
Schema Mapping Generation in the Wild: A Demonstration
with Open Government Data

Lacramioara Mazilu
University of Manchester, United Kingdom

lara.mazilu@manchester.ac.uk

Nikolaos Konstantinou
University of Manchester, United Kingdom
nikolaos.konstantinou@manchester.ac.uk

Norman W. Paton
University of Manchester, United Kingdom

norman.paton@manchester.ac.uk

Alvaro A.A. Fernandes
University of Manchester, United Kingdom

alvaro.a.fernandes@manchester.ac.uk

ABSTRACT
Schema mapping generation identifies how data sets can be com-
bined to create views that are relevant to an application. Where
the data sets to be combined lack declared relationships, such as
foreign keys, schema mapping generation can be considered to
be in the wild. In this paper, we describe an approach to schema
mapping generation in the context of open government data,
in particular, the London Datastore. Mapping generation is in-
formed by inferred profiling data about the data sets and their
relationships, where the data sets are made available as csv files.
We outline the mapping generation algorithm, and describe a
demonstration of the approach, in which the user can: (i) specify
the target to be populated by the generated mappings over a
collection of sources from The London Datastore; (ii) browse the
generated candidate mappings and the evidence that informed
their creation; and (iii) steer the mapping generation process, to
make use of preferred sources and dependable profiling results.

1 INTRODUCTION
Given a collection of source datasets, some metadata about them,
and a target schema, schema mapping generation produces a
collection of views that provide ways of populating the target
from the sources. Mapping generation is important because the
data of relevance to an application or an analysis is often not
immediately available in a single, suitable, integrated form.

Mostwork onmapping generation has assumed that the source
and the target benefit from declared constraints, for example in
the form of primary and foreign keys (e.g., as in the seminal work
on Clio and its descendents, as reviewed in [5]). However, with
the growing availability of open data sets, and the emergence
of data lakes, mapping generation over independently produced
data sets, with minimal explicit metadata, is arguably even more
necessary than for well-defined schemas.

We refer to mapping generation over data sets without de-
clared relationships as in the wild. Mapping generation must,
among other things, take into account relationships between
data sources, and, in this paper, we assume that candidate keys
and (partial) inclusion dependencies have been inferred through
data profiling [1]. Then, to deploy schema mapping generation
in the wild, the following are required:

(1) A way of exploring the space of candidate mappings. We use
a dynamic programming algorithm to identify promising
mappings, referred to as Dynamap [8].

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the 23rd
International Conference on Extending Database Technology (EDBT), March 30-
April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

(2) A way of displaying to the user these mappings, their prop-
erties, and the evidence on which they build. As (1) builds
on necessarily speculative profiling data, the results of
mapping generation must be able to be reviewed by users,
for example to ensure that joins are building on inclusion
dependencies that represent valid real-world relationships.

(3) A way to enable the user to steer the mapping generation
process. As (2) may identify issues with generated map-
pings, users must be able to steer the mapping generation
process away from unsuitable decisions, for example by
ruling out the use of certain inclusion dependencies.

To show (1) to (3) in practice, we demonstrate our mapping
generation algorithm, and its associated user interface, in use
with data from The London Datastore1, which provides hundreds
of data sets providing diverse information about London.

The remainder of the paper is structured as follows. Section 2
provides some details on The London Datastore. Our mapping
generation approach is reviewed in Section 3. The demonstration
in Section 4 shows an example of viewing a generated mapping
and understanding it based on its properties and the evidence
based on which it was created. The user can steer mapping gen-
eration based on the presented information. Section 5 concludes.

2 OPEN DATA CASE STUDY: THE LONDON
DATASTORE

Open government data is published in a collection of national,
regional, city or topic-based portals, with a view to increasing
transparency and informing decision making [3]. The London
Datastore is a representive example of a city data repository, pro-
viding data sets across a range of topic areas, including transport,
employment, housing, health and education. These datasets come
from a variety of publishers, including local and national gov-
ernment departments, and many of the data sets use consistent,
generous licenses. The London Datastore supports both search
and browse interfaces, and allows data sets to be downloaded in
a variety of formats.

The demonstration uses comma-separated-value file data sets,
released under the UK Open Government License2. Typically
files contain from a few tens of rows (e.g., there are numerous
data sets that have one row for each London Borough, of which
there are 33), to a few thousand rows (e.g., there are around 5000
rows in a data set of modelled household income estimates at
a particular, rather fine, area granularity). There may be few
(e.g., 2) to many columns in each table (e.g., there are hundreds
of columns in a ward atlas table, describing different properties
of an electoral ward).

1https://data.london.gov.uk
2http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/

Demonstration

Series ISSN: 2367-2005 615 10.5441/002/edbt.2020.77

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2020.77

Figure 1: London datasets example

Figure 1 contains fragments (i.e., shows subsets of both tuples
and attributes of the tables) from three tables in The London
Datastore that are used in our running example. The tables in
Figure 1 show population statistics for different London areas
and (possibly their corresponding) crime rates3.

3 MAPPING GENERATION IN DYNAMAP
In this section, we illustrate mapping generation in Dynamap
with an example over The London Datastore.
The problem and some evidence. The problem is that of gen-
erating a set of mappings that populate a target table from a set of
source tables. The target table definition provides only the names
of the columns, and the source table definitions contain only
column names and their associated values. Mapping generation
techniques have been developed that use different types of evi-
dence, including declared constraints [5], data examples [2] and
feedback [4]. In Dynamap, the evidence used to inform mapping
generation is matches between source and target attributes, and
(partial) inclusion dependencies, both of which can be inferred
using standard profiling algorithms [1]. In Figure 1, the target
requires information about population and employment statistics
per area (first 7 attributes), together with the corresponding num-
ber of offences in each area (last attribute). Also, Figure 1 shows
the detected profile data on the represented sources: 10 inclusion
dependencies (represented by arrows, where their direction is
from the dependent to the referenced source) and 12 candidate
keys (annotated with [CK]). The overlap (θ) is the fraction of the
distinct values in the dependent attribute that are found in the ref-
erenced attribute. In the example, eight inclusion dependencies
are partial (θ ∈ (0, 1)) and two are full (θ = 1.0).
Exploring the search space. Mapping generation is typically
a search problem, either using generic (e.g., [6]) or bespoke (e.g.,
[5]) algorithms. In Dynamap, the space of candidate mappings

3Due to space limitations, throughout the rest of this paper, the figures contain
attribute and table names capped at 15 characters.

is every way of combining the sources using union or join op-
erations, where union compatibility is detected by comparing
matches with the target and join operations are based on full
or partial inclusion dependencies. We explore the search space
using dynamic programming, but with pruning to ensure that
only promising parts of the space are actually visited. As a result,
mappings are constructed bottom-up, from pairs of tables, then
from tables with intermediate mappings containing two tables,
etc. For example, in Figure 1, a first step could be to merge Indices
of deprivation with London borough profiles by joining on Area
attributes, and then, their result intermediate mapping could be
merged further with the crime rates table through join on either
Code or Area/Borough attributes.
Annotating candidatemappings.As the search must combine
pairs of intermediate mappings, we need to know the candidate
keys of candidate mappings and their (partial) inclusion depen-
dencies. These need to be derived during the search process, as it
is not computationally viable to evaluate (i.e., materialize) every
candidate mapping and run a profiler on it. The derived profile
information is also used to compute a fitness, which represents
the predicted fraction of complete rows. Formulas have been
developed for propagating profiling data through unions and
joins [8]. For example, in Figure 1, after joining Indices of depri-
vation with London borough profiles on Area, their corresponding
inclusion dependencies and candidate keys are propagated such
that it shows the relationship between the newly created interme-
diate mapping and the crime rates table. Based on this propagated
profiling data, the mapping generation system can detect that the
new mapping will produce Area and Code values that are over-
lapping with Borough and Code in crime rates, thus, it concludes
that they can be joined on one of the overlapping attribute pairs.

4 DEMONSTRATION
Mapping generation in the wild will be demonstrated through
hands-on experience generating and examining mappings over
datasets from The London Datastore, in the context of the Data
Preparer4 data integration and cleaning platform, a descendent
of the VADA Architecture [7]. Users interact with the system
via a web interface; our goals are to demonstrate: (i) how data
profiling can be used to provide information about the properties
of the data sets; (ii) how this evidence can be used by Dynamap to
combine sources in plausible ways; (iii) how users can review the
candidate mappings, and the evidence on which they are based;
and (iv) how users can steer the mapping generation process, for
example by excluding schema elements or profiling data that are
not relevant to the result.

Figure 2 shows an example that extends the one in Figure 1
by adding to it three other sources containing data about house
and population density, national insurance registrations, and
statistics on the population from the local authorities. Although
the demonstrationwill support differentways of using the system,
one approach would involve the following steps.
Browse the available sources. The interface supports search
and browse over the sources that are input to the system.
Define a target. The user can interactively name a target ta-
ble and its attributes, or edit an existing target to add/remove
attributes. The target table used throughout is that from Figure 1.
Generate mappings and view the result. Given some source
tables and a target, the user can ask the system to generate a result,

4https://thedatavaluefactory.com

616

Figure 2: Mapping explanation tree and associated information

which means running a matcher, a data profiler (for detecting
candidate keys and partial/full inclusion dependencies), mapping
generation and result display.

View a candidate mapping. From the result, the user can ask
the system to explain how the generated mappings were pro-
duced. Each generatedmapping has (i) a view that has the schema
of the chosen target table and that shows how the target is pop-
ulated once the mapping is executed (e.g., 1 in Figure 2), and
(ii) a mapping explanation. Each mapping is explained through
the help of a tree view where the user can understand in which
order the sources were merged and which operators were used to
merge them. Figure 2 shows how six sources are merged through
five joins by a mapping. The root of the tree is the chosen target
table and the leaves of the tree are the input sources merged by
the mapping. The intermediate nodes represent the incremental
build-up of the explained mapping, starting with the merge of
the leaves (the sources) and reaching the target when all sources
were merged or when no other merge opportunities could be
identified. As mentioned in Section 3, the mappings are con-
structed in a bottom-up fashion, and this is shown by the tree
representation, where each intermediate mapping has two cor-
responding nodes in the tree: (i) an operation node (e.g., 3 in
Figure 2), and (ii) a L/R node (e.g., 2 , 4 , 5). The operation node
is used to show which was the chosen operation between the
two operands, and (if present) the join condition. As explained

in [8], the operations considered by Dynamap are union, (equi)
join or full outer join; different combinations of profiling data
lead to different operations, e.g., a candidate key whose attributes
share a partial inclusion dependency can lead to a full outer join,
while a full inclusion dependency can lead to a join. The L/R node
shows whether the newly created intermediate mapping is the
left or right operand in the next operation (if any). For example,
in Figure 2, the national insurance table (1) is represented as the
left operand (2) for the join operation represented in node 3 .

Understand a mapping. For understanding mappings, the user
can interact with the mapping explanation tree and drill down
on the evidence that informed its creation. The interaction is
done by clicking on the three types of nodes, i.e., leaf, L/R, and
operation nodes, each revealing evidence for that merge step:
Leaf node. Clicking on a leaf node leads to a snippet of the initial
source that it represents. This helps the user understand the
dataset information and whether it was semantically correct to
merge it with the other sources in the mapping. This helps to
decide whether to keep or discard a source from the search. For
instance, after clicking on national insurance (1) a snippet of the
source appears (5). It can be observed from it that the source
contains data about national insurance registrations, which is
relevant to the chosen target that requires employment data.
L/R node. Clicking on a L/R node shows information about each
attribute of that intermediate mapping: (i) the target attribute

617

that it matches (if any), and (ii) the provenance of the distinct val-
ues in the attribute. The information about the value provenance
is shown as set operations based on how the parent attributes
were merged, e.g., the result of joined attributes contains the
intersection of their values. This helps to understand if a match
is inappropriate or if source attributes were incorrectly merged.
In Figure 2, to understand how the national insurance source con-
tributes to the target, the user needs to click on its corresponding
L node (2), for which the information about the attributes ap-
pears (4) so they learn that this source contributes with both
Area and NIN registration values to the target (highlighted in blue
in 4). Node 4 is another example of L/R node that corresponds
to the result of the join on Area between national insurance and
indices of deprivation datasets (3). The attribute information for
this intermediate mapping shows that its Area attribute contains
the intersection of the values from Area attributes in national in-
surance and indices of deprivation, while the rest of the attributes
are not merged.
Operation node. Clicking on an operation node shows the pro-
filing data that was used to choose a certain merge operation.
The information shown contains a table listing inclusion depen-
dencies and another table for candidate keys. This helps decide
whether the used profiling data is meaningful. In Figure 2, to
understand how the national insurance dataset is merged with
indices of deprivation, the user accesses the information about
their merge by clicking on the corresponding operation node (3).
This shows the profiling data that was used to decide their join on
Area (3), which comprises two candidate keys onArea attributes
in both sources that share one full inclusion dependency.

Steer mapping generation. Understanding the generated map-
pings can be crucial in the selection of proper mappings to popu-
late a target. Thus, a user can understand if the chosen sources
should be merged or not, or if Dynamap was misled by any faulty
matches or profiling data. After the user explores the mapping
explanation and pins down any wrong decisions, they can alter
through the interface the input that previously led to incorrect
merges. The steering can be done through (i) adding/deleting
source-to-target matches, e.g., remove those between a source
attribute that represents a different concept than the one re-
quired by the target, (ii) removing misleading inclusion depen-
dencies, e.g., remove those between semantically different source
attributes that have common values, (iii) removing candidate
keys on attributes which should not be keys, but were detected
due to the (possibly) scarce data in the source, or (iv) remov-
ing unnecessary datasets from the search space. For example,
in Figure 2, the merge opportunities that Dynamap finds seem
correct as all joined attributes are suitable pairs in terms of their
meaning and value overlap. However, the snippet of the target
(1) shows that many tuples have the same attribute values, for
which only the Population values differ, indicating there might
be an incorrect join with the source(s) that contributes to the
Population attribute. By accessing the attribute information (7)
corresponding to the last merge in the mapping (5) it is shown
that the value provenance of Population is from the housing den-
sity source. The next step is to analyze the data in the source by
clicking on the corresponding leaf node (6) for which a snippet
of its extent (6) is shown. Analyzing the dataset fragment, it can
be observed that the match is incorrect although the Population
attribute in housing density has exactly the same name as the
target, which makes it seem a correct match. The two attributes

represent different types of population: in the source, the popu-
lation information is per ward, not per area as required by the
target. Thus, it can be concluded that the match is inaccurate.
In such situations, it is not straightforward to differentiate be-
tween two (possibly close) semantic meanings, especially when
the attributes contain numerical values. Learning about this in-
correct match, the user steers the mapping generation process
by discarding the Population match. After a new rerun of the
mapping generation process with the updated input, the new
resulting mappings produce sensible results in terms of aligned
data per area. However, given that the housing density source
does not contribute anything else to the target, it is automatically
eliminated from the search space, thus, the new mappings do not
involve it.

5 CONCLUSIONS
We have illustrated mapping generation in the wild with open
data. Not only do we produce useful mappings, but also the sys-
tem is transparent – the user can see what has been done, and
steer the production of future mappings by altering and/or cor-
recting the three types of input: inaccurate matches, misleading
profiling data (candidate keys and inclusion dependencies), and
unnecessary sources.

The problem of automated mapping generation might seem
as an overly-engineered approach when the number of input
sources is small and an expert user can hand-craft the mappings.
However, the problem becomes increasingly complicated when
tens or hundreds of sources are involved and they have a plethora
of merge opportunities. Thus, automating mapping generation
becomes an essential component for data integration. Moreover,
given autonomous input sources, finding correct mappings com-
pletely automatically might become an unfeasible task. This gives
rise to the problem of understanding complex mappings that
involve numerous, autonomous sources. Helping the user under-
stand the mappings leads to steering the mapping generation
process by providing proper input, based on which the system
can make correct decisions.
Acknowledgements. We are pleased to acknowledge the support
of the UK Engineering and Physical Sciences Research Council,
through the VADA Programme Grant (EP/M025268/1).

REFERENCES
[1] Z. Abedjan, L. Golab, F. Naumann, and T. Papenbrock. 2018. Data

Profiling. Morgan & Claypool Publishers. https://doi.org/10.2200/
S00878ED1V01Y201810DTM052

[2] B. Alexe, B. ten Cate, P. G. Kolaitis, and W. C. Tan. 2011. Designing and
refining schema mappings via data examples. In Proceedings of the ACM SIG-
MOD International Conference on Management of Data, SIGMOD. 133–144.
https://doi.org/10.1145/1989323.1989338

[3] J. Attard, F. Orlandi, S. Scerri, and S. Auer. 2015. A systematic review of open
government data initiatives. Government Information Quarterly 32, 4 (2015),
399–418. https://doi.org/10.1016/j.giq.2015.07.006

[4] A. Bonifati, R. Ciucanu, and S. Staworko. 2014. Interactive Inference of Join
Queries. In 17th International Conference on Extending Database Technology,
EDBT. 451–462. https://doi.org/10.5441/002/edbt.2014.41

[5] R. Fagin, L. M. Haas, M. Hernandez, R. J. Miller, L. Popa, and Y. Velegrakis. 2009.
Clio: Schema Mapping Creation and Data Exchange. In Conceptual Modeling:
Foundations and Applications. LNCS, Vol. 5600. Springer Berlin Heidelberg,
198–236. https://doi.org/10.1007/978-3-642-02463-4_12

[6] G. H. L. Fletcher and C. M. Wyss. 2006. Data Mapping as Search. In Advances
in Database Technology - EDBT. 95–111. https://doi.org/10.1007/11687238_9

[7] N. Konstantinou, E. Abel, L. Bellomarini, A. Bogatu, C. Civili, E. Irfanie, M.
Koehler, L. Mazilu, E. Sallinger, A. A. A. Fernandes, G. Gottlob, J. A. Keane,
and N. W. Paton. 2019. VADA: an architecture for end user informed data
preparation. J. Big Data 6 (2019), 74. https://doi.org/10.1186/s40537-019-0237-9

[8] L. Mazilu, N. W. Paton, A. A. A. Fernandes, and M. Koehler. 2019. Dynamap:
SchemaMapping Generation in theWild. In Proceedings of the 31st International
Conference on Scientific and Statistical Database Management, SSDBM. 37–48.
https://doi.org/10.1145/3335783.3335785

618

	Schema Mapping Generation in the Wild: A Demonstration with Open Government DataLacramioara Mazilu, Nikolaos Konstantinou, Norman Paton, Alvaro A. A. Fernandes

