we must have that

∑n−1
i=1 xi = 1, but this

is implied since we assume that ∅ ∈ T always holds.

3 EFFICIENT CPU IMPLEMENTATION
In this section, we first discuss an implementation of Newton’s

algorithm to solve the entropy maximization problem that is

directly derived from [2]. Due to the matrix-based formalization

of our problem, the algorithm is readily applicable andwe call this

Variant A, and it represents the state-of-the-art implementation

of Newton’s algorithm. This algorithm it’s rather inefficient since

its steps require multiplications of large vectors and matrices.

We improve this by devising a method for how these matrix and

vector operations can be computed very efficiently. This leads

us to Variant B of Newton’s algorithm. Finally, we evaluate the

runtime of both variants on an Intel CPU and compare it with

the iterative scaling which was used by Markl et al.

3.1 Newton Variant A
Markl et al. propose to use iterative scaling to solve the opti-

mization problem in Eqn. 2 [9]. However, it is well-known that

iterative scaling converges very slowly [2, p82]. In contrast, a

Newton-based approach exhibits local quadratic convergence [2,

p73]. We thus selected a Newton-based algorithm applied to the

dual problem of Eqn. 2:

argmin

w
exp(Dtw − 1)t ®1 − βtTw (3)
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as the basis of our work, where we suppose that the set {x ∈ Rn :

Dx = βT , x ≥ 0} has a nonempty interior (see also [2, p55]).

Fig. 1 shows the code of a Newton-based algorithm to solve

the maximum entropy problem defined in Sec. 2.3. As input, it

receives the vectors b and T of known selectivities and their

indices, and some ϵ > 0 used in the stop criterion. It returns the

solution x maximizing the entropy and the vector Cx containing

the β-selectivities for all possible conjuncts. Although T does

not occur in the body of Fig. 1, it is used in the definition of the

design matrix D (see Eqn. 1).

The steps in the algorithm differ vastly in complexity. The ini-

tializations ofw and x have complexity O(n) and O(m), respecti-

vely, and are thus rather uncritical. The calculation ofw = w + z
in Line 6 has complexity O(m) and is thus rather uncritical, too.

The calculation of A = Ddiag(x)Dt
in Line 4 can be very ex-

pensive if implemented literally. Note that diag(x) is a diagonal
(n×n)-matrix with x on its diagonal. Using standard matrix multi-

plication, the complexity of this step isO(m∗n2+m2∗n). However
diag(x) contains only zero’s besides the diagonal and thus a more

efficient procedure which does not rely on materializing diag(x)
can be devised:

get_DdiagxDt(D, x)

1 for (0 ≤ i < m, 0 ≤ j < m)

2 s = 0

3 for (0 ≤ k < n)
4 s += D[i,k] ∗ x[k] ∗ D[j,k]
5 A(i, j) = s
6 return A

This procedure has complexity O(m2 ∗ n) and is thus far better

than the naive approach using matrix multiplication.

In step (5), we need to solve Ay = b − Dx for y. Calculating
Dx has complexityO(m ∗n). To solve the equation, note that the
(m,m)matrixA = Ddiag(x)D ′

calculated in step (2) is symmetric,

non-singular, and positive definite. Thus, the efficient Cholesky

decomposition [5, p237] can be applied to derive a lower triangu-

lar matrix L with A = LLt . Then, we derive the solution y using

back substitution [4, p89]. The complexity of this procedure is

O(m3).

In step (7), we need to calculate Dtw , which has complexity

O(m ∗ n). Step (8) with complexity O(m) is uncritical again, as

Dx has been calculated in step (5) already.

In step (9), we need to calculate the product of the complete

design matrixC with the primal solution vector x . Using standard
matrix multiplication this step has complexity O(m ∗ n).

The complexities of the steps become visible when profiling

Newton Variant A for z = 8...10: roughly 80% of the runtime is

spent in procedure get_DdiaxDt.

3.2 Newton Variant B
As we will see in below, a careful analysis of the structure of

the complete design matrix C allows us to derive a reduction-

based algorithm that avoids redundant computations resulting

in an algorithm for Newton’s method with lower computational

complexity than the state-of-the-art algorithm from Sec 3.1.

3.2.1 Recursive Characterization of C . The complete design

matrix C can also be defined recursively. Denote by Cz ∈ Rn×n

with n = 2
z
the complete design matrix for z predicates. Then

C0 = (1)

and

Cz+1 =

[
Cz Cz
0 Cz

]
characterize the complete design matrix C . Another possibility
to define C is to use the Kronecker product ⊗ [5, p337]. With

C1 =

(
1 1

0 1

)
we have

Cz+1 = C1 ⊗ Cz

3.2.2 Efficient Calculation ofCx andCtx . Let us turn to calcu-
latingCx for some vector x ∈ Rn , which we need to do efficiently

for our Newton-based algorithm. If we cut x ∈ Rn into two halves

x1, x2 ∈ Rn/2, we observe that

Czx =

(
Cz−1 Cz−1
0 Cz−1

) (
x1
x2

)
=

(
Cz−1x1 +Cz−1x2

Cz−1x2

)
(4)

The termCz−1x2 occurs twice but has to be calculated only once.

Based on this observation, it is easy to implement a recursive

procedure calculating Czx in O(z2z ), i.e. O(nloдn) substituting
n = 2

z
. As a major contribution of this paper, we are now able to

reduce the algorithmic complexity of the newton method from

O(n2) down to O(nloдn).
In order to avoid the overhead of recursion, we provide an

efficient iterative algorithm. We assume that the in/out argument

Cx has been initialized with x . Further, vp_add is an AVX2-based

implementation to add two vectors of length h.

void get_Cx(double* Cx, uint z)

1 w = h = s = t = 0;

2 n = 1 << z;

3 for (w = 2;w <= n;w <<= 1) // width

4 for (s = 0; s < n; s+ = w) // start of first half

5 h = (w >> 1); // half of width

6 t = s + h; // start of second half

7 vp_add(Cx + s, Cx + t, h);

A procedure to efficiently calculate Cty can be devised simi-

larly by replacing Cx by Ctx and vp_add(Cx + s, Cx + t, h) by

vp_add(Ctx + t, Ctx + s, h). We call this algorithm get_Ctx tow ′
.

3.2.3 Efficient Calculation of Dx and Dtx . First remember

that forn = 2
z
, z being the number of predicates, (1) the complete

design matrix C is of dimension (n,n) and (2) the design matrix

D is of dimension (m,n). where in typical applicationsm will be

much smaller than n = 2
z
.

As we have seen in Sec. 3.2.2, calculating Cx in Line 9 can be

implemented very efficiently. By exploiting the definition of D
in Eqn. 1, we can evaluate Dx = Em,n,TCx efficiently by first

calculating Cx and then picking the components contained in T .
This has to be done only once to calculate the expressions Dx in

Lines 5 and 8, and Cx in Line 9. Further, Ctx can be calculated

efficiently using algorithm get_Ctx. Thus, calculating Dtw in

step (7) can be implemented efficiently by exploiting the fact that

Dt = CtETm,n,T . We can embedw into a vectorw ′
in Rn via

w ′[j] =

{
w[i] if j = T [i] for some i
0 else

(0 ≤ i < m, 0 ≤ j < n) and apply algorithm get_Ctx.

549



3.2.4 Efficient calculation of Ddiag(x)Dt . Next, we discuss an
efficient implementation of step (4). Aswe have already calculated

Cx , we now show that it is possible to calculate (Ddiag(x)Dt )

from Cx . We start with an efficient algorithm to calculate

(Cdiag(v)Ct ).

Observe that (diag(v)Ct ) = (Cdiag(v))t . Further,

(Cdiag(x))[j,k] =
n−1∑
l=0

c j ,ldiag(x)[l,k] = c j ,kxk

Thus, using

(Cdiag(x)Ct )[i, j] =

n−1∑
k=0

ci ,k (Cdiag(x))
t [k, j]

=

n−1∑
k=0

ci ,k (Cdiag(x))[j,k]

=

n−1∑
k=0

ci ,kc j ,kxk

=
∑

(i |j)⊆k

xk

= (Cx)[i |j]

we can calculate (Cdiag(x)Ct ) from Cx . Since

Ddiag(x)Dt = (Em,n,TC)diag(x)(Em,n,TC)
t

= Em,n,T (Cdiag(x)C
t )Etm,n,T

we can use Cx to fill (Ddiag(x)Dt ) ∈ Rm,m
via

(Ddiag(x)Dt )[i, j] = (Cx)[T [i] | T [j]] (5)

for 0 ≤ i, j < m.

3.3 Evaluation
In order to evaluate the implementations of the two variants of

Newton’s algorithm and the iterative scaling used by Markl et

al., we need to generate entropy maximization problems. Since

generation of β selectivities easily leads to inconsistencies, we

generate a random vector x of size n containing positive integers

interpreted as cardinalities for all complete conjuncts γ . Divi-
ding each xi by

∑
i xi results in γ -selectivities. Calculating b =

Cx results in a complete set of consistent β-selectivities. From
these, we select the subset T of known selectivities by extracting

selectivities for single predicates and conjunctions of two or three

predicates. In practice, not all pairs or triples will be available.

Thus, the runtimes reported in the experiments below can be

seen as loose upper bounds on the runtime in practice.

We use the stopping criterion | |b/Dx | |q ≤ ϵ where b/Dx
denotes component-wise division,

| |y | |q := max

i
(max(yi , 1/yi )),

and ϵ = 1 + 10−8.

We implemented iterative scaling and the two variants of our

Newton-based algorithm in C++ and compiled them with g++

version 7.2.1 with option -O3. The experiments where run on a sy-

stem with an Intel i7-4790 CPU. Note that this CPU with Haswell

architecture had a better single-thread performance than a newer

server CPU with Skylake architecture. We report the average

execution time of 777 generated problems for each number z of
predicates. Our implementation runs in single-threaded mode.

Figures 2 and 3 show the average runtime of our CPU imple-

mentation versus the runtime of iterative scaling (as proposed

Newton Newton Iterative Scaling

Var. A Var. B

z m runtime [ms] #itr runtime [ms] #itr

3 7 0.009 0.004 7.3 0.14 190

4 11 0.017 0.008 7.8 0.47 190

5 16 0.061 0.027 8.1 2.1 200

6 22 0.23 0.048 9 9.4 210

7 29 0.84 0.075 9.1 34 240

8 37 2.9 0.14 10 120 260

9 46 10 0.25 11 370 280

10 56 29 0.41 11 1100 310

11 67 98 0.73 12 — —

12 79 310 1.4 13 — —

13 92 1000 2.7 13 — —

14 106 3300 5.3 14 — —

15 121 11000 11 15 — —

16 137 — 23 15 — —

17 154 — 48 16 — —

18 172 — 100 17 — —

19 191 — 200 17 — —

20 211 — 480 18 — —

(Intel i7-4790, single-threaded, T = {t |popcnt(t) ≤ 2})

Figure 2: Newton vs. Iterative Scaling

Newton Newton Iterative Scaling

Var. A Var. B

z m runtime [ms] #itr runtime [ms] #itr

4 15 0.04 0.02 8.7 3 890

5 26 0.15 0.05 9 16 910

6 42 0.79 0.13 9.3 79 1000

7 64 3.9 0.33 10 360 1200

8 93 16 0.76 10 1600 1400

9 130 65 1.8 11 6700 1580

10 176 230 4.1 11 26000 1800

11 232 890 9.1 12 — —

12 299 3400 20 13 — —

13 378 11000 40 13 — —

14 470 38000 80 14 — —

15 576 120000 150 15 — —

16 697 — 270 15 — —

17 834 — 480 16 — —

18 988 — 880 17 — —

19 1160 — 1400 17 — —

20 1351 — 2600 18 — —

(Intel i7-4790, single-threaded, T = {t |popcnt(t) ≤ 3})

Figure 3: Newton vs. Iterative Scaling

by Markl et al. [9]) if the set of known selectivities T contains all

unary and additionally all binary or ternary conjuncts. Column

z contains the number of predicates considered and columnm
contains the number of known selectivities. Besides the average

runtime in milliseconds, we include the average number of itera-

tions.

As one can see, our Newton-based implementation is much

more efficient than the originally proposed iterative scaling algo-

rithm. For ten conjuncts the runtime of iterative scaling already

exceeds one second. Further, as expected, Newton Variant B is

much more efficient than Newton Variant A.
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Figure 4: Scheme of the efficient GPU implementation of
Cx for an initial x = 0, 1, . . . , 7

Figure 2 shows that for up to ten predicates, the runtime to

calculate all selectivities needed by the query optimizer is below

0.5 milliseconds if Newton Variant B is used, i.e. three orders of

magnitude faster than iterative scaling. However, somewhere

between 11 and 20 predicates, depending on the context (e.g., ad

hoc queries vs. repeated execution), even the runtimes of our

optimized Newton Variant B implementation becomes too high.

In particular, Figure 2 indicates that the Newton Variant B with 13

predicates exceeds one second of runtime, while our new method

B finishes even 20 conjuncts in less than a second.

In general the runtimes are higher when the problems contain

all unary, binary or ternary conjuncts. As can be seen in Figure 3,

iterative scaling needs almost 26 seconds for 10 predicates while

our newNewtonmethodwith Variant B calculates these problems

in about 4 milliseconds, i.e. more than 4 orders of magnitude

faster. The naive implementation of Newton’s method in Variant

A needs more then ten seconds runtime for 15 predicates while

Variant B is nearly 4 orders of magnitude faster for the same

problems.

The increasing runtimes as we consider more and more com-

plex predicates motivated us to pursue a GPU implementation.

4 EFFICIENT GPU IMPLEMENTATION
In this section we describe how the Newton algorithm can be

implemented efficiently on a modern GPU. We first explain the

multi-threaded GPU implementation of Variant B presented in

Sec. 3.2. After that we present experimental results of our imple-

mentation using CUDA 10.0 on an NVIDIA Tesla V100 GPU.

4.1 Newton Variant B on the GPU
We discuss how Variant B of Newton’s method can be imple-

mented on an NVIDIA GPU. We focus our presentation on the

implementation of Cx because, as we have seen in Sec. 3.2, this

operation is at the heart of the implementation of steps (4), (7), (8)

and (9) of the Newton algorithm presented in Figure 1. We also

point out how the remaining step (5), the Cholesky decomposi-

tion, is implemented efficiently on the GPU. Finally we outline

how we organize our code in kernels of the end-to-end imple-

mentation.

4.1.1 GPU Implementation of Cx and Ctx . As the NVIDIA
V100 GPU used in our experiments offers an abundance of 5120

CUDA cores, we need to extend the implementation of get_Cx

presented in Sec. 3.2.2 to support massive multi-threading. Fi-

gure 4 illustrates the parallelization scheme we use in our im-

plementation. Here, the required operations for calculating Cx
are shown for x = {0, 1, 2, 3, 4, 5, 6, 7} and z = 3. Boxes repre-

sent the contents of x after each iteration i , and dark (light) blue

circles represent active (inactive) CUDA threads. In each itera-

tion, every active thread performs one addition and stores the

result. The connecting blue lines indicate the flow of data. In

every iteration half of the GPU threads are active while the other

half is idle. While this may seem wasteful, it allows us to use a

simple mapping from thread-id to accessed memory addresses.

A more effective use of the GPU threads would require a more

complex mapping. In fact, we did not find an efficient way to map

thread-ids to memory addresses while keeping all threads active

all the time. As the maximum number of threads per thread block

for the Tesla V100 is 1024, the first ten iterations of our scheme

can be performed without requiring communication between

different thread blocks. During these ten iterations we make use

of the GPUs shared memory, and access to global memory is

only required once when loading x into shared memory and

once when writing Cx back to global memory. This is benefi-

cial because compared to global memory, shared memory on the

NVIDIA V100 GPU offers lower latency and significantly higher

bandwidth. Hence, for z ≤ 10 we use the kernel using shared

memory shown in Listing 1. In every iteration of the outer loop

we advance with processing vector x by the number of available

threads. Note, that for z predicates we have n = 2
z
elements to

process, i.e. for z = 15 we have 2
15 = 32768 elements to process.

The inner loop in Listing 1 adds the elements as illustrated in

Figure 4.

For z > 10, no efficient shared memory implementation is

possible as threads of one thread block would need to access

shared memory allocated in another thread block. This is not

possible, and as a consequence all memory accesses have to go

to global memory. This requires global synchronization through

individual kernel launches. We call this global kernel to compute

Cx once for every z > 10. It is shown in Listing 2. In our imple-

mentation we use templates to generate these calls at compile

time. The parameter direction allows us to not only calculate

Cx but also to calculate Ctx . When direction is set to 1, the

algorithm proceeds backwards, giving us Ctx . This is needed in

step (7) of the Newton algorithm where we use the product Dtw .

Recall that steps (4), (7), (8) and (9) in the Newton algorithm

shown in Figure 1 build upon or use the calculation of Cx . This
is why we do not describe the implementation of these steps in

detail here. The basic ideas are similar to the ones presented for

the computation of Cx .

4.1.2 Cholesky Solver. As for the CPU implementation pre-

sented in Sec 3.1, solving Ay = b − Dx for y in step (5) of the

Newton algorithm shown in Figure 1 can be done using Cholesky

decomposition [5, p237]. Fortunately, we can use the cuSolver

library from the CUDA toolkit [16] for large problems, i.e. for

m ≥ 40. First, we rely on cusolverDnDpotrf to factorize A in a

kernel call. Then, we call the kernel cusolverDnDpotrs where
we pass b − Dx as argument and get y as result of step (5).

As multiple kernel calls are involved in these steps, and each

kernel call implies a call overhead of approximately 5 − 10µs ,
we also implement a variant of the Cholesky decomposition

using only a single kernel call. We use this kernel as a solver

for small problems, i.e. m < 40. The implementation is based

on [13] and calculates the solution of the system of equations via
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Listing 1: Kernel to compute Cx in shared memory
1 template < in t BLOCK_SIZE_X>

2 __g l o b a l _ _ void getCxShared ( double ∗ _ _ r e s t r i c t _ _ const x , const unsigned int z ,

3 const bool d i r e c t i o n =0 ) {

4 unsigned int s t r i d e = blockDim . x ∗ gridDim . x ;

5 __shared__ double xShared [ BLOCK_SIZE_X ] ;

6 unsigned int end = (1 << z ) ;

7 for ( in t g l o b a l I d x = t h r e a d I d x . x+blockDim . x ∗ b l o c k I d x . x ; g l o b a l I d x < end ; g l o b a l I d x += s t r i d e ) {

8 xShared [ t h r e a d I d x . x ] = x [ g l o b a l I d x ] ;

9 __ sync th r e ad s ( ) ;

10 for ( in t w = 1 ; w < BLOCK_SIZE_X ; w<<=1) {

11 i f ( ( t h r e a d I d x . x /w) %2 == d i r e c t i o n ) {

12 xShared [ t h r e a d I d x . x ]+= xShared [ t h r e a d I d x . x+w− d i r e c t i o n ∗ 2 ∗w] ;

13 }

14 __ sync th r e ad s ( ) ;

15 }

16 x [ g l o b a l I d x ] = xShared [ t h r e a d I d x . x ] ;

17 }

18 }

Listing 2: Kernel to compute Cx in global memory
1 template <unsigned int i t e r a t i o n >

2 __g l o b a l _ _ void ge tCxGloba l ( double ∗ _ _ r e s t r i c t _ _ const x , const bool d i r e c t i o n =0 ) {

3 s t a t i c con s t e xp r auto o f f s e t = 1U << i t e r a t i o n ;

4 const int myGloba l Idx = t h r e a d I d x . x+blockDim . x ∗ b l o c k I d x . x ;

5 const int b l o c kO f f s e t = ( b l o c k I d x . x ∗ 1 0 2 4 / o f f s e t ) ∗ 2 ∗ o f f s e t ;

6 const int myElementIdx = o f f s e t ∗ d i r e c t i o n + b l o c kO f f s e t + myGloba l Idx% o f f s e t ;

7 x [ myElementIdx ]+=x [ myElementIdx+ o f f s e t −2∗ d i r e c t i o n ∗ o f f s e t ] ;

8 }

Gaussian elimination without pivoting. It is implemented to run

in a single thread block using shared memory. In our experiments,

this reduced the end-to-end runtimes of the Newton algorithm by

0.2 − 0.4ms . However, as the CPU implementation is still faster

than the GPU for such small problems this alternative is not

really needed.

4.1.3 End-To-EndGPU Implementation. Wenowdescribe how

the various kernels are combined to implement Newton’s algo-

rithm on the GPU. In Figure 5, we can only present pseudo code

as all the GPU code taken together is several hundred lines long.

The initialization in steps (1) - (3) and the main loop are realized

in function NewtonB_GPU.
While the logic of the loop is the same as in Figure 1 for the

CPU code we organize the code to minimize the number of kernel

calls. For example, in step (5) we compute both Ddiag(x)Dt
and

also b−Dx in a single kernel call to buildMatrixA. In this kernel

we first computeCx calling getCxShared and then, if z > 10, we

call getCxGlobal in a loop for every 10 < w ≤ z. In the second

step of kernel buildMatrixA, we gather from Cx the elements

for Dx and A = Ddiag(x)Dt
as explained in Sec 3.2.3 and Eqn 5

in Sec 3.2.4. In Sec 4.1.2 we explain how we implement step (6) of

the loop in function NewtonB_GPU, i.e. using the cuSolver library

of CUDA for larger problems. Step (7) computes w = w − y
using thrust::transform from Thrust, the CUDA C++ template

library [16]. Then, step (8) fuses steps (7) and the computation

of b − Dx in step (8) of the CPU-based code from Figure 1 into a

single kernel productOfDtw. This kernel first distributes vector
w into x , and then productOfDtw uses the logic of get_Cx_GPU
to compute Dtw using direction = 1 as parameter to handle the

transposed matrix; see Sec 3.2.3. As part of this computation

we can also calculate the vectors uold ,unew and x in the same

kernel. Notice, that after the call to productOfDtw the vectoruold
contains the element-wise delta of the last loop iteration. We use

this vector in step (9) to determine δ to check for convergence

of the algorithm. In our GPU implementation we use the L∞
norm and ϵ = 10

−8
. Because of the local quadratic convergence

of the Newton algorithm we found that the norm used to check

for convergence had virtually no impact on the convergence of

the algorithm. If convergence is reached, we return the solution

of the Newton algorithm in step (11) by doing one final call to

get_Cx_GPU(x,0).

4.2 Evaluation
To evaluate the performance of the GPU-based implementation

of the Newton algorithm presented in Sec 4.1, we generated the

same entropy maximization problems as in Sec 3.3. We compiled

the Newton algorithm using gcc 7.3.1 for the host code and CUDA

10.0 for the kernels on the GPU and compiled them with g++ -O3

The experiments where run on a system with an Intel Xeon

E7-8890v3, i.e., using a CPU from the same hardware generation

as we used for the evaluation of the CPU-based implementation

in Sec 3.3. The system was equipped with a PCI-attached NVIDIA

Tesla V100 GPU with 16GB of HBM2 memory. We report the

average execution time of the generated problems for different

numbers of predicates, z. During the experiments, the host code

on the CPU was running in a single thread; virtually all computa-

tion was done on the GPU. We remark that the runtimes for the

CPU implementations reported in Sec 3.3 used a single thread

on the host. The GPU implementation we used here performs

busy waiting on the host. With CUDA 10.1 the graph feature
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get_Cx_GPU(x,direction)

1 y = getCxShared(x,direction)

2 forw = 1 to z − 10

3 Cx = getCxGlobal<10 + w>(y,direction)
4 return Cx

buildMatrixA(b, x)

1 Cx = get_Cx_GPU(x,0)

2 (A, Dx ) = distribute Cx to A and Dx using Sec 3.2.3 and Sec 3.2.4

3 return (A, Dx )

productOfDtw(w)

1 Dtw = 0

2 distributew into x
3 Dtw = get_Cx_GPU(x,1)

4 together with get_Cx_GPU(x,1), in the same kernel also compute

5 x = exp(−Dtw)

6 unew = x/exp(1)
7 uold = uold − unew
8 return (Dtw,uold ,unew , x )

NewtonB_GPU(b(= βT ),T , ϵ)

1 w = 0

2 b = b ∗ exp(1)

3 x = 1

4 while (δ > ϵ)
5 (A, Dx ) = buildMatrixA(b, x)

6 solve Ay = b − Dx for y using cuSolver

7 w = w − y
8 (Dtw,uold ,unew , x ) = productOfDtw(w)

9 δ = | |uold | |∞
10 swap(uold , unew )

11 return (get_Cx_GPU(x,0))

Figure 5: GPU version of Newton Variant B

became available which allows to model the graph of kernels and

reduce the call overheads for the kernels. Furthermore, the graph

recapture feature introduce with CUDA 10.2. supports passing

parameters to these graphs further reducing the call overheads

of the GPU. With this the GPU implementation may become

faster for smaller problems, but an initial overhead to create and

instantiate the graph of about 0.4ms would remain. For larger

problems these overheads become insignificant.

In Figure 6 we present the runtime for configurations with

different complexity. As in Sec 3.3 column z contains the number

of predicates considered and columnm contains the number of

known selectivities.

The runtimes in the third column in Figure 6 are reported

for problems where the set of known selectivities T contains

all unary and additionally all binary conjuncts. In this setup,

the GPU is faster than the fastest CPU implementation for 13

or more predicates. For 20 predicates the runtime of the fastest

CPU implementation was 480 ms (see Figure 2) while the GPU

implementation only needs 18 ms, i.e. speed-up of 27x. Further-

more, the NVIDIA V100 GPU is able to compute problems with

25 predicates in only 632 ms. In comparison, the state-of-the art

method based on iterative scaling presented by Markl et al. [9]

already needs more than one second to compute the result for

only 10 predicates (see Figure 2).

The runtimes in the fifth column in Figure 6 refer to problems

where the set of known selectivities T contains all unary, binary

Newton GPU

z m runtime [ms] m runtime [ms]

3 7 0.9 8 1.0

4 11 0.7 15 0.9

5 16 0.7 26 0.9

6 22 0.7 42 1.2

7 29 0.8 64 1.4

8 37 1.0 93 1.8

9 46 1.3 130 2.9

10 56 1.5 176 3.5

11 67 1.8 232 4.9

12 79 2.2 299 6.5

13 92 2.5 378 8.8

14 106 3.1 470 11

15 121 3.7 576 16

16 137 4.7 697 20

17 154 6.2 834 28

18 172 7.7 988 33

19 191 11 1160 46

20 211 18 1351 63

21 232 35 1562 90

22 254 63 1794 130

23 277 140 2048 220

24 301 310 2325 420

25 326 630 2626 760

(NVIDIA Tesla V100)

Figure 6: GPU implementation of Variant B of Newton’s
algorithm

and ternary conjuncts. Here, the GPU is faster than our fastest

CPU-based implementation for 10 or more predicates. For 20

predicates the GPU-based implementation is more than 43 times

faster than our fastest CPU-based implementation. Such a com-

plex problem could not be solved in a reasonable time by the

state-of-the art method based on iterative scaling [9]. According

to Figure 3, that implementation processed problems with 10

predicates in almost 26 seconds while our GPU-based implemen-

tation finishes this task in only 3.5 ms, i.e. almost five orders of

magnitude faster.

5 DISCUSSION AND CONCLUSION
Query optimizers rely on several sources to estimate the selecti-

vity of complex conjunctive predicates. Many database systems

use elaborate methods to serve selectivity estimation, e.g., multi-

column histograms [12], samples [3], statistics on views [7] or

even query feedback [14].

Entropy maximization as proposed by Markl et al. [9] consi-

ders all available information to derive a consistent estimate for

all partial conjuncts of a predicate. However, as the runtimes for

iterative scaling are prohibitively high already for 8 predicates,

Markl et al. suggests to partition the problem into smaller con-

juncts assuming independence between the selectivities of the

predicates of the partitions. This risks loosing valuable informa-

tion from the set of known selectivities.

With the formalization of the entropy maximization problem

as a series of vector- and matrix operations we are able to derive

efficient implementations for this problem using the Newton

algorithm. As our CPU based algorithm is more than 4 orders of

magnitude faster than the iterative scaling for the most complex

problem it could handle, entropymaximization becomes a feasible

553



option even for complex predicates without sacrificing the quality

of the cardinality estimates. Even more, the new implementations

can be applied to conjuncts with 18 predicates for the CPU or even

25 predicates for the GPU with runtimes of less than a second

making partitioning the input problem irrelevant for virtually all

scenarios. While Markl et al. already explained in detail how to

integrate the maximum entropy method into query optimizers,

we conclude that using the implementation techniques presented

in this paper, entropy maximization is ready to be included into

production-grade database management systems.
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