
JIT happens: Transactional Graph Processing in Persistent
Memory meets Just-In-Time Compilation

Muhammad Attahir Jibril

TU Ilmenau

Germany

muhammad-attahir.jibril@tu-ilmenau.de

Alexander Baumstark

TU Ilmenau

Germany

alexander.baumstark@tu-ilmenau.de

Philipp Götze

TU Ilmenau

Germany

philipp.goetze@tu-ilmenau.de

Kai-Uwe Sattler

TU Ilmenau

Germany

kus@tu-ilmenau.de

ABSTRACT
Graph databases are used for different applications like analyzing

large networks, representing and querying knowledge graphs,

and managing master data and complex data structures. Besides

graph analytics, the transactional processing of concurrent up-

dates and queries represents a challenging data management task.

In this paper, we investigate the usage of persistent memory as a

very promising technology for graph processing. We present a

novel architecture for transactional processing of queries and up-

dates on a property graph model that exploits and addresses the

specific characteristics of persistent memory by hybrid storage

andmemorymanagement as well as a just-in-time query compila-

tion approach. Our experimental evaluation on interactive short

read and update queryworkloads show that PMem-based systems

that are well-designed to exploit PMem characteristics outper-

form traditional disk-based systems significantly and have only

a small overhead compared to DRAM-only systems. Moreover,

the evaluation shows that JIT compilation brings performance

benefits especially when an adaptive compilation approach is

leveraged to hide the overhead of compilation as well as the

latency of PMem.

1 INTRODUCTION
Graph databases represent an important class of NoSQL systems

with numerous flavors, including systems for analyzing large

graphs, systems for querying knowledge bases, and systems sup-

porting updates on graphs and navigational queries. They are

designed for different graph datamodels ranging fromRDF triples

to property graph models, as well as different processing mod-

els from database query processing to approaches like the bulk

synchronous parallel (BSP) model.

The numerous available systems mainly adopt the typical ar-

chitectures of database systems, i.e., traditional disk-based archi-

tecture, in-memory architecture or scalable, distributed solutions.

Graph data are either stored in disk-based data structures and

loaded into memory for processing or kept directly in in-memory

structures (without requiring to load data during startup) while

using techniques like logging to allow for persistent updates.

In this work, we present a novel architecture for graph

databases based on persistent memory (PMem). PMem – also

known as non-volatile memory (NVM) or storage-class mem-

ory (SCM) – is one of the most promising trends in hardware

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the

24th International Conference on Extending Database Technology (EDBT), March

23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

development which have the potential to hugely impact database

system architectures. Characteristics such as byte-addressability,

read latency close to DRAM but with read-write asymmetry, and

inherent persistence open up new opportunities for database sys-

tems. Specifically, Intel’s Optane DC Persistent Memory Modules

(DCPMMs) are already available on the market and supported by

the Persistent Memory Development Kit (PMDK) [17]. Several

studies, as well as our experiments, have identified the following

characteristics of this technology (we elaborate these in more

detail in Section 3):

(C1) PMem has a higher latency and lower bandwidth than

DRAM.

(C2) Reads and writes on PMem behave asymmetrically.

(C3) DCPMMs internally work on 256-byte blocks.

(C4) Failure atomicity is only guaranteed for 8-byte aligned

writes.

The focus of our work is an architecture for hybrid transactional/

analytical processing (HTAP) on a property graph model. Trans-

action support covers insert/update/delete operations on nodes,

relationships, and their properties with ACID guarantees. Fur-

thermore, we support Cypher-like navigational queries. In this

paper, we particularly focus on data structures and techniques for

query and transaction processing in graph databases exploiting

PMem and addressing the characteristics (C1)-(C4) mentioned

above. Although we aim for HTAP, we do not consider graph

analytics in this paper yet. Exploiting PMem for graph analytics

is discussed by other researchers, e.g., in [13]. Our contributions

are as follows:

• We present the architecture of an HTAP graph engine with

storage structures designed for PMem, primarily taking

(C1)-(C3) into account.

• We discuss the implementation of a timestamp ordering-

based multiversion concurrency control (MVTO) protocol

optimized for PMem addressing (C4).

• We describe our just-in-time (JIT) query compilation ap-

proach for compiling graph queries into machine code to

hide the higher latency of PMem as described in (C1).

Thus, the novelty of our work lies in the design, adaptation as

well as evaluation of transaction and query processing techniques

to leverage the idiosyncrasies of persistent memory for graph

databases.

2 RELATEDWORK
Several of the approaches presented in this paper are based on

insights from previous work. In particular, the lessons learned

regarding the new concepts of data structures for PMem had a

Series ISSN: 2367-2005 37 10.5441/002/edbt.2021.05

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2021.05

major impact on the design decisions for our graph engine. There

is, to our knowledge, no transactional graph system or JIT query

compilation approach targeting persistent memory, yet. Hence,

we approach the subject from three directions: general graph

management, PMem-aware data structures and storage engines

as well as query compilation.

Graph Management. For graph data management, numer-

ous data models and systems have been proposed in the past.

Among the several database models for graph data [3], RDF for

the SemanticWeb and property graph models are the most promi-

nent. On top of these, query languages like SPARQL for RDF triple

data, diverse SQL dialects, and dedicated languages like Cypher
1

and Gremlin [36] have been developed. The SQL standardization

committee is currently working on standardizing the graph query

language GQL.

Depending on the supported data model and query language,

graph database systems are either special-purpose systems such

as triple stores for RDF like Virtuoso, native stores for prop-

erty graphs e.g., Neo4j, relationally-backed approaches such as

DB2RDF [7] and EmptyHeaded [1]; or extensions of SQL systems

like Grail [11] and SAP HANA [37]. Here, standard DBMS imple-

mentation techniques are used for data storage, indexing, trans-

action management, and query processing. Particularly, traversal

operations [32], as well as support for graph analytics [29, 38],

play an important role. However, only very few approaches try

to support HTAP workloads (TigerGraph, Neo4j) and to our

best knowledge, no established graph system is utilizing PMem

yet [6].

Recently, however, Gill et al. [13] investigated the application

of DCPMMs in Memory mode for running graph analytics. They

evaluated large scale data sets on existing graph frameworks and

demonstrated that their NUMA-aware algorithms on cheaper

single machine setups with DCPMMs can outperform more ex-

pensive DRAM-only cluster setups. With Sage [9], the authors

have shown that the AppDirect mode of DCPMMs in combination

with sophisticated algorithms can even achieve a better perfor-

mance than an unmodified in-memory graph database used on

PMem in Memory mode. They especially address the asymmetry

of PMem by introducing the parallel semi-asymmetric model.

Here, the entire graph is stored as a read-only copy in PMem and

a smaller mutable part in DRAM. A volatile auxiliary structure

keeps track of deleted edges for graph filtering. Since the focus is

on parallel analytical queries, we assume that no transactional up-

dates are possible. In this paper, we want to make the appropriate

contribution in this regard.

PMem-aware Storage Designs. Researchers recently started

adapting existing data structures to PMem. This includes several

variants of the B
+
-Tree [8, 43], hybrid variants like the FPTree

[31], the LB
+
-Tree [27], DPTree [49], and HiKV [47], as well as

LSM-Tree variations [19]. There are also latch-free B
+
-Tree vari-

ants targetingmodern hardware, such as the Bw-Tree [26, 45] and

the BzTree [4]. While the former addresses multi-core systems

with flash storage, the BzTree is explicitly designed for PMem.

Apart from the individual data structures, some approaches for

PMem-based storage engines have been proposed. SOFORT [30]

is a columnar transactional storage engine leveraging PMem

by minimizing logging and updating data in place, aiming for

mixed OLAP and OLTP workloads. Peloton [33] is another re-

lational DBMS engine already considering PMem by applying

1
https://www.opencypher.org

write-behind logging [5]. The basic idea is to write and flush

all changed entries in-place to PMem during commit. A more

recent proposal is the key-value store RStore [25]. It opts for a

log-structured design with an index. It utilizes linked and fix-

sized append-only blocks in PMem. Once a block is full, it is

considered immutable and indexed in a volatile tree which is

rebuilt during recovery. Additionally, RStore employs partitions

that are owned by only one thread at a time, each having its own

log to parallelize recovery.

JIT Query Compilation. Similarly, there are numerous

works on query compilation techniques. Neumann [28] presented

a query compiler architecture using the LLVM framework
2
to

generate and compile code for queries in the HyPer database.

Based on this, Kohn et al. [21] proposed an approach to mask

the compilation time by compiling the query in the background

while interpreting it. They further improve the efficiency by using

different execution modes depending on the query type. There

are also works that try to provide a lightweight approach, apart

from LLVM. An alternative approach, LegoBase, provides a query

compiler that generates high-level code in multiple steps, where

each step replaces declarative components of the query with

imperative code [41]. Funke et al. [12] proposed a lightweight

intermediate representation (IR) to reduce compilation times for

queries by estimating value lifetimes before code generation. The

Voodoo IR [35] is a declarative algebra for utilizing many-core

architectures and GPUs by generating OpenCL code. Although

these approaches are designed for relational DBMSs, query com-

pilation is also applied in several graph DBMSs, like TigerGraph

and Neo4j. However, while JIT query compilation is a broad re-

search topic, there is presently no system that utilizes it to hide

the memory access latency of PMem.

3 PERSISTENT MEMORY SPECIFIC DESIGN
GOALS

This section aims to summarize the observations of several stud-

ies as well as our experiments regarding the characteristics and

challenges introduced by PMem – in particular, Intel’s Optane

DCPMMs. Subsequently, we derive general design goals for sys-

tems trying to integrate PMem in their hardware landscape. We

hope they help others to avoid common pitfalls when conceiving

new efficient systems for modern storage hierarchies.

3.1 Characteristics and Challenges
The first three items presented are specific characteristics of

Intel’s DCPMM technology, while the remaining are explicit

challenges that mostly result from PMem and other system pecu-

liarities.

(C1) PMem has a higher latency and lower bandwidth
than DRAM. Random access read latency and the read

bandwidth of PMem is worse than DRAM by a factor of

about three. Persistent writes are also slower than writes

to DRAM. PMem bandwidth is about 7 × lower than that

of DRAM [42, 48].

(C2) Reads and writes on PMem behave asymmetrically.
This concerns several aspects, namely performance, en-

ergy consumption, and cell wear. Asymmetrically slower

writes cost more energy and lead to wear.

(C3) DCPMMs internally work on 256-byte blocks. They
utilize a write combining buffer that is used to reduce

2
http://llvm.org/

38

write load by trying to combine four cache lines into one

256-byte block write. Interestingly, read operations also

benefit when a multiple of the block size is used [42, 48].

(C4) Failure atomicity is only guaranteed for 8-byte
aligned writes. The largest failure-atomic store instruc-

tion covers only 8 bytes of data, aligned on an 8-byte

boundary. Anything larger has to be implemented in soft-

ware. This means that inconsistencies of data structures

due to partial changes in case of system failures and re-

ordering of instructions by the compiler or the CPU have

to be avoided.

(C5) PMem allocations are expensive. Compared to DRAM

allocations, PMem allocators such as the PMDK allocator

need significantly more time [14, 15, 24]. This is mainly

due to the necessity of cache line flushes and recoverymea-

sures. In conjunction with the higher latencies of PMem,

allocations can be –depending on the number of threads–

up to 8× slower than on DRAM [24].

(C6) Dereferencing persistent pointers can prevent opti-
mizations. A persistent pointer is a 16-byte structure

consisting of a pool identifier (similar to a file path) and an

offset in this pool. It was introduced in PMDK and keeps

its validity across application restarts. Since this concept

of persistent pointers is not integrated into compilers (yet),

their handling cannot be automatically optimized as it is

the case for volatile pointers [39].

3.2 Design Goals
From the above characteristics and challenges, we can more or

less directly formulate corresponding general design goals as

follows. Apart from the generic usability of these goals, we will

also use them as a foundation for the design decisions in the next

section.

(DG1) Algorithmically save writes (C1 & C2). This was one

of the first common goals when PMem came up. The idea

is to reduce the number of writes by trading them off for

more reads. Furthermore, certain intermediate results

can be kept in DRAM instead of PMem. In practice, it

has been shown that not the number of writes but rather

the number of flushed cache lines is decisive.

(DG2) Opt for a DRAM/PMem hybrid storage design (C1

& C2). It has been shown that a pure PMem-only archi-

tecture causes too much performance degradation com-

pared to its DRAM counterpart. A hybrid DRAM/PMem

approach is therefore highly recommended when seek-

ing the best performance and still requiring persis-

tence [14, 15].

(DG3) Optimize the access granularity to 256 bytes (C3).
Besides, the data structures should be aligned to cache

lines. Only then a sequential pattern and correspond-

ingly the peak bandwidth can be reached. Everything

else can be considered as random access.

(DG4) Prefer failure-atomic writes over logging or shad-
owing (C4). For this purpose, flushing of cache lines via

the clwb (cache line write back) instruction and barriers

such as sfence (store fence) have to be used. However,

the number of such barriers should beminimized for best

performance. PMDK transactions can be used to simply

and universally achieve failure atomicity. However, for

performance-critical sections, the underlying logging

and snapshotting approach can lead to excessive over-

head. Thus, in the long run, an individual realization of

failure atomicity with optimally arranged 8-byte stores,

clwb instructions, and barriers should be preferred.

(DG5) Use group allocations and reuse blocks ofmemory
instead of deallocating (C5). Not every new record in

a system should be associated with an allocation. The

less frequent allocation of larger blocks or groups can

amortize the overhead. Deallocating can also be replaced

by suitable free space management. Since they increase

the number of allocations, copy-on-write techniques

should be replaced by in-place updates or reuse a pre-

allocated space.

(DG6) Avoid dereferencing of persistent pointers (C6).

Persistent pointers should preferably only be used dur-

ing application (re)start for initialization. Afterward, the

current valid virtual pointer or application-specific off-

sets should rather be used. Alternatively, the external

location could be converted to a virtual reference once

before using it multiple times. In addition, pointer chas-

ing should be avoided as well, as shown in [14, 15].

4 STORAGE MODEL
Essentially, there are two classes of graph data models, namely

RDF triple stores and property graphs. RDF stores express every-

thing as triples (subject-predicate-object) which link two nodes

or a node to a property value (also called resources and liter-

als). Predicates can therefore be relationships or property keys.

Property graphs, on the other hand, consist of explicit node,

relationship, and property structures where the properties are

directly assigned to a node or relationship. The RDF model cre-

ates a lot of redundancies, which could lead to additional write

load, which in turn will most likely have a negative impact on

PMem performance. Therefore we decided to opt for the property

graph model, which is more compact, more expressive, and more

efficient to query.

Data Model Definition. In the following, we adopt a prop-

erty graph model where a graph 𝐺 = (𝑁, 𝑅) consists of nodes
𝑁 and directed relationships 𝑅 ⊆ 𝑁 × 𝑁 . Each node 𝑛 ∈ 𝑁 is

identified by a unique identifier 𝑖𝑑 : 𝑁 → 𝐼𝐷 . Furthermore, a

label (used, e.g., as a type descriptor) is assigned to each node

and each relationship via a labeling function 𝑙 : {𝑁 ∪ 𝑅} → 𝐿

where 𝐿 is the set of labels.

Properties are represented as key-value pairs (𝑘, 𝑣) ∈ 𝑃 with

𝑃 = 𝐾 × 𝐷 where 𝐾 denotes the set of property keys and 𝐷 the

set of possible values including numbers, strings, etc. To each

node and relationship, a set of properties can be associated via

𝑝 : {𝑁 ∪ 𝑅} → P(𝑃) where P(𝑃) denotes the power set of 𝑃 .

4.1 Design Decisions
The above data model is implemented by storing the graph in

node, relationship and property tables maintained in persistent

memory. For efficient data access, the specific characteristics of

current PMem technology as mentioned in Sections 1 and 3 have

to be taken into account. The application of our derived design

goals led to the following key design decisions:

(DD1) Each of the tables is managed as a linked list of chunks
where a chunk is a fixed-sized array (cache-line aligned

and a multiple of 256 bytes) of records. To reuse the

39

space of deleted records, standard free space manage-

ment using a persistent list is implemented. This way,

tables can dynamically and efficiently grow or shrink for

updates, by allocating/deallocating chunks (DG3, DG5).

(DD2) A chunk stores equally-sized records of the same type

(nodes, relationships, properties). Thus, records can be

addressed via their offsets. Similar to a sparse index,

an additional persistent lookup table allows efficient ac-

cess to chunks based on the record offset (DG1, DG6).

Note that we use array offsets because they can be rep-

resented as 8-byte integers instead of 16-byte persistent

pointers. This not only saves space but also allows for

failure-atomic stores and avoids costly dereferencing

(DG1, DG3, DG6).

(DD3) In order to represent nodes and relationships as equally-

sized records, properties are outsourced to a sepa-

rate table. Furthermore, all variable-length values (e.g.,

strings) are dictionary encoded. Both lead to a reduced
number of write operations (DG1).

(DD4) The connections between nodes and their relationships
as well as their properties are represented via array off-
sets instead of (persistent) pointers. Because relation-

ships are directed, each node refers to its list of both

outgoing and incoming relationships, also via offsets.

(DD5) The storage model is designed hybrid both for sec-

ondary indexes and for transaction management (DG2).

Further details are provided below.

4.2 Key Data Structures
In the following, we give an overview of the key data structures

to represent the property graph model and further structures

necessary to realize our design decisions and achieve a great

performance.

Nodes, Relationships, and Properties. Fig. 1 illustrates the
primary storage structures of a persistent graph which we have

implemented using Intel’s PMDK [17]. The highlighted row illus-

trates a respective node or relationship record. On top of both the

node and relationship table, an additional sparse index is used

which maps the identifiers of the first record of each chunk to

their corresponding memory location. For each chunk there is

a bitmap to indicate free and occupied record slots, enabling an

efficient reclamation of deleted entries. The chunks are linked

by a persistent pointer to allow the scanning of all data. Node

records consist of a label, the offset of the first incoming and first

outgoing relationship, as well as the offset to their properties.

Relationship records also have a label as well as the offset to their

properties. Furthermore, they store the location of the source

and destination nodes that they connect. Optionally, relation-

ship records hold offsets to the next relationships of their source

and destination node. Note that the records for nodes and rela-

tionships contain a few additional fields needed for transaction

processing which are described in Section 5. In total, this results

in a record size for nodes and relationships of 56 and 72 bytes

respectively.

The properties are stored in a separate chunked table as key-

value pairs. These are grouped in batches, each belonging to a

single node or relationship, to obtain cache-line-sized records.

In order to allow variable-length key-value pairs, string types

are stored as dictionary codes. If there are more properties for a

single node or relationship, the property record links to the next

entry. These data structures resemble the typical storage layout

chunk

chunked_vec
...0 5

nodes

…

chunk

chunked_vec
...0 5

relationships

…

sparse
index propertiesfrom_rship_list

to_rship_list

label

slots

Figure 1: Graph data structures

of disk-based, table-oriented systems such as SQL databases or

even graph databases like Neo4j. However, in our case, table

chunks are not copied between disk and memory but instead

accessed directly in PMem. In addition, nodes, relationships, and

associated properties can be addressed individually via their

identifiers/offsets.

Dictionary. Asmentioned before, to allow for variable-length

labels, property keys, and values, a dictionary is used. This com-

presses strings and, thus, reduces space and write overhead as

well as ensures that records remain addressable by offset. Fur-

thermore, the comparison of codes instead of strings speeds up

operators such as filters. The dictionary consists of two hash

tables for bi-directional translation to make lookups fast. These

must be kept persistent, in case of failure, since the codes and

strings are not stored elsewhere. An alternative could be to only

store one of the hash tables in PMem and rebuild the other DRAM-

resident part. Depending on the workload (either more inserts or

more queries), the more frequently used table should be kept in

DRAM.

Hybrid Indexes. The table-based storage model is useful for

lookups on physical node/relationship identifiers (which repre-

sent array offsets) as well as scan-intensive processing where

large parts of the nodes or relationships are visited. However,

for lookup queries on node/relationship properties, scans are too

expensive. In order to accelerate these queries, we additionally

provide B
+
-Tree indexes. An index can be constructed on nodes

with a given label and for a property. The values of these proper-

ties are used as keys in the index. Since the indexes are secondary

data structures that can be rebuilt in the event of a failure, they

do not have to be completely persistent. To still have a good com-

promise between recovery and query performance, we opted for

a DRAM/PMem hybrid approach (selective persistence) similar

to [18, 31, 47]. In particular, this means that the leaf nodes are

stored in PMem and the inner nodes in DRAM, resulting in a

maximum of one PMem-resident node being read per lookup

(if not already cached by the CPU) and significantly reduced

recovery time. This has an additional economic advantage since

less DRAM is used, which we expect to be more expensive than

40

txn-id
bts ets rts

dirty_list

persistent memory volatile memorycommit

update

Figure 2: Structure of transactional data

PMem in the near future. In accordance with DG3, all nodes on

PMem are cache-line-aligned and a multiple of 256 bytes. For

analytical queries, multi-dimensional index structures optimized

for PMem could also be used where properties represent the

dimensions [18].

5 TRANSACTION PROCESSING
An HTAP architecture requires high-performance concurrency

control mechanisms. Several studies in the past [34, 46] have

shown that DBMSs with multi-version concurrency control

(MVCC) exhibit higher concurrency than their single-version

counterparts. Here, transactions can be concurrently executed

on different versions of the same object, thus increasing the over-

all transaction throughput especially when the transactions are

long-running and contention is high [22]. This also allows for

scalability and efficient utilization of modern multi-core CPUs.

MVCC is implemented differently by different DBMSs, each mak-

ing certain design decisions in order to optimize for its target

workloads. The interplay between these design decisions ulti-

mately results in computation and storage overhead trade-offs.

Below, we discuss how we implemented these MVCC design de-

cisions in a PMem setting to achieve our design goals presented

earlier in Section 3.

5.1 Concurrency Control Protocol
Existing concurrency control (CC) protocols such as two-phase

locking (2PL), optimistic concurrency control (OCC), or times-

tamp ordering (TO) can essentially be used in a multi-version

setting. We chose MVTO as our CC protocol. With our MVTO

implementation, we support updates of an arbitrary number of

objects within a single transaction and achieve snapshot isola-

tion guarantees. Note, that we use MVTO here mainly as an

example to evaluate how an MVCC protocol implementation can

exploit and address the specifics of PMem. However, in princi-

ple, the main concepts should apply to implementations of other

protocols too.

There is a transaction identifier (timestamp), txn-id, given to

each transaction at the beginning of the transaction that uniquely

identifies it. Each data object maintains meta-data fields for con-

currency control purposes. To this end, we extend the data struc-

tures of nodes and relationships, as shown in Fig. 2, by additional

persistent fields – txn-id, begin timestamp bts, end timestamp

ets and read timestamp rts – and a volatile field – pointer. The

txn-id-field is used for write-locking, by way of coordinating

which versions are valid for which write-transactions. By default,

it is set to zero except if the object is locked by a write-transaction,

where it is set to the transaction’s txn-id using a CaS instruc-

tion [22]. The begin timestamp and end timestamp fields mark

the validity of an object for access by a read-transaction, while the

read timestamp indicates the latest transaction that read it. The

pointer field stores a volatile pointer to a list of dirty objects (i.e.,

in DRAM) to address (DG1) and (DG2). Alternatively, the bts,
ets, and rts fields and perhaps also the txn-id of the current
version could be moved to DRAM in order to reduce the persis-

tent record size. These fields could then be re-initialized during

recovery (or during the first access after a failure). However, this

could also be disadvantageous because the transaction informa-

tion of the current version would always have to be retrieved

with another random read in DRAM.

Write transaction. A transaction𝑇 always updates the latest

version of an object 𝑜 . It creates a new version 𝑜𝑖+1 of the object
if no other transaction has a lock on 𝑜𝑖 and 𝑜𝑖 has not been

read by a more recent transaction (i.e., the transaction identifier

id(𝑇) > rts(𝑜𝑖)). Otherwise, 𝑇 aborts. The txn-id field of 𝑜𝑖+1
is set to id(𝑇). In case of an update, 𝑜𝑖+1 is kept in the dirty list

in volatile memory until commit. If the transaction inserts a new

object, this object is already stored in the persistent array (i.e., in

PMem), but still locked until the end of the transaction.

Read transaction. A transaction𝑇 reads version 𝑜𝑖 of an ob-

ject for which id(𝑇) is between the bts and ets, i.e., bts(𝑜𝑖) ≤
id(𝑇) < ets(𝑜𝑖), and which is not locked by another active trans-

action. Thus, the object is accessed in PMem first (representing

the most recent committed version) and if this is not the version

valid for 𝑇 then the dirty list in volatile memory is traversed to

retrieve the correct version. In case of a lock held by another

transaction, the transaction is aborted. Upon reading 𝑜𝑖 , the rts
field is updated to id(𝑇) unless rts(𝑜𝑖) ≥ id(𝑇). In this case, the

transaction reads an older version without updating rts.

Commit. For commit of a transaction 𝑇 , the timestamp fields

of the updated object version 𝑜𝑖+1 are set accordingly: bts to

id(𝑇) and ets to INF and for the previous version 𝑜𝑖 , the field

ets is set to id(𝑇). In the case of delete, ets of the deleted version
𝑜𝑖+1 is set to id(𝑇) instead. If the object was newly created, how-

ever, it is simply unlocked (i.e., resetting txn-id to 0). Otherwise,
𝑜𝑖+1 has to be copied back to PMem. In order to guarantee failure

atomicity, this memory copy has to be performed atomically. This

can be implemented in different ways. One approach is to rely

on the solution provided by the Intel PMDK to atomically update

and persist data that is larger than the power-fail atomic size

or portions of data that are non-contiguous. PMDK uses trans-

actional operations for memory allocation, freeing, and setting.

Internally, these transactions are implemented via redo logging

to ensure the atomicity of memory allocations and undo logging

for transactional snapshots [40]. Other approaches are, e.g., using

Multi-Word CaS instructions such as PMwCAS [44] which allows

atomically changing multiple 8-byte words on PMem. In our cur-

rent implementation, we use the PMDK solution for the sake of

simplicity (DG4). However, this comes with a small overhead.

41

5.2 Version Storage
A transaction updating an object version 𝑜𝑖 creates a new ver-

sion 𝑜𝑖+1 by making a copy of 𝑜𝑖 and appending it to the front

of the list of dirty versions (i.e., version chain). It then performs

all updates on 𝑜𝑖+1 in DRAM until commit. Keeping all uncom-

mitted data in volatile memory is a design decision we made in

order to minimize the number of writes to PMem (DG1, DG2).

This hybrid DRAM/PMem approach allows for the creation of

all versions by transactions to be a volatile copy instead of the

more expensive copy to PMem, and also allows for all the write

operations that occur during the lifetime of a transaction to be

performed at DRAM latency until the transaction is to commit

when the updates are finally persisted in PMem. Note that a dirty

object has the same structure as its committed version but with a

different validity interval (as specified by the range [bts, ets]).

5.3 Garbage Collection
In our current implementation, we use Transaction-level Garbage

Collection (GC), where storage space occupied by dirty ver-

sions that are not going to be used anymore is reclaimed at

transaction-level granularity [46]. A node or a relationship main-

tains a volatile dirty list, only if there is a valid dirty version of it.

A dirty version is not used anymore if it becomes invalid (i.e., the

transaction that created it aborts) or if it is no longer visible to any
active transaction (i.e., its ets < id(𝑇) of the oldest active trans-
action 𝑇). All empty or unused dirty lists are discarded during a

commit. If the storage space to be reclaimed is in PMem, either

because a committed transaction deleted the object or the object

was inserted by an aborted transaction, we do not deallocate the

record slot(s). Rather, we simply mark it with a bitmap as free

for later reuse (DG5).

6 QUERY PROCESSING
The characteristics of PMem have several implications for query

processing. First of all, data access is no longer block-oriented

and, therefore, has to be optimized for sequential access. The

direct and byte-addressable access is very similar to in-memory

databases. In graph databases, this is particularly useful for tra-

versal operators. However, as mentioned above, reading from

PMem is slower than from DRAM. Hiding this higher latency

requires efficient cache utilization, multithreaded processing, and

various execution modes.

6.1 Push-based Approach
We address these requirements by a multithreaded push-based

query engine. Our engine provides a set of graph-specific algebra

operators [16] such as NodeScan, RelationshipScan, and Fore-

achRelationship; as well as standard relational operators like

Filter, Project, and several Join variants. As every operator

is implemented and ahead-of-time (AOT)-compiled, i.e., avail-

able at run-time, the engine is able to interpret queries (given

as graph algebra expressions) directly by calling these opera-

tors with the required parameters. Processing a typical traversal

query (Match in Cypher) is initiated by scans on the node or

relationship tables including filters. For each node satisfying the

optional filter condition the traversal operation is applied, i.e.,

the NodeScan operator forwards the current node to the next

operator ForeachRelationship, and so on. (Fig. 3).

Though traversals could be also implemented using joins of a

standard relational query engine [11], the ForeachRelationship

leverages the direct addressability of data in PMem. As described

Figure 3: Query execution plan

in Sect. 4.2, node records contain the persistent addresses (offsets)

of their relationships, which in turn store the address of the

sibling nodes, and are used to traverse the path. This avoids the

problem of join escalation during traversals.

For query parallelization, we leverage a task model. Scans

are performed as parallel scans: Each task processes a range

of the node/relationship tables. Thus, all subsequent operators

following the scan are also performed within this task until a

pipeline breaker like a join or sort operator is reached. This way,

we follow the morsel-driven parallelism approach [23].

For using indexes in query processing, an appropriate IndexS-

can operator is provided that performs a lookup or range scan

on the B
+
-Tree, extracts the matching nodes from the node tables,

and passes them to the subsequent operator pipeline.

6.2 Just-In-Time Query Compilation
Besides the AOT compiled query engine, we implement a JIT

query compiler that transforms graph algebra expression into

machine code. Traditional query execution engines use a query

interpreter to execute query statements. This has several draw-

backs that reduce the resulting performance. An interpreter relies

on AOT compiled code, which means that the appropriate meth-

ods must be available for every possible occurrence of a particular

tuple element type. Furthermore, a query interpreter is not able

to recognize equal or redundant instructions. Particularly for

operators that lead to variable cardinalities, like selections or

aggregations, it introduces additional overhead. Query compi-

lation is an approach to tackle these issues. Our approach aims

to compile given graph algebra expressions into highly efficient

machine code using the JIT compilation technique [20]. As the

compiling framework, we chose the LLVM compiler infrastruc-

ture because it provides numerous relevant features for the JIT

compilation, reliable performance, and portability to several ar-

chitectures. Moreover, the LLVM IR provides an instruction set

suitable for the implementation of all the abstractions needed for

our graph query engine. One significant requirement for the JIT

query compiler is the fulfillment and compliance with the formu-

lated design goals (DG1-DG6). This is mainly done by reusing

42

(calling) AOT-compiled code, e.g., access methods to nodes or

methods for transaction processing. Thereby, the code generation

effort will be reduced because it is already compliant with the

design goals and optimized by the AOT compiler.

Similar to the approach presented by [28], we aim to process

intermediate tuple results as long as possible in the CPU reg-

isters. In order to achieve this, it is necessary to transform the

complete query pipeline into a single LLVM IR function. Here it

becomes apparent that a transformation from graph algebra to

machine code can be easily accomplished with LLVM IR. How-

ever, to ensure reliable performance, we identified the following

requirements for the IR code generation that must be met.

(1) Minimize stack allocation and avoid heap allocation.

(2) Process initializations only at the first entry point of the

IR function.

(3) Process type information at (JIT) compile-time.

(4) Provide full compatibility to the AOT execution engine.

One significant advantage of query compilation over interpre-

tation is that the tuple element type information can be handled

at compile-time. The consequence of this is the absence of type

conversions at run-time as code can be generated for individual

types.

Starting from a graph algebra expression that forms an opera-

tor tree, each operator will be transformed into LLVM IR code.

Further, each operator provides at least an entry and a consume
IR basic block, representing the operator’s start and end points.

Complex operators comprise more basic blocks for the actual tu-

ple processing, e.g., Join. Though, the general control flow starts

at the entry basic block. After processing in further basic blocks,

the control flow branches to the consume basic block to push the

results to the next operator. A branching instruction links each

consume basic block with the entry basic block of the succeeding

operator, forming an inlined query pipeline. Fig. 4 illustrates the

transformation process, starting from a query plan in the form

of graph algebra. Furthermore, it shows each operator’s return

path, which is, for most cases, the loop header of the previous

operator. The finish operator will be called after the complete

scan. Depending on the query, it invokes the function return or

the next query pipeline.

The query engine’s current implementation provides two ac-

cess paths for the query pipeline: the NodeScan and Create

operator. Code generation for these operators is basically the

same as for the normal operators. Both contain at least the entry

and consume basic block. As an access path is always the first

operator in the pipeline, it must also provide the actual generated

scan_entry

loop_head

loop_body

check_label

consume

finish

fe_entry

consume

collect_entry

...

NodeScan

Foreach
Relationship

Collect

define void @start(i8* %0, i64 %1, i64 %2, i8* %3, i64 %4,
i64* %5, i64* %6, i64* %7, void (i64*)* %8, i64 %9,
[64 x i64*]* %10) {
entry:
...

 %19 = call i8* @gdb_get_nodes(i8* %0)
 %20 = getelementptr inbounds [64 x i64*], [64 x i64*]*
%10, i64 0, i64 1
 %21 = load i64*, i64** %20, align 8
 %22 = bitcast i64* %21 to i8*
 %23 = call i32 @dict_lookup_label(i8* %0, i8* %22)
 %24 = call %node_iterator* @get_vec_begin(i8* %19,
i64 %1, i64 %2)
 %25 = call i1 @vec_end_reached(i8* %19,
%node_iterator* %24)
 %26 = icmp eq i1 %25, false
 br i1 %26, label %loop_body, label %finish
loop_body:
...

}

Graph
Algebra

LLVM IR

Figure 4: Graph algebra to LLVM IR transformation

function’s entry point. Due to the reason that the code genera-

tor transforms the complete pipeline into a single IR function,

memory allocation must be carefully handled. For this reason,

the access path initializes all relevant values for the complete

query pipeline, e.g., number of nodes, projection keys, or global

constants.

The code generation for joins requires additional work. A join

operator comprises two inputs. For now, we consider the right

sub-pipeline of the join as the side which will be materialized.

Consequently, it requires the prior execution of the right sub-

pipeline. However, the actual code generation starts from the

left sub-pipeline in order to minimize tree traverses. Whenever

the code for an access path is generated, it checks if the current

function is already initialized. If this holds, it swaps the function

entry basic block with its own and connects the finish basic

block of the second access path with the entry basic block of the

previous access path. This enables the handling and execution of

multiple query pipelines within a single function.

IR Code Generation. We use the visitor design pattern to gen-
erate the appropriate IR code for each operator. Further, this

enables the extension of the query engine in future work. Each

operator derives from a base class and implements a codegen
method for code generation. The query engine calls the visitor
to start the code generation process, which calls all the oper-

ator’s codegen methods recursively. We implement several IR

abstractions that help to generate IR code with more ease. Due

to the reason that most operators rely on loops, we provide two

IR loop abstractions. The while_loop abstraction is used for the

iteration through a chunked vector. It receives the vector, the

current iterator, the succeeding basic block, and the actual loop

body as function arguments. The other loop abstraction is the

while_loop_condition, used for the iteration as long as a con-

dition is valid. Further, our abstraction set contains methods that

generate code to extract label codes or property values. The oper-

ator IR code is based on these abstractions and mainly mimicking

the push-based processing described previously. An additional

structure is built to provide the type of tuple element at code

generation and the appropriate register value. The code of the

next operators is generated according to the type of the previ-

ous tuple element. For example, the projection operator uses the

proper node functions if the last result tuple element is a node.

This handling allows for generating code without much effort at

run-time.

JIT Compilation. We extended the JIT compiler of LLVM to

further features. First of all, our JIT query engine can persist

already compiled code to PMem. This has the advantage that no

further compilation is required for subsequent runs of a query.

For that purpose, a persistent and concurrent hash map is used.

The compilation output of the JIT is a binary object file that will

be linked with the current database instance. Usually, this file is

located in a memory buffer in the volatile memory. Before the

compilation process, the query engine generates a unique query

identifier that comprises the operators’ identifiers, which will be

used to lookup the persistent hash map for already compiled code.

If the code is found, it will be linked with the current database

instance. Otherwise, the compilation process of the query starts.

The compiled codewill be persisted in PMem after its compilation,

using the query identifier as a key for the hash map.

A major advantage of JIT compilation is the ability to opti-

mize the IR code at run-time. The LLVM framework provides

a convenient approach for IR code optimization. Several LLVM

43

optimization passes can be used for this purpose. An analysis of

the IR code reveals that it comprises mainly of loops and pointer

arithmetics. Therefore, our optimization strategy focuses on these

constructs. The following optimization pass cascade is used to

further optimize the code at run-time:

• Promote Memory To Register transforms instructions that

allocate stack memory into register values. This makes

the IR code generation convenient and compliant with the

requirement (1).

• Control Flow Graph Simplificationmerges and deletes basic

blocks if they have common or no predecessors.

• Loop Unrolling removes the overhead of loops by explicit

extraction of the body to multiple instructions.

• Dead Code Elimination eliminates unreachable code.

• Instruction Combining combines redundant instruction to

form smaller and faster code with the same effect.

Additionally, the IR code is optimized with the standard C++

aggressive optimization (-O3).

Adaptive Execution. While the compiled query code itself

is fast, the compilation time should also be considered. Notably,

when executing short-running queries where only a small por-

tion of data is touched, the compilation time will be longer than

the actual execution time. In order to hide the compilation time

as well as memory access latency of PMem, we additionally sup-

port an adaptive query processing approach, which is illustrated

in Fig. 3. In contrast to the approach by [21], the adaptive exe-

cution can switch between only two modes, which is currently

sufficient for our engine. The interpretation mode is always ini-

tiated first at query execution. This mode uses AOT-compiled

database code to execute the query. Similarly, the visitor design

pattern is used to transform the given algebra query plan into

the interpret functions. These functions are then linked together,

forming a cascade of functions that execute the actual query. The

downside of such an approach is the additional (AOT-compiled)

code overhead because every operator and its varieties must be

available at compile-time. During adaptive execution, the query

engine switches to the JIT mode after compilation.

We take advantage of the morsel-driven parallelism for the

actual switching procedure, where morsels are pinned to a single

task and pushed into a task pool. The working threads pull a task

from the pool and execute the task function (the query) on the

pinned morsel.

We implement the task function as a static function. As the

execution always starts in the interpretation mode, it will be

initialized to the appropriate function, which invokes the inter-

pretation. While the query is executed in the interpretation mode,

a background thread compiles the query plan into machine code.

The compilation process emits a function that processes the query

plan into machine code. As soon as the compilation is done, it

redirects the static task function to the compiled function. The

next pulled task from the pool will execute the compiled query

function.

7 EVALUATION
In this section, we report the results of a set of experimental

evaluations whose research goal is threefold:

1. We evaluate our PMem-based HTAP engine and show

the effectiveness of our design decisions to exploit PMem

characteristics for graph processing. In this context, we

aim to investigate, on the one hand, the benefits of using

persistent memory for graph processing. On the other

hand, we compare our system to disk-based and DRAM-

based solutions (§ 7.3).

2. We compare the speed of volatile, persistent, and

DRAM/PMem hybrid B
+
-Tree index lookups. We quan-

tify the recovery overhead of our hybrid index (which

we expect to be insignificant) as a trade-off for increased

query performance (§ 7.4).

3. We evaluate our JIT query compilation approach. We

demonstrate when and how much it enhances the per-

formance of transactional queries. We expect the JIT com-

pilation to yield benefits especially for long-running and

more complex queries (§ 7.5).

7.1 Environment
For the experiments, we used a dual-socket Intel Xeon Gold 5215

server with 10 cores each at max. 3.4 GHz. The server is equipped

with 384 GB DDR4 RAM, 1.5 TB Intel Optane DCPMM, and 4 ×
1.0 TB Intel SSD DC P4501 Series connected via PCIe 3.1 x4. The

server runs CentOS 7.8 (Linux 5.7.7 kernel). The operating mode

of the PMem modules is set to AppDirect which allows us direct

access to the devices. On the PMem DIMMs, we have created an

ext4 file system and mounted it with the DAX option to enable

direct loads and stores bypassing the OS cache. For accessing

PMem, we used the Intel PMDK version 1.9.1 and libpmemobj-

cpp
3
version 1.11. The JIT compilation was done with LLVM

version 11.

7.2 Workload & Setup
The Linked Data Benchmark Council (LDBC) specifies bench-

marks and benchmarking procedures and also verifies and pub-

lishes benchmark results [10]. The LDBC-Social Network Bench-

mark (SNB) models a social network comprising of different en-

tity types interconnected by relationships – both with property

types and property values. Activities of persons are represented

as messages about topics or tags that are posted in forums mod-

erated by unique persons. Persons like messages, have interests

in tags, are members of forums, and make comments in response

to posts or other comments. Message activities are the bulk of

the data on the social network. There also are places and orga-

nizations to which a person is connected via residence, study,

and work relationships. The LDBC-SNB defines an Interactive

Workload and a Business Intelligence Workload. The Interactive

Workload comprises of three classes of queries: (1) Interactive

Complex Read Queries that are relatively complex and traverse a

fair portion of the graph data, (2) Interactive Short Read Queries

that perform lookups and short traversals within the neighbor-

hood of a node, and (3) Transactional Interactive Update Queries

that perform transactional insertions and updates of node and

relationship objects [10].

We generated and used the LDBC-SNB data [2] at scale factor

(SF) 10 as our benchmark data. As the focus of this paper is on

transactional graph processing, not graph analytics, we selected

the LDBC-SNB Interactive Short Read (SR) and the Interactive

Update (IU) query sets as query workload for our experiments.

3
https://github.com/pmem/libpmemobj-cpp

44

1 2-post 2-cmt 3 4-post 4-cmt 5-post 5-cmt 6-post 6-cmt 7-post 7-cmt
query

10 2

10 1

100

101

102

103

104

ti
m

e
(m

se
cs

)

DISK-i PMem-s PMem-p PMem-i DRAM-s DRAM-p DRAM-i

Figure 5: Results for SNB Short Reads

1 2 3 4 5 6 7 8
query

10 1

100

101

102

103

104

ti
m

e
(m

se
cs

)

DISK-hot
DISK-cold

PMem-hot
PMem-cold

DRAM-hot
DRAM-cold

Figure 6: Results for SNB Interactive Updates

7.3 Benefit of PMem
We first want to evaluate how much the design decisions in our

PMem-optimized graph engine and our implementation of trans-

action processing reduce the overhead of PMem in our system (de-

noted as PMem in the figures) compared to a pure DRAM-based

in-memory implementation of it. Moreover, we want to compare

the performance gains brought about by the lower access latency

of PMem compared to a DISK-based system, in addition to pro-

viding persistence. To this end, we employ two baselines: A disk

baseline (represented as disk), which is an open-source native

graph database where we stored all the primary data on SSD

and created an additional DRAM index. For the DRAM baseline

(depicted as dram), we adapted our system to additionally run in

a pure volatile mode where we keep data entirely in DRAM. We

expect our system to outperform the disk-based system. With

regards to the DRAM baseline, we anticipate to bridge the per-

formance gap with our PMem-conscious design and achieve a

near-DRAM performance while providing persistence, especially

for hot runs.

Interactive Short Reads. Fig. 5 shows the query execution

times for the SR query set. The execution times are average times

of 50 runs on hot data, each with a different input ID parameter.

post and cmt (short for post and comment respectively) represent
the two subclasses of a message entity. For PMem, we show the

execution times without indexes for single-threaded execution

(PMem-s), multi-threaded execution (PMem-p) as well as with in-
dexing support (PMem-i). We employ similar denotations for our

DRAM baseline: DRAM-s, DRAM-p, and DRAM-i. For the disk
baseline, we also conducted executions with index support and re-

port the performance numbers for hot runs (i.e., when the data is

in DRAM), denoted byDISK-i. We used our hybrid DRAM/PMem

implementation of the B
+
-Tree (Section 4) for PMem, while for

DRAM, we used a volatile B
+
-Tree. We maintain the same set of

indexes throughout our experiments.

The results in Fig. 5 show that exploiting PMem-specific char-

acteristics in storage architecture and transaction processing can

significantly bridge the performance gap between DRAM and

PMem. It can be noted that for multi-threaded execution of some

of the queries, the execution times are very close since the SR

queries are short-running and the PMem latency is already hid-

den by the CPU caches for hot runs. An interesting research

direction is thus to investigate this in the context of graph ana-

lytics, where queries are compute-intensive, long-running, and

navigate across a significant portion of the graph. While the re-

sults show performance improvements of multi-threading both

for DRAM and PMem, however, indexes have a stronger influence.

Unlike graph analytics that significantly benefit from parallel

execution, interactive queries like SR and IU benefit more from

indexes, as they are essentially lookup queries whose execution

time overhead comes mainly from scanning the tables of record

chunks to retrieve the start node object. As a result, we compare

the performance of indexed query execution both on our sys-

tem and on the DISK baseline. We can see from the figure that

our PMem-based system outperforms the disk-based system for

indexed execution in all the queries, as we had expected.

45

1 2-post 2-cmt 3 4-post 4-cmt 5-post 5-cmt 6-post 6-cmt 7-post 7-cmt
query

100

101

102

103

104

ti
m

e
(m

se
cs

)

Compile Time JIT PMem AOT PMem JIT DRAM AOT DRAM

Figure 7: Results for SNB Short Reads with Single Threaded Execution

Interactive Updates. We maintain the indexed query execu-

tion and present the execution times for the IU query set with

indexed support in Fig. 6. Here, we measured both the times to

execute the update queries as well as times for the transactions

to commit (i.e., notably, persisting the updates in PMem). Simi-

lar to the SR queries, we took the average execution time of 50

runs on hot data with varying object property values as input

parameters. In addition to results on hot data, we also present the

execution times for cold runs, i.e., for the first query runs. The

results show our PMem-based system not only outperforms the

disk-based system by an order of magnitude even for hot runs

but also performs insert and update operations at near-DRAM

latency. For hot data, it is even closer.

Overall, the results of Fig. 5 and Fig. 6 show that in direct

comparison with the DRAM variant, our hybrid approach of

MVTO implementation to address the specifics of PMem adds

only a marginal overhead. This validates our MVCC design de-

cisions of Section 5 and also obviates the need for showing the

results of a pure PMem implementation which has an overhead

of maintaining dirty versions on PMem.

7.4 Indexes and Recovery
We evaluated index performance and recovery by way of compar-

ing our hybrid index that keeps inner nodes in DRAM, trading-off

recovery for improved performance, against two baselines. One

a volatile index that keeps all nodes in DRAM and the other a

PMem Hybrid DRAM
Index

0.0

0.5

1.0

1.5

2.0

ti
m

e
(µ

se
cs

)

Figure 8: Average Time per Lookup of Persistent, Hybrid,
and Volatile Indexes

persistent index that stores all nodes on PMem. We evaluated

them based on the average time for indexed scans in the SNB SR

queries. To study the performance differences, we measured the

time to lookup and retrieve a node ID from the appropriate index.

Fig. 8 shows the average lookup time for the persistent, volatile,

and hybrid indexes - denoted respectively as PMem, DRAM, and

Hybrid. The lookup times are averages of all ID value lookups of

nodes with the same label type (Person) in all the respective SR

queries. The hybrid approach enhances the lookup performance

by 2x while keeping the recovery time as low as 8 ms, in com-

parison to the complete volatile index build time of 671 ms. This

recovery overhead would also be necessary for each index cre-

ated on specific properties. Added up, the overhead of completely

rebuilding the indexes in the volatile case is comparatively dras-

tic. Therefore, we see the hybrid variant as a good compromise

between runtime performance and recovery.

7.5 JIT
The final part of our evaluation focuses on the JIT query compi-

lation approach. The first two benchmarks show the capability

of JIT-compiled code itself, without any mechanism to hide the

compilation time. For this purpose, we execute the interactive

read and update queries from the SNB. Thereafter, we examine

the gain from adaptive execution. Although we expect it to be

much more efficient for analytical and long-running queries, it is

insightful to see the benefits on short and transactional queries

in comparison to AOT-compiled code. In particular, the combi-

nation with PMem could make this approach profitable even for

short-running queries.

Interactive Short Reads. Fig. 7 shows the results for the SR
executed with the JIT query engine. We calculated the average

execution time of 50 runs on hot data with different parameters.

The queries are executed single-threaded without indexes. The

compilation time of the queries is only a few milliseconds. As the

number of operators increases, the compilation time increases

by only a few milliseconds. However, the results show clearly

that the JIT-compiled is always faster than the AOT-compiled

code. The JIT-compiled code is mostly even faster when the

actual compilation-time of the query is included. Especially more

complex queries, like 7-post and 7-cmt, can benefit from the JIT

compilation approach.

Interactive Updates. The results for the IU executed with the

JIT query engine are shown in Fig. 9. There are not many opti-

mization possibilities for the generated IR code, as the queries are

46

1 2 3 4 5 6 7 8
query

100

101

ti
m

e
(m

se
cs

)

DRAM AOT-hot
DRAM AOT-cold
DRAM JIT-hot

DRAM JIT-cold
PMem AOT-hot
PMem AOT-cold

PMem JIT-hot
PMem JIT-cold
Compile Time

Figure 9: Results for SNB Interactive Updates executed with JIT compiled code

1 2-post 2-cmt 3 4-post 4-cmt 5-post 5-cmt 6-post 6-cmt 7-post 7-cmt
query

0

200

400

600

800

1000

ti
m

e
(m

se
cs

)

PMem adaptive PMem AOT DRAM adaptive DRAM AOT

Figure 10: Results for SNB Short Reads with Adaptive Execution

short when index support is enabled. Executing these queries us-

ing scans and selections shows similar behavior to the benchmark

before. However, here we focus on code for short queries, where

the execution time is less than the compilation time. JIT code

executed on cold data is noticeably slower, while the resulting

performance on hot data is similar to the AOT code. However, ex-

ecuting these queries with the JIT compilation approach shows

that it is not always the best option to generate code during

runtime for executing a query. The compilation time for these

short queries is much higher than the actual execution time.

Furthermore, executing these short queries with the adaptive

approach leads to the execution of the query pipeline using the

AOT-compiled code entirely, which corresponds to the results of

the AOT code in Fig. 9.

Adaptive Query Executions. The previous benchmarks

show the capability of executing JIT-compiled queries. It is

clearly visible that the JIT-compiled code itself outperforms the

AOT code on DRAM and PMem. However, waiting for the com-

pilation of the query limits the performance improvement of this

approach. The adaptive query execution approach eliminates this

problem by executing the AOT code while query compilation

is done in the background. Additionally, this is useful to hide

the memory access latency of PMem. The next benchmark com-

pares the adaptive query execution approach using morsel-driven

parallelism with multi-threaded AOT-compiled query execution.

Similar to the previous benchmarks, we execute each query on

DRAM and PMem. The results in Fig. 10 show that the adaptive

execution is always faster than the multi-threaded AOT execu-

tion. The execution on PMem can particularly benefit from the

adaptive approach. The additional latency introduced by PMem

leads to an earlier execution of the fast JIT-compiled code in the

query pipeline stage, which enhances the query processing. For

the queries 1, 2-post, 2-cmt, and 3, it leads to similar execution

times for DRAM and PMem. The adaptive approach provides

faster query execution times for most queries and in worst-case

similar performance than multi-threaded AOT code. More com-

plex queries can benefit even more from the adaptive approach

as there is more space for code optimization, like for the queries

7-post and 7-cmt.

8 CONCLUSION
Persistent memory represents a promising technology for data

management solutions whose efficient use requires rethinking

data structures and architectures. In this work, we have presented

the first results of our PMem-based graph engine for hybrid trans-

actional/analytical workloads. Based on the characteristics of

PMem technology, we have discussed, implemented, and eval-

uated design choices regarding storage structure, transaction,

and query processing. The promising results using the LDBC-

SNB interactive short read and update query sets show that a

PMem-based storage engine that is well-optimized for PMem

characteristics incurs only a marginal performance overhead

compared to a pure in-memory solution. The main benefits are,

among others, the competitive performance without the need to

47

keep large parts of the data in (volatile) main memory (resulting

in constant answer times both for cold and hot data) as well as

near-instant recovery guarantees. Additionally, the results have

shown that in comparison to AOT-compiled query execution,

JIT compilation speeds up query processing when the compila-

tion time is less than the execution time. Particularly, adaptive

compilation further enhances query execution performance by

hiding PMem access latency. In our ongoing work, we plan to

investigate the behavior of complex graph analytics and highly

concurrent updates. Moreover, there are several opportunities

for further performance improvements, e.g., by employing more

hybrid DRAM/PMem approaches such as for dictionaries.

ACKNOWLEDGMENTS
This work was partially funded by the German Research Foun-

dation (DFG) in the context of the project “Hybrid Transaction-

al/Analytical Graph Processing in Modern Memory Hierarchies

(#TAG)” (SA 782/28-2) as part of the priority program “Scalable

Data Management for Future Hardware” (SPP 2037) and by the

Carl-Zeiss-Stiftung under the project “Memristive Materials for

Neuromorphic Electronics (MemWerk)”.

REFERENCES
[1] Christopher R. Aberger, Susan Tu, Kunle Olukotun, and Christopher Ré. 2016.

EmptyHeaded: A Relational Engine for Graph Processing. In SIGMOD. 431–
446.

[2] Renzo Angles, János Benjamin Antal, Alex Averbuch, Peter A. Boncz, Orri

Erling, Andrey Gubichev, Vlad Haprian, Moritz Kaufmann, Josep-Lluís Larriba-

Pey, Norbert Martínez-Bazan, József Marton, Marcus Paradies, Minh-Duc

Pham, Arnau Prat-Pérez, Mirko Spasic, Benjamin A. Steer, Gábor Szárnyas,

and Jack Waudby. 2020. The LDBC Social Network Benchmark. CoRR
abs/2001.02299 (2020).

[3] Renzo Angles and Claudio Gutiérrez. 2008. Survey of graph database models.

ACM Comput. Surv. 40, 1 (2008), 1:1–1:39.
[4] Joy Arulraj, Justin J. Levandoski, Umar Farooq Minhas, and Per-Åke Larson.

2018. BzTree: A High-Performance Latch-free Range Index for Non-Volatile

Memory. PVLDB 11, 5 (2018), 553–565.

[5] Joy Arulraj, Matthew Perron, and Andrew Pavlo. 2016. Write-Behind Logging.

PVLDB 10, 4 (2016), 337–348.

[6] Maciej Besta, Emanuel Peter, Robert Gerstenberger, Marc Fischer, Michal

Podstawski, Claude Barthels, Gustavo Alonso, and Torsten Hoefler. 2019.

Demystifying Graph Databases: Analysis and Taxonomy of Data Organization,

System Designs, and Graph Queries. CoRR abs/1910.09017 (2019).

[7] Mihaela A. Bornea, Julian Dolby, Anastasios Kementsietsidis, Kavitha Srinivas,

Patrick Dantressangle, Octavian Udrea, and Bishwaranjan Bhattacharjee. 2013.

Building an efficient RDF store over a relational database. In SIGMOD. 121–
132.

[8] Shimin Chen and Qin Jin. 2015. Persistent B+-Trees in Non-Volatile Main

Memory. PVLDB 8, 7 (2015), 786–797.

[9] Laxman Dhulipala, Charles McGuffey, Hongbo Kang, Yan Gu, Guy E. Blelloch,

Phillip B. Gibbons, and Julian Shun. 2020. Sage: Parallel Semi-Asymmetric

Graph Algorithms for NVRAMs. PVLDB 13, 9 (2020), 1598–1613.

[10] Orri Erling, Alex Averbuch, Josep-Lluís Larriba-Pey, Hassan Chafi, Andrey

Gubichev, Arnau Prat-Pérez, Minh-Duc Pham, and Peter A. Boncz. 2015. The

LDBC Social Network Benchmark: Interactive Workload. In SIGMOD. 619–
630.

[11] Jing Fan, Adalbert Gerald Soosai Raj, and Jignesh M. Patel. 2015. The Case

Against Specialized Graph Analytics Engines. In CIDR.
[12] Henning Funke, Jan Mühlig, and Jens Teubner. 2020. Efficient generation of

machine code for query compilers. In DaMoN @ SIGMOD. 6:1–6:7.
[13] Gurbinder Gill, RoshanDathathri, LocHoang, Ramesh Peri, and Keshav Pingali.

2020. Single Machine Graph Analytics on Massive Datasets Using Intel Optane

DC Persistent Memory. PVLDB 13, 8 (2020), 1304–1318.

[14] Philipp Götze, Arun Kumar Tharanatha, and Kai-Uwe Sattler. 2020. Data Struc-

ture Primitives on Persistent Memory: An Evaluation. CoRR abs/2001.02172

(2020).

[15] Philipp Götze, Arun Kumar Tharanatha, and Kai-Uwe Sattler. 2020. Data struc-

ture primitives on persistent memory: an evaluation. In DaMoN @ SIGMOD.
15:1–15:3.

[16] Jürgen Hölsch and Michael Grossniklaus. 2016. An Algebra and Equivalences

to Transform Graph Patterns in Neo4j. In EDBT/ICDT.
[17] Intel Corporation. 2020. Persistent Memory Development Kit. http://pmem.

io/pmdk. Online, accessed December 2020.

[18] Muhammad Attahir Jibril, Philipp Götze, David Broneske, and Kai-Uwe Sat-

tler. 2020. Selective Caching: A Persistent Memory Approach for Multi-

Dimensional Index Structures. In HardBD & Active @ ICDE. 115–120.

[19] Sudarsun Kannan, Nitish Bhat, Ada Gavrilovska, Andrea C. Arpaci-Dusseau,

and Remzi H. Arpaci-Dusseau. 2018. Redesigning LSMs for Nonvolatile Mem-

ory with NoveLSM. In USENIX ATC. 993–1005.
[20] Timo Kersten, Viktor Leis, Alfons Kemper, Thomas Neumann, Andrew Pavlo,

and Peter A. Boncz. 2018. Everything You Always Wanted to Know About

Compiled and Vectorized Queries But Were Afraid to Ask. PVLDB 11, 13

(2018), 2209–2222.

[21] André Kohn, Viktor Leis, and Thomas Neumann. 2018. Adaptive Execution of

Compiled Queries. In ICDE. 197–208.
[22] Per-Åke Larson, Spyros Blanas, Cristian Diaconu, Craig Freedman, Jignesh M.

Patel, and Mike Zwilling. 2011. High-Performance Concurrency Control

Mechanisms for Main-Memory Databases. PVLDB 5, 4 (2011), 298–309.

[23] Viktor Leis, Peter A. Boncz, Alfons Kemper, and Thomas Neumann. 2014.

Morsel-driven parallelism: a NUMA-aware query evaluation framework for

the many-core age. In SIGMOD. 743–754.
[24] Lucas Lersch, Xiangpeng Hao, Ismail Oukid, Tianzheng Wang, and Thomas

Willhalm. 2019. Evaluating Persistent Memory Range Indexes. PVLDB 13, 4

(2019), 574–587.

[25] Lucas Lersch, Ivan Schreter, Ismail Oukid, and Wolfgang Lehner. 2020. En-

abling Low Tail Latency on Multicore Key-Value Stores. PVLDB 13, 7 (2020),

1091–1104.

[26] Justin J. Levandoski, David B. Lomet, and Sudipta Sengupta. 2013. The Bw-Tree:

A B-tree for new hardware platforms. In ICDE. 302–313.
[27] Jihang Liu, Shimin Chen, and Lujun Wang. 2020. LB+-Trees: Optimizing

Persistent Index Performance on 3DXPoint Memory. PVLDB 13, 7 (2020),

1078–1090.

[28] Thomas Neumann. 2011. Efficiently Compiling Efficient Query Plans for

Modern Hardware. PVLDB 4, 9 (2011), 539–550.

[29] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. 2013. A lightweight

infrastructure for graph analytics. In SIGOPS SOSP. 456–471.
[30] Ismail Oukid, Daniel Booss, Wolfgang Lehner, Peter Bumbulis, and Thomas

Willhalm. 2014. SOFORT: a hybrid SCM-DRAM storage engine for fast data

recovery. In DaMoN @ SIGMOD. 8:1–8:7.
[31] Ismail Oukid, Johan Lasperas, Anisoara Nica, ThomasWillhalm, andWolfgang

Lehner. 2016. FPTree: A Hybrid SCM-DRAM Persistent and Concurrent B-Tree

for Storage Class Memory. In SIGMOD. 371–386.
[32] Marcus Paradies, Wolfgang Lehner, and Christof Bornhövd. 2015. GRAPHITE:

an extensible graph traversal framework for relational database management

systems. In SSDBM. 29:1–29:12.

[33] Andrew Pavlo, Gustavo Angulo, Joy Arulraj, Haibin Lin, Jiexi Lin, Lin Ma,

Prashanth Menon, Todd C. Mowry, Matthew Perron, Ian Quah, Siddharth

Santurkar, Anthony Tomasic, Skye Toor, Dana Van Aken, Ziqi Wang, Yingjun

Wu, Ran Xian, and Tieying Zhang. 2017. Self-Driving Database Management

Systems. In CIDR.
[34] Andrew Pavlo and Matthew Aslett. 2016. What’s Really New with NewSQL?

SIGMOD 45, 2 (2016), 45–55.

[35] Holger Pirk, Oscar R. Moll, Matei Zaharia, and Sam Madden. 2016. Voodoo -

A Vector Algebra for Portable Database Performance on Modern Hardware.

PVLDB 9, 14 (2016), 1707–1718.

[36] Marko A. Rodriguez. 2015. The Gremlin graph traversal machine and language

(invited talk). In DBPL. 1–10.
[37] Michael Rudolf, Marcus Paradies, Christof Bornhövd, and Wolfgang Lehner.

2013. The Graph Story of the SAP HANA Database. In BTW. 403–420.

[38] Nadathur Satish, Narayanan Sundaram, Md. Mostofa Ali Patwary, Jiwon Seo,

Jongsoo Park, Muhammad Amber Hassaan, Shubho Sengupta, Zhaoming Yin,

and Pradeep Dubey. 2014. Navigating the maze of graph analytics frameworks

using massive graph datasets. In SIGMOD. 979–990.
[39] Steve Scargall. 2020. PMDK Internals: Important Algorithms and Data Structures.

Apress, 313–331.

[40] Steve Scargall. 2020. Programming Persistent Memory. Apress.
[41] Amir Shaikhha, Yannis Klonatos, Lionel Parreaux, Lewis Brown, Mohammad

Dashti, and Christoph Koch. 2016. How to Architect a Query Compiler. In

SIGMOD. 1907–1922.
[42] Alexander van Renen, Lukas Vogel, Viktor Leis, Thomas Neumann, and Alfons

Kemper. 2019. Persistent Memory I/O Primitives. In DaMoN @ SIGMOD. 12:1–
12:7.

[43] Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan, and Roy H.

Campbell. 2011. Consistent and Durable Data Structures for Non-Volatile

Byte-Addressable Memory. In USENIX FAST. 61–75.
[44] Tianzheng Wang, Justin J. Levandoski, and Per-Åke Larson. 2018. Easy Lock-

Free Indexing in Non-Volatile Memory. In ICDE. 461–472.
[45] Ziqi Wang, Andrew Pavlo, Hyeontaek Lim, Viktor Leis, Huanchen Zhang,

Michael Kaminsky, and David G. Andersen. 2018. Building a Bw-Tree Takes

More Than Just Buzz Words. In SIGMOD. 473–488.
[46] Yingjun Wu, Joy Arulraj, Jiexi Lin, Ran Xian, and Andrew Pavlo. 2017. An Em-

pirical Evaluation of In-Memory Multi-Version Concurrency Control. PVLDB
10, 7 (2017), 781–792.

[47] Fei Xia, Dejun Jiang, Jin Xiong, and Ninghui Sun. 2017. HiKV: A Hybrid Index

Key-Value Store for DRAM-NVMMemory Systems. In USENIX ATC. 349–362.
[48] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and Steven

Swanson. 2020. An Empirical Guide to the Behavior and Use of Scalable

Persistent Memory. In USENIX FAST. 169–182.
[49] Xinjing Zhou, Lidan Shou, Ke Chen, Wei Hu, and Gang Chen. 2019. DPTree:

Differential Indexing for Persistent Memory. PVLDB 13, 4 (2019), 421–434.

48

	JIT happens: Transactional Graph Processing in Persistent Memory meets Just-In-Time CompilationMuhammad Attahir Jibril, Alexander Baumstark, Philipp Götze, Kai-Uwe Sattler

