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ABSTRACT
JedAI is an open-source toolkit that allows for building and bench-
marking thousands of schema-agnostic Entity Resolution (ER)
pipelines through a non-learning, blocking-based end-to-end
workflow. In this paper, we present its latest release, JedAI3,
which conveys two new end-to-end workflows: one for budget-
agnostic ER that is based on similarity joins, and one for budget-
aware (i.e., progressive) ER. This version also adds support for
pre-trained word or character embeddings and connects JedAI
to the Python data analysis ecosystem. Overall, these enhance-
ments provide JedAI with features offered by no other ER tool,
especially in the schema- and domain-agnostic context.

1 INTRODUCTION
Entity Resolution (ER) aims to detect duplicates, i.e., different en-
tity profiles that describe the same real-world objects. It is a core
data integration task, with many applications that range from
knowledge bases to question answering [8]. Yet, the available
systems focus exclusively on batch ER, which is carried out in a
budget-agnostic, offline way that imposes no strict constraints
on temporal or computational resources. This means that they do
not support progressive ER, which is carried out in a budget-aware
manner that determines specific time frames or resources (e.g.,
by executing a fixed number of comparisons).

Even for batch ER, though, the existing tools have significant
limitations: they cover the end-to-end pipeline partially, they
constitute stand-alone systems with a limited variety of methods
(usually the methods proposed by their creators), they apply only
to a specific data type (i.e., structured or semi-structured data),
or they require power users, providing insufficient guidelines on
how to perform ER efficiently and effectively [8]. Another major
disadvantage of existing tools is that they typically disregard the
bulk of similarity join algorithms that allow for detecting pairs
of duplicates in a rather efficient way.

Magellan resolves most of these issues, but is restricted to
Clean-Clean ER, i.e., the task of detecting duplicate profiles across
two overlapping, but individually duplicate-free datasets. This
means that Magellan cannot tackle Dirty ER, i.e., the task of
resolving the entities of a single dataset that contains duplicates
in itself. Moreover, Magellan applies exclusively to relational data,
it lacks a GUI, merely offering a command-line interface, and
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Figure 1: JedAI’s architecture.

requires heavy user involvement. Its goal is actually to facilitate
the development of tailor-made methods for the data at hand [8].

Java gEneric DAta Integration (JedAI) Toolkit [15] goes be-
yond existing ER tools by focusing on non-learning, schema-
and structure-agnostic methods, which apply seamlessly to both
structured and semi-structured data. At the same time, JedAI
requires minimal human intervention, as neither domain knowl-
edge nor training sets are needed. At its core lies a blocking-based
end-to-end ER workflow, which is implemented by JedAI-core1,
conveying numerous state-of-the-art methods in each step. These
methods can be mixed and matched to form thousands of ER
pipelines that can be easily benchmarked through the wizard-
like interface of its desktop application, JedAI-gui2. Thus, JedAI
fulfills the main challenges arising in data integration [5]: the
development of extensible, open-source3 tools and the provision
of solutions that apply to data of any structuredness - even un-
structured (free-text) data. These new capabilities are exhibited
through a live demonstration that involves user interaction.

In more detail, this demonstration presents the latest release
of JedAI3, which significantly enhances the core blocking-based
workflow: it connects it with the Python ecosystem (see Sec-
tion 5.1) and enriches it with pre-trained embeddings and with
new techniques and capabilities per workflow step (see Section
2.1). Most importantly, JedAI now supports two new workflows:
one based on similarity joins (Section 3) and one implement-
ing budget-aware ER pipelines (Section 4). These enhancements
equip JedAI with unique features that are offered by no other ER
tool, especially in a schema- and domain-agnostic context.

1https://github.com/scify/JedAIToolkit
2https://github.com/scify/jedai-ui
3All code is available under Apache License V2.0, which supports both academic
and industrial applications.
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Figure 2: ER workflows in JedAI: (a) blocking-based; (b)
join-based (new); (c) progressive (new).

2 BATCH, BLOCKING-BASED ER
WORKFLOW

Figure 2(a) depicts the budget-agnostic, blocking-based end-to-
end ER workflow of JedAI. It consists of the following steps.

1) Data Reading loads from disk the dataset(s) to be processed
and the golden standard. The JedAI data model accommodates
both structured (relational databases, CSV) and semi-structured
(SPARQL endpoints, CSV, XML, OWL and RDF) data as well as
any mixture of those.

2) Schema Clustering groups together attributes that share
similar names and/or values, but are not necessarily semantically
equivalent. It is an optional step that is suitable for highly het-
erogeneous datasets with hundreds of different attribute names.
In these settings, it significantly improves the overall precision
with no impact on recall [15, 18].

3) Block Building clusters similar entities into blocks so as to
drastically reduce the candidate match space. It includes most of
the state-of-the-art methods, using their schema-agnostic adap-
tation [13], which extracts multiple blocking keys from each
entity and places it into multiple blocks. The resulting overlap-
ping blocks contain high levels of redundancy, achieving high
recall at the cost of low precision [13], due to two types of un-
necessary comparisons [13]: (i) the redundant ones, which are
repeated across different blocks, and (ii) the superfluous ones,
which involve non-matching entities.

4) Block Cleaning is an optional step that cleans the original
blocks from both types of unnecessary comparisons, improving
their precision at a negligible cost in recall. All available methods
are complementary and can be combined.

5) Comparison Cleaning is another optional step that targets
both types of unnecessary comparisons. It operates at the level of
individual comparisons, achieving higher accuracy at the cost of
a higher time complexity. Several methods are included, primarily
Meta-blocking techniques [14, 18].

6) Entity Matching implements schema-agnostic methods for
assessing the value similarity of all entity pairs in the final set of
blocks. These methods can be combined with various similarity
measures and graph or bag representation models from the Text
Processing component (see Figure 1). The end result is a similarity
graph, where the nodes correspond to entities, and the weighted
edges connect compared entities.

7) Entity Clustering includes the main methods that are typi-
cally used for partitioning the nodes of the similarity graph into
equivalence clusters, such that every cluster corresponds to a
distinct real-world object [6].

8) Evaluation uses the golden standard of the selected dataset
in order to compute several measures for effectiveness and time
efficiency. The user may store intermediate or end results through
the Data Writing functionality.

2.1 New features
This workflow has been enriched with support for embeddings,
which lie at the core of the latest ER works that are based on

Id Rule Dataset Recall Precision F1

R1 0.59 < JaccardSim (title1, title2) & 
0.26 < JaccardSim (authors1, authors2)

DBLP-ACM 0.926 0.930 0.928

R2 0.53 < JaccardSim (title1, title2) Cora 0.855 0.749 0.799

R3 0.25 < JaccardSim ( all_tokens1, all_tokens2) 1OK census 0.969 0.995 0.982

Figure 3: Three matching rules along with their perfor-
mance over established datasets.

deep learning [4, 12]. JedAI supports any pre-trained character-
(e.g., fastText [1]) and word-level embeddings (e.g., Glove [17],
word2vec [11]). The user is only required to provide a path to an
embeddings file in CSV form. These embeddings can be used in
two steps: (i) in Block Building, combining them with LSH as in
[4], and (ii) in Entity Matching, providing external, contextual
information for the computation of value similarities, which is
particularly useful for noisy entity profiles [12].

Another major improvement is the combination of multiple
Entity Matching methods. It is now possible to select any (rea-
sonable) number of algorithms, similarity measures and repre-
sentation models for comparing the candidate matches that are
contained in a set of blocks. For example, it is possible to combine
the traditional bag-of-words model with the popular word2vec
embeddings, each coupled with a different similarity measure.
JedAI combines the similarity scores produced by the individual
methods and normalizes them into the [0, 1] interval.

Finally, several steps of this workflow have been enriched with
new techniques. For example, Data Reading and Data Writing
now support HDT and JSON files, while Entity Clustering con-
veys two new algorithms for Clean-Clean ER that are designed
for solving the assignment problem: an efficient approximation
called Row-Column Proxy Clustering [9], and a heuristic algorithm
called Assignment Problem Heuristic Clustering [2].

3 JOIN-BASED ERWORKFLOW (NEW)
Similarity joins [7, 10] constitute a rather efficient alternative to
blocking-based ER, especially for structured data that conforms to
a schema of known quality. These joins accelerate the execution
of matching rules and are combined with an Entity Clustering
algorithm for high effectiveness [6], as shown in Figure 2(b).
For example, consider the atomic (R1, R2) and composite (R3)
matching rules in Figure 3, which exhibit very high effectiveness
in combination with Connected Components clustering over
established benchmark datasets [13].

JedAI-core now implements the workflow in Figure 2(b), con-
veying a library with the state-of-the-art string [7] and set [10]
similarity join techniques. Most of them require that the user
is familiar with the schema describing the entity profiles so as
to select the most suitable attribute names. JedAI-gui facilitates
this process through the data exploration feature, which allows
for observing the schema and the values of entity profiles. Most
importantly, JedAI goes beyond this schema-aware approach, ap-
plying similarity joins to semi-structured data through a schema-
agnostic transformation that considers all tokens (or q-grams) in
all attribute values (e.g., R2 in Figure 3). The only caveat comes
from the resulting low similarity thresholds that render inappli-
cable character-based and token-based methods that are crafted
for much larger thresholds [7, 10]. JedAI covers such cases by
incorporating novel join techniques that inherently support low
similarity thresholds, like SilkMoth [3] and Atlas [21].

The list of the character- and token-based similarity joins that
are currently supported by JedAI appears in Figure 4. It entails
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Prioritization Methods

Token-based Character-based 1) Local Progressive Sorted Neighborhood

1) AllPairs 1) AllPairs 2) Global Progressive Sorted Neighborhood

2) PPJoin 2) FastSS 3) Progressive Block Scheduling

3) SilkMoth 3) PassJoin 4) Progressive Entity Scheduling

4) EdJoin 5) Progressive Global Top Comparisons

6) Progressive Local Top Comparisons

Similarity Join Methods

Figure 4: The methods available for the workflow steps
Similarity Join (Section 3) and Prioritization (Section 4).

(a)

(b)

Figure 5: JedAI-gui reporting the performance of a Pro-
gressive ER workflow (a) and its benchmark screen (b).

most state-of-the-art approaches, as determined by recent exper-
imental analyses [7, 10]. Any combination of matching rules and
similarity join techniques is allowed to form atomic and com-
posite schema-based or schema-agnostic pipelines. These can be
readily juxtaposed to more complex blocking-based ones, provid-
ing a unique feature that is offered by no other relevant tool.

4 PROGRESSIVE ER WORKFLOW (NEW)
Progressive ER applies to budget-aware applications, which have
limited computational or time resources. These limitations can
only be addressed in a pay-as-you-go way that provides the best
possible partial solution in the context of the available resources.
For example, the Google dataset search system has indexed ∼26
billion datasets [5], which can only be resolved progressively.

Schema-based progressive methods have been proposed [16,
20], but JedAI exclusively considers domain-agnostic ones [19],
implementing the workflow in Figure 2(c). The first four steps
are common with the blocking-based ER workflow, which is
depicted in Figure 2(a). The only difference is that Data Reading
also receives as input the user-specified budget, either in terms of
the maximum running time or the maximum number of executed
comparisons. Next, Prioritization is applied, assigning a weight
to all entities, comparisons or blocks in order to schedule their
processing in decreasing likelihood that they involve duplicates.
Then, the top-weighted entity pairs are iteratively emitted, one at
a time, in order to compare the corresponding entity descriptions
(Entity Matching). Finally, the Evaluation estimates the rate of
detected duplicates per comparison, i.e., the evolution of recall
as more comparisons are executed. The resulting diagram is
used for estimating the area under curve, which is analogous to
performance - see Figure 5(a).

JedAI implements the Prioritizationmethods in Figure 4, which
can be distinguished into two types:

i) Inspired by Sorted Neighborhood (SN), the sort-based meth-
ods rely on the similarity of blocking keys. They produce a list
of entities by sorting all descriptions alphabetically, according
to the corresponding blocking keys. In the schema-agnostic con-
text, every token forms a blocking key and thus, every entity
appears in the list as many times as the number of its distinct
attribute value tokens. To avoid the large number of redundant

Figure 6: JedAI in Python.

comparisons and the arbitrary ordering of entities with identical
keys, Local Schema-agnostic Progressive SN [19] weights all com-
parisons within the current window size via a schema-agnostic
function that considers the frequency of appearance of every
entity in the list along with the co-occurrence frequency of entity
pairs for the current window size. The Global Schema-agnostic
Progressive SN [19] does the same, but for a predetermined range
of windows, eliminating their redundant comparisons.

ii) The hash-based methods are based on identical, schema-
agnostic blocking keys and the resulting overlapping blocks. Sim-
ilar to Meta-blocking, they assign a weight to every pair of candi-
date matches, assuming that their similarity is proportional to the
number of blocks they share [14]. Progressive Block Scheduling
[19] orders the blocks in ascending number of comparisons and
then prioritizes all comparisons in the current block, by ordering
them in decreasing weight. Progressive Profile Scheduling [19] or-
ders entities in decreasing average weight of the corresponding
candidate matches and then prioritizes all comparisons involv-
ing the current entity by ordering them in decreasing weight.
Progressive Global (Local) Top Comparisons considers the top-K
weights over the entire blocking graph (per entity), where K is
derived from the given budget.

5 USER INTERFACE
Up to v2.1, JedAI offered two interfaces for user interaction [15]:
(i) the desktop application, JedAI-gui, which offers a graphical
interface, and (ii) the command-line interface implemented by
JedAI-core. Both of them allow for constructing any combination
of the available methods in the context of the blocking-based
end-to-end ER workflow. Especially, JedAI-core conveys the Doc-
umentation module (see Figure 1), which facilitates the use and
configuration of ER methods. It also enables the benchmark-
ing of different workflows or configurations over a particular
dataset through the workbench window, which summarizes the
outcome of all runs and maintains details about the performance
and the configuration of every step [15] (see Figure 5(b)).

5.1 New features
JedAI3 extends both interfaces so that they cover all new fea-
tures discussed above. The command-line interface has also been
enriched with documentation support: at any step, the user is
able to retrieve information about individual methods or spe-
cific parameters, thus facilitating their use. JedAI-core has also
been augmented with a Python wrapper based on pyjnius, thus
facilitating its adoption by the large user base of Python data
analytics (see Figure 6). For example, the new wrapper allows
for integrating JedAI with popular frameworks like scikit4 for
machine learning and NLTK5 for natural language processing.
4https://scikit-learn.org
5https://www.nltk.org
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6 DEMONSTRATION SCENARIOS
In this demo, wewill present JedAI through a live interaction with
users so as to highlight all new features discussed above. First, the
user is asked to choose among the available interfaces: command-
line, JedAI-gui or a Jupyter notebook. Then, she is asked to
select one dataset among a set of carefully selected ones, which
are easy to comprehend, yet interesting for an ER application,
while involving both a structured and a semi-structured part (e.g.,
CSV-XML). These settings lay the ground for the following demo
scenarios that showcase JedAI’s functionalities.
1. Versatility. In this scenario, we compare the new ER work-
flows supported by JedAI with the blocking-based one that lies
at the core of the previous version. Four different workflows are
involved in this process:

(1) The user builds a traditional blocking-based workflow to
be applied to the selected dataset.

(2) The same workflow is enhanced with word embeddings
so as to examine the effect of deep learning techniques on
improving accuracy.

(3) The user is asked to form a join-based end-to-end ER
workflowwithmatching rules of arbitrary complexity; this
might seem a complex procedure, but in reality, JedAI’s
data visualization feature simplifies it to a large extent.

(4) The user forms a Progressive ER workflow and applies it
to the same dataset.

In all cases, the user canmanually configure all methods, or use
the recommended default parameter values. JedAI’s workbench
functionality allows to easily compare the performance of these
fundamentally different workflows, assessing their pros and cons.
2. Automatic Configuration. In this scenario, we fine-tune the
configuration parameters of the above four workflows in one of
the available automatic ways, i.e., through random or grid search
in a step-by-step or a holistic approach. Thus, the goal of this
scenario is three-fold: (i) to test how well users can manually
tune the parameters, (ii) to evaluate how close the default pa-
rameter values are to the "optimal" ones, and (iii) to compare the
four workflows in terms of their best possible performance. For
example, the performance of the fine-tuned progressive work-
flow demonstrates the minimum number of comparisons that
are required for achieving sufficiently high recall. How close
are the other three workflows to this ideal case? Again, JedAI’s
workbench functionality, the first for such a tool, renders these
complex comparative process into a simple procedure.
3. Scalability. This last scenario focuses on the time efficiency
of the selected workflows. The results of the previous scenar-
ios advise us beforehand about the relative running time of the
selected workflows, as JedAI’s workbench feature reports both
effectiveness and efficiency measures. Here, though, we examine
how well each workflow scales to datasets of increasing size (10K,
50K, 100K, 500K, 1M and 2M entities), which have been derived
from the selected dataset using artificial noise. This scenario
demonstrates how workflows with similar running times over
small datasets might end up differing by orders of magnitude.
Most importantly, JedAI’s workbench reports the running time
per workflow step, thus facilitating the detection of bottlenecks.

Finally, it is worth stressing that during our demonstration,
we will take special care to explain to users how to make the
most of JedAI’s functionalities, emphasizing the new features.
Note also that most of the features listed above are demonstrated
for the first time, and are not supported by any other ER system.

7 CONCLUSIONS
JedAI3 is an open-source ER tool with 4 unique characteristics: (i)
Based on blocking and similarity joins, it implements two differ-
ent end-to-end workflows for batch ER that allow for composing
millions of pipelines. (ii) It supports pre-trained embeddings of
any kind. (iii) It supports budget-aware ER, enabling thousands of
schema-agnostic progressive workflows. (iv) It can be integrated
with Python’s data analysis ecosystem. These capabilities will be
exhibited through a live demonstration with user interaction.
Acknowledgements. This work was partially funded by the EU
H2020 projects ExtremeEarth (825258) and SmartDataLake (825041).
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