Short Paper

O

proceedings

Adaptive Multi-Model Reinforcement Learning for Online
Database Tuning

Yaniv Gur
IBM Almaden Research Center
San Jose, CA
guryaniv@us.ibm.com

Frederik Stalschus
DHBW Stuttgart
Stuttgart, Germany
frederik.stalschus@ibm.com

ABSTRACT

Mainstream DBMSs provide hundreds of knobs for performance
tuning. Tuning those knobs requires experienced database ad-
ministrators (DBA), who are often unavailable for owners of
small-scale databases, a common scenario in the era of cloud
computing. Therefore, algorithms that can automatically tune
the database performance with minimum human guidance is of
increasing importance. Developing an automatic database tuner
poses a number of challenges that need to be addressed. First,
out-of-the-box machine learning solutions cannot be directly
applied to this problem and, therefore, need to be modified to
perform well on this specific problem. Second, training samples
are scarce due to the time it takes to collect each data point and
the limited accessibility to query data submitted by the database
users. Third, databases are complicated systems with unstable
performance, which leads to noisy training data. Furthermore,
in a realistic online environment, workloads can change when
users run different applications at different times. Although there
are several research projects for automatic database tuning, they
have not fully addressed this challenge, and they are mainly de-
signed for offline training where the workloads do not change.
In this paper, we aim to tackle the challenge of online tuning in
evolving workloads environment by proposing a multi-model
tuning algorithm that leverages multiple Deep Deterministic Pol-
icy Gradient (DDPG) reinforcement learning models trained on
varying workloads. To evaluate our approach, we have imple-
mented a system for tuning a PostgreSQL database. The results
show that we can automatically tune a PostgreSQL database and
improve its performance on OLTP workloads and can adapt to
changing workloads using our multi-model approach.

1 INTRODUCTION

Modern DBMSs have hundreds of configuration knobs that affect
their performance. A DBMS that is not configured properly for
the current workload may lead to sub-optimal performance and
inefficient usage of system resources that may result in hundreds
of users that are not getting the performance they need for their
applications. The role of monitoring and configuring a DBMS
was traditionally done by a database administrator (DBA), an
expert dedicated to this task. However, nowadays, multiple DMBS
instances are deployed on the cloud and each instance could host
hundreds of databases, therefore, the task of monitoring and

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Series ISSN: 2367-2005

439

Dongsheng Yang
Princeton University
Princeton, NJ
dy5@princeton.edu

Berthold Reinwald
IBM Almaden Research Center
San Jose, CA
reinwald@us.ibm.com

configuring a large-scale database infrastructure requires a large
number of DBAs, which would lead to high operation costs.

Over the last few years, several database vendors have identi-
fied the potential of using machine learning to automate different
database tasks on the cloud, such as automatic indexing, configu-
ration, and provisioning. A few examples include the autonomous
database from Oracle [11] and the self-driving database from
Alibaba [1]. The study of autonomous databases using Al is a
very active research area that already yielded a large number of
papers, where the most popular machine-learning paradigm in
recent works is reinforcement-learning [7, 9, 14, 18]. Born as a
machine-learning branch for solving complex control problems,
reinforcement learning is a natural choice the automatic database
tuning tasks.

One of the main challenges of operating an automatic DBMS
tuning system on the cloud is the fact that the database environ-
ment is dynamic: system resources, workloads, and database size
could change in the course of the day, therefore, a system for au-
tomatic tuning needs to be flexible and adapt to these changes to
provide the optimal performance for a given environment state.
In this paper, we address the problem of changing workloads in
an online tuning setting, and we employ reinforcement learning
for this task. While query-aware formulations for tuning were
previously proposed [7, 16], the problem of changing workloads
in an online tuning setting was not fully addressed.

Our main contributions in this paper are as follows:

e We propose a multi-model online tuning algorithm, sensi-
tive to workload changes, that leverages multiple DDPG
reinforcement learning models and selects the optimal
model for evolving workloads.

e We propose a simple reward function formulation for of-
fline and online tuning and show that it yields a more
stable learning curve compared to previous art [18].

e We demonstrate the offline and online tuning algorithms
on a PostgreSQL database and show that the performance
of the database can be significantly improved over the
baseline default performance.

2 RELATED WORK

In recent years, multiple studies have addressed the problem of
automatic DBMS tuning using various machine-learning tech-
niques. In [5] a method called adaptive sampling was used to
automate the knob configuration selection by sampling from
past experience and in OtterTune [16] Gaussian Process (GP)
regression was used to recommend the best knob settings. Rein-
forcement learning over continuous action configuration space

10.5441/002/edbt .2021.48

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2021.48

using the DDPG algorithm was utilized in CDBTune [18]. This
method was further extended in QTune [7] where a new algo-
rithm dubbed DS-DDPG was introduced together with a database
state change predictor and a query classification algorithm. The
approach in this paper also uses DDPG to learn a policy func-
tion for the tuning agent, but instead of one model, uses multiple
DDPG models for evolving workloads in an online tuning setting.

Reinforcement learning is not limited to database automatic
tuning. In several papers, problems such as query optimization [9,
10, 12], index tuning [2, 14] and data partitioning [17] are also
solved using this machine learning paradigm.

3 RL FOR DATABASE TUNING

STATE DATABASE AGENT

performance metrics
(e.g., workload execution,
time, memory usage)

e

REWARD
change in database performance
(e.g., changes in throughput, latency)

ENVIRONMENT (database) ACTION

database knob settings

@

1

QUERY WORKLOAD

Figure 1: Reinforcement learning applied to database tun-
ing.

A reinforcement learning system is composed of an agent and
an environment. The agent takes an action on the environment
and the action changes the state of the environment and generates
a reward. The state and the reward are fed back into the agent
that uses this input to compute the next action. The agent tries
to increase the reward in every feedback loop. Reinforcement
learning gained its popularity from video games, where the agent
simulates a player that takes actions in the game environment
and tries to win the game by maximizing a reward function.

As shown in Figure 1, in a database setting, the DBMS repre-
sents the environment and the agent represents the DBA. The
state at time ¢, s, is described by a set of pre-selected database
monitors (statistics collectors) and the reward, r¢, is a function
of the database performance metrics (such as throughput and
latency). Finally, the action a; is the change in the configuration
knobs selected for automatic tuning. The agent seeks to improve
the performance of the database by changing the knob values
and sensing the database state and reward.

3.1 DDPG: Knobs tuning in continuous
action space

There are many algorithms for reinforcement learning, and each
one of them has different variations. One criterion for choosing
the right algorithm is whether the action space is discrete or
continuous. In discrete action space, the agent selects one action
out of a pre-defined set of actions, whereas in the latter case,
the agent can pick any action from a continuous action space
(e.g., a continuous value). In our case, there are potentially hun-
dreds of knobs to be tuned, and many of them can be tuned to

440

any value in the allowed range of the knob. Therefore, similarly
to previous works [7, 18], we selected the Deep Deterministic
Policy Gradient (DDPG) RL algorithm, which was developed to
tackle the challenge of control problems with a continuous action
space [8]. As shown in Figure 2, the agent in the DDPG frame-
work is composed of actor and critic neural networks. Based on
the state and reward observations from the environment, the
critic estimates a Q-value using the Bellman equation and target
networks, and the actor computes the tuning action based on
the estimated Q-value. In every tuning iteration, the actor and
critic networks are updated n times using batches of samples
from a replay buffer that stores the (s, ar, rs, st+1) experience
tuples. The batch size and the number of update iterations are
hyperparameters determined by the user of the algorithm.

Here we describe the selections we made for the key elements
of the algorithm:

Reward function. To train the agent, one must define a mean-
ingful reward function to model the database performance. Differ-
ent reward function formulations had been proposed in previous
works [7, 18]. These formulations take into account the initial
throughput and latency and the throughput and latency in the
previous iteration. In this work, we rely on these formulations,
but we use a simpler function that only represents a change in
the performance relative to an initial throughput and latency.
Our reward function is defined as follows:

T A Ly L
rrp=cr | = — L= -
T,L T T L L

where T and L stands for throughput and latency, respectively,
and Cr + Cr, = 1. Improvement in the throughput and latency
yields positive reward values, whereas negative values indicate
a decline in the database performance. Ty and Ly are set up as
baseline performance values, for example, the throughput and
latency obtained by the DBMS default configuration. Due to the
typical oscillatory behavior of an RL training process, omitting
the dependency on previous iterations adds stability to the tun-
ing process. As will be shown in the experiments section, this
formulation together with the selection of y = 0 (discount factor)
results in a more stable tuning curve compared to [18].

ey

Replay buffer. In a traditional replay buffer, the order in which
the experience tuples are saved in the buffer has no importance,
and the batch of samples is selected randomly. In this work, we
use a prioritized replay buffer in which tuples are prioritized
based on the agent’s training loss error, therefore, samples are
selected based on their importance, and the ones that are more
valuable for the learning process would be selected more fre-
quently. It was shown in [8] that prioritized replay buffers lead
to a more efficient learning process.

Finally, we followed the idea proposed in [8] and added Gauss-
ian action space exploration noise using the Ornstein-Uhlenbeck
process [15].

3.2 Offline training

In offline training, the RL agent is trained using databases built
specifically for this task and the workloads that are being sub-
mitted are configured by the user. The offline training process
allows us to generate preliminary models and knob settings for
specific workloads, and to tune the algorithm hyperparameters
in a controlled environment.

The workload in offline training can be generated and submit-
ted using a benchmarking tool for example, such as Sysbench

n iterations
workload

ZZy

prioritized p -
process replay buffer toch M top N ~ critic (obj‘;:lt?:e)
— samples train
= @ el
LLUCET S X = [

o Metrics state d ning batch a

lat rewar training batcl

latency 9 action (knobs)

throughput

knob settings E

Figure 2: Database tuning with model training using the
DDPG reinforcement learning algorithm.

actor

objective function error

action

and OLTPBench [4, 6], and the throughput and latency measures
can be retrieved from the output log files generated by the tool.
Once a workload is chosen, it will not be modified during the
training phase. When the training phase is completed, a trained
DDPG model for the workload is generated and this model can
be used as a starting point for training on a different workload
(transfer learning), or as a preliminary model for online tuning,
a process we will describe in the next section.

The process of offline training is described in Figure 2. A
submitted workload and a change in the knob settings by the
action a; cause a change in the database state and yield s;4+;. The
throughput and latency measured over a certain time interval
obtain r; using the reward function defined in Eq. 1. The state
st+1 and r; form a state transition tuple with the action a; and
the previous state s;, and this transition tuple is added to the
replay buffer. Then, a batch from the replay buffer is sampled
and used to update the actor and critic networks for n iterations.
Finally, a new knob settings action a4+ is computed. As part of
this process, the batch sample priorities are updated based on the
critic loss function. The training process continues for a number
of iterations that is determined by the time it takes the learning
curve to stabilize.

Offline training was used in previous works for building pre-
liminary machine learning tuning models [7, 16, 18].

3.3 Model deployment

When a trained model is deployed, the algorithm described in
Figure 4 is used to recommend the knob settings. When the agent
receives the database state and performance metrics, the actor
predicts an action that is being translated to knob settings after
a Gaussian noise is generated using the OU process and added to
the action. These knob settings are then applied to the database.

4 ADAPTIVE MULTI-MODEL ALGORITHM
FOR ONLINE TUNING

Tuning online is a challenging task, since workloads can change at
anytime. Suppose that a database runs OLAP queries at night and
OLTP queries during the daytime, its optimal memory allocation
strategy would be different for each workload. Therefore, the
training data from an OLAP workload cannot be used for training
a model for an OLTP workload, and if the tuning system cannot
detect workload changes and adapt, it would perform poorly on
new workloads.

To deal with the challenge of changing workloads, we have
developed a system for adaptive online tuning based on a multi-
model algorithm. This algorithm tracks the database state and
performance and the agent uses a set of pre-trained models and
dynamically creates new models to tune the knobs if required.
The performance measures (latency, throughput) in this case can

441

be computed using database views such as pg_stat_activity in
PostgreSQL.

Tuning tracking app

Workload

Tuner —_— DBMS

<

—

User command s e =

@
L

RL models
repository

Figure 3: The multi-model database online tuning system.

The main components of our system described in Figure 3
are the tuner and the RL model repository. The tuner refers to
the DDPG reinforcement learning algorithm presented in Sec-
tion 3. The repository of model contains a collection of RL models,
pre-trained on workloads that are as similar as possible to the
workloads in the deployment environment, as well as models
that are created during online tuning. The models in this reposi-
tory are persisted with their weights, replay buffer, and a log file
that contains the knob settings that resulted in the best database
performance during training. In addition, each model is accompa-
nied by a workload representation vector that allows to retrieve
the most similar models in Algorithm 1. The last component is a
web-based app we implemented using Bokeh [3] that uses the log
files created during training to display in real-time the database
performance measures and the values of the knobs being tuned.

2. forward propagation

E —> imetrics—P (4 % a N W —_ a

target DBMS state (metrics) action (knobs) 3.0U process recommended
knobs

Figure 4: Knobs recommendation in deployment environ-
ment using DDPG. 1. The agent receives state and perfor-
mance metrics. 2. The actor network predicts an action
based on this input. 3. Exploration noise is added to the
action using the Ornstein-Uhlenbeck process and a new
knobs configuration is recommended.

4.1 Workload representation vectors

To generate the workload representation vectors we used an au-
toencoder neural network. We generated training data of state
vectors that combine the database state metrics, latency, through-
put, and queries per second (qps): V = (Mp, My, ..., M;, T, L, Q).
These vectors were collected at different time points and for dif-
ferent workloads. Then, we reduced their dimension by training
a simple 3-layer autoencoder and used the compressed represen-
tation from the hidden layer as the new state vectors. Since these
vectors were often sparse, this procedure allowed us to obtain a

compact workload representation. The autoencoder architecture
is shown in Figure 5.

4 1
«[@ K
compressed
M, . representation, . Mz
1@\ rel/ (@~
° °
L] L]

: Q) |
«@ [\@\ |@=
= @ Q-
tat ‘ ‘ Lat
Qps . . dps

Figure 5: Workload representation dimensionality reduc-
tion using an autoencoder. V and V represents the orig-
inal and reconstructed vectors, respectively. We used
a 25-dimensional state vector compressed to a three-
dimensional representation.

4.2 Multi-model tuning algorithm

For a given workload, Algorithm 1 selects from the N models
in the repository, M;, the ones that have high cosine similarity
between the workload representation vector of the current work-
load, V,, and the vectors persisted with the models, V;, and form
a set of models, S. The similarity threshold is denoted by T, and
was set empirically to T = 0.8.

Given N models in S, we use an algorithm denoted as Best(S)
to select the model for recommending the knob settings in every
tuning iteration. The model that has the highest probability for
increasing the reward (improving the database performance) is
chosen to recommend the knob settings. Model selection prob-
abilities are assigned by generating random numbers from the
Beta distribution:

fxa f) = Cx¥ (1 - x)P ! @

where C is a normalization constant and «, f are the distribution
shape parameters. For values of & = f, the distribution is symmet-
ric and the mean is at the center of the distribution. When a > f,
the mean moves to the right side of the axis, and the random
generator has a higher probability of yielding values larger than
0.5. We use a and f to compare the performance of the models,
such that the model that performs better, has a higher « value,
and therefore a higher probability to be selected in the next tun-
ing iteration. When comparing two models, @ and §§ counts the
number of times each model produced a reward higher than the
average reward from the beginning of the workload cycle to the
point of measurement.

The models from the repository would always compete against
a model trained from scratch (fresh model) to guarantee that the
best model is being selected in cases where the model retrieved
from the repository does not perform optimally. If a model M
from the repository was selected and fine-tuned during the online
tuning process, its fine-tuned version M’ would be persisted
instead of model M. The process continues as long as the online
tuning phase runs. If a workload shift is detected, the model that
was selected the highest number of times to predict the action
within the workload cycle is persisted in the models’ repository.

442

A model selected from the repository and updated during training
will be persisted with the compressed workload representation
vector, the updated weights, the replay buffer experience, and
the best knob settings.

Algorithm 1 Adaptive multi-model algorithm for online tuning

while Tune do
s5=1]
for i=0 to N do
if cos(V;, V) > T then
S.append[M;]
end if
end for
S.append|[Mpew]
while True do
Compute a; using Best(S) and apply it
Wait
Collect s;+1 and r; and update the models in S
if workload shift then
Persist Best(S)
Break
end if
end while
end while

5 EXPERIMENTS

In the following section, we evaluate the offline tuning algorithm
and our online tuning algorithm on PostgreSQL. In the offline
phase, we use the Sysbench benchmarking tool [6] to submit
queries and measure the throughput and latency. Sysbench is a
multi-threaded configurable benchmarking tool for OLTP work-
loads, where the major ones are OLTP Read/Write (R/W), OLTP
Read-Only (R/O) and OLTP Write-Only (W/O). The workloads
are composed of SELECT, INSERT, DELETE and UPDATE queries,
where the number and mixture of the queries in each workload
can be modified via command line or by modifying a Lua script
that defines the workload. In addition, Sysbench allows the user
to control the benchmarking duration time, the size of the data-
base, and the number of workers.

5.1 Single-model: Static workload

In this case, a single RL model is trained and is responsible for
tuning the database, regardless of the workload that is being sub-
mitted to the database. This approach works well if the database
environment is relatively stable and workloads are not changing.
However, if workloads are changing, the model needs to adapt
to a new workload when a workload shift occurs, and it uses its
past experience to recommend knobs for the new workload.

In the first experiment, we demonstrate the performance of the
RL agent using the DDPG algorithm described in Figure 2. This
experiment demonstrates offline training using OLTP R/W work-
load. We ran the algorithm for 150 episodes with the main hyper-
parameters setup as follows: y = 0 (discount factor), o = 0.2
(OUProcess noise variance), and replay buffer sampling batch
size of 32 samples. To represent the DBMS state we picked 22 Post-
greSQL metrics from 3 different views that provide statistics at the
instance and database levels: pg_stat_bgwriter, pg_stat_database,

and pg_stat_database_conflicts. These views monitor various data-
base elements such as checkpoints, buffers, deadlocks, and trans-
actions’ activity. To get the reward in the offline tuning stage, we
used the throughput and latency calculated by Sysbench.

Based on experiments with different number of knobs, and ex-
pert blogs on tuning PostgreSQL (e.g., [13]), we have selected for
tuning 16 knobs that had the most impact on the database perfor-
mance. These knobs control various aspects of the database, such
as working memory (e.g., work_mem, maintenance_work_mem),
checkpoints (e.g., checkpoint_segments, checkpoint_timeout), dead-
locks (deadlock_timeout), and auto_vaccum (autovacuum_cost_delay,
vacuum_cost_limit). They do not require database restart to be
updated, one of the criteria for selecting them.

Reward

y=0.99

—y=0

0 10 20 30 40 50 60 70 80 90

Episodes

Figure 6: Reward function comparison for the OLTP R/'W
workload experiment. The green reward curve was ob-
tained using the CDBTune reward [18] with y = 0.99. The
blue reward curve was obtained using our simplified re-
ward function with y = 0.

In all the experiments described in this section, the tuning
starting point was the database default configuration. As Figure 7
shows, the default performance for OLTP R/W was a throughput
of approximately 2000 TPS and a latency of 80 ms. As the agent
explored different knob settings, we observed a 5x improvement
in throughput and 8x improvement in latency. In the first itera-
tions, the performance significantly oscillated, but the magnitude
of the oscillation decreased as the agent learned the right policy
for tuning the knobs. In the OLTP R/W experiment, we also com-
pared the simplified formulation of the reward function (Eq. 1)
to the formulation and y parameter setup in [18] and observed
that the simplified formulation with y = 0 resulted in a more
stable learning curve and a higher reward value (better database
performance). The reward curves of the first 100 iterations are
shown in Figure 6.

The offline tuning process can be repeated with any workload,
such as OLTP W/O, and the models trained in the offline training
phase can be used as initial pre-trained models in the multi-model
online tuning experiment we describe next.

5.2 Single and multi-model approach:
Changing workloads

In this experiment, we used the same knobs selected for tuning
in the offline training experiment and the same 22 database met-
rics were used as state indicators. We created an environment in
which two alternating Sysbench workloads are submitted to the
database: R/W and W/O workloads and we compared the single-
model, multi-model, and default database performance over 3
alternating workload cycles. At each time point in Figure 8, a
workload is submitted, the state and performance metrics are
collected, the RL models are updated, and finally, a knob chang-
ing action is computed by the agent to update the knobs using
Algorithm 1. Each time point takes approximately 60 seconds to

443

12000

10000

8000

6000

4000

2000

Throughput [T/S]

0

0O 10 20 30 40 S0 60 70 80 90 100 110 120 130 140 150

(a) Throughput

Latency [mS]

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

(b) Latency

Figure 7: Offline training: Throughput and latency plots
of a PostgreSQL database tuned on an OLTP R/W work-
load.

complete, hence, workloads are changing approximately every
60 minutes. We used a three-dimensional compressed represen-
tation of the workload vectors, obtained by the autoencoder, to
detect workload changes by measuring the distance between vec-
tors at adjacent time points and identifying large deviations. This
representation was also used to select the most similar models
using cosine similarity. The knob settings saved with the most
similar model were applied to the database and used as a starting
point for tuning.

As shown in Figure 8, the multi-model algorithm performed
far better than the baseline default configuration performance,
increasing the throughput of the R/W workload by a factor 2x and
the throughput of the W/O by a factor of 5x. The single-model
approach, on the other hand, produced inferior performance com-
pared to the multi-model approach and was less stable. In the
second cycle, for instance, presumably due to bad knob settings,
the throughput dropped to approximately 300 TPS, and the la-
tency jumped to very high values. We assume that this is related
to the fact that the replay experience (state, action, reward transi-
tions) collected in the first cycle could not be properly leveraged
by the agent for learning a good configuration in the next cycle.
This could be related to the fact that the single model approach
uses a single replay buffer for multiple workloads, therefore, ex-
periences from different workloads with different reward scales
are mixed, and similar experiences are mapped to completely
different rewards. Therefore, the agent cannot learn a good policy
for tuning the knobs. In the multi-model approach, each model
was trained on a different workload and used experiences unique
to the workload it was trained on. This models’ separation helps
the agent learn the right policy for a particular workload.

120000
100000
80000
60000
40000
20000

0 ©

(a) Throughput

mSec

—default one-model

—multi-model

(b) Latency

Figure 8: Online tuning: Throughput and latency plots of a
PostgreSQL database in changing workloads environment.
The tuning results were obtained using the one- and multi-
model tuning algorithms, and the default knob settings.
The workloads alternate between OLTP R/W and OLTP
W/0.

A potential pitfall of the multi-model algorithm is the fact
that many new models can be created and lead to models’ explo-
sion and a large number of competing models for every work-
load. However, what we observed in our experiments, is that the
pre-trained models were superior to newly created models, and
therefore, new models were not persisted. Therefore, we believe
that eventually, the number of models in the repository would
be similar or very close to the number of different workloads the
agent is tuning.

6 DISCUSSION

Automatically tuning a database on-premise or in cloud environ-
ment using reinforcement learning, or a different Al technique,
poses multiple challenges. One of these challenges is the fact that
the database environment is constantly changing, often in the
course of the day. Changes in the database size, available system
resources, and workloads may affect the performance of the data-
base at any given time point and require an adaptive algorithm
that is able to sense these changes and yield optimal performance
for a given environment state. In this work, we explored the effect
of changing workloads on database performance and proposed an
adaptive algorithm that leverages multiple DDPG reinforcement
learning models to optimize the performance for each workload.
Preliminary results presented in this paper on a PostgreSQL data-
base showed that the multi-model approach has an advantage
over the single-model approach in which one model is continu-
ously trained and needs to adapt to new workloads, similar to
the approach presented in [18]. Using the multi-model approach,
the algorithm was able to utilize past experiences from models
trained on similar workloads and improved the database default

444

configuration throughput by a factor of 2x when tested on an
OLTP R/W workload and a factor of 5x when tested on an OLTP
W/O workload.

In future work, we will explore other workload types (e.g.,
OLAP), and we will address the problem of fluctuating perfor-
mance due to other factors, such as resource elasticity.

REFERENCES

[1] Alibaba. 2020. Alibaba self-driving database. https://www.alibabacloud.com/
product/das/

Debabrota Basu, Qian Lin, Weidong Chen, Hoang Tam Vo, Zihong Yuan,
Pierre Senellart, and Stéphane Bressan. 2016. Regularized Cost-Model Oblivious
Database Tuning with Reinforcement Learning. Springer Berlin Heidelberg,
Berlin, Heidelberg, 96-132. https://doi.org/10.1007/978-3-662-53455-7_5
Bokeh Development Team. 2020. Bokeh: Python library for interactive visual-
ization. https://bokeh.org/

Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudre-
Mauroux. 2013. OLTP-Bench: An Extensible Testbed for Benchmarking Re-
lational Databases. Proc. VLDB Endow. 7, 4 (Dec. 2013), 277-288. https:
//doi.org/10.14778/2732240.2732246

S. Duan, Vamsidhar Thummala, and S. Babu. 2009. Tuning Database Configu-
ration Parameters with iTuned. Proc. VLDB Endow. 2 (2009), 1246—1257.
Alexey Kopytov. 2020. sysbench. https://github.com/akopytov/sysbench/
Guoliang Li, Xuanhe Zhou, Shifu Li, and Bo Gao. 2019. QTune: A Query-
Aware Database Tuning System with Deep Reinforcement Learning. Proc.
VLDB Endow. 12, 12 (Aug. 2019), 2118-2130. https://doi.org/10.14778/3352063.
3352129

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. 2016. Continuous control
with deep reinforcement learning.. In ICLR, Yoshua Bengio and Yann LeCun
(Eds.).

Ryan Marcus and Olga Papaemmanouil. 2018. Deep Reinforcement Learning
for Join Order Enumeration. Proceedings of the First International Workshop
on Exploiting Artificial Intelligence Techniques for Data Management - aiDM’18
(2018). https://doi.org/10.1145/3211954.3211957

Ryan Marcus and Olga Papaemmanouil. 2018. Towards a Hands-Free Query
Optimizer through Deep Learning. arXiv:cs.DB/1809.10212

Oracle. 2020. Oracle autonomous database. https://www.oracle.com/
autonomous-database/

Jennifer Ortiz, Magdalena Balazinska, Johannes Gehrke, and S. Sathiya Keerthi.
2018. Learning State Representations for Query Optimization with Deep
Reinforcement Learning. arXiv:cs.DB/1803.08604

Percona. 2018. Tuning PostgreSQL. https://www.percona.com/blog/2018/08/
31/tuning-postgresql-database- parameters-to-optimize-performance/
Ankur Sharma, Felix Martin Schuhknecht, and Jens Dittrich. 2018. The Case
for Automatic Database Administration using Deep Reinforcement Learning.
arXiv:cs.DB/1801.05643

G. E. Uhlenbeck and L. S. Ornstein. 1930. On the Theory of the Brownian
Motion. Phys. Rev. 36 (Sep 1930), 823-841. Issue 5. https://doi.org/10.1103/
PhysRev.36.823

Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, and Bohan Zhang. 2017.
Automatic Database Management System Tuning Through Large-scale Ma-
chine Learning. In Proceedings of the 2017 ACM International Conference on
Management of Data (SIGMOD °17). 1009-1024. https://db.cs.cmu.edu/papers/
2017/p1009-van-aken.pdf

Zongheng Yang, Badrish Chandramouli, Chi Wang, Johannes Gehrke, Yinan Li,
Farooq Minhas, Umar, Per-Ake Larson, Donald Kossmann, and Rajeev Acharya.
2020. Qd-tree: Learning Data Layouts for Big Data Analytics. Proceedings of
the 2020 ACM SIGMOD International Conference on Management of Data (May
2020).

Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li, Zhili Xiao, Bin Cheng, Jiashu Xing,
Yangtao Wang, Tianheng Cheng, Li Liu, Minwei Ran, and Zekang Li. 2019.
An End-to-End Automatic Cloud Database Tuning System Using Deep Re-
inforcement Learning. In Proceedings of the 2019 International Conference on
Management of Data (SIGMOD ’19). Association for Computing Machinery,
New York, NY, USA, 415-432. https://doi.org/10.1145/3299869.3300085

[2

=

=
flt

[9

—

[10

(1]

[12]

[13]

(14]

[15]

[16]

[17]

(18]

	Adaptive Multi-Model Reinforcement Learning for Online Database TuningYaniv Gur, Dongsheng Yang, Frederik Stalschus, Berthold Reinwald

