
DLC: A New Compaction Scheme for LSM-tree with High
Stability and Low Latency

Peiquan Jin
University of Science and
Technology of China

Hefei, China
jpq@ustc.edu.cn

Jianchuang Li
University of Science and
Technology of China

Hefei, China
lijc@mail.ustc.edu.cn

Hai Long
Huawei Technologies Co., Ltd.

Shenzhen, China
longhai@huawei.com

ABSTRACT
Many big data systems employ LSM (Log-Structured Merge)-
tree-based key-value stores, such as RocksDB and Cassandra.
LSM-tree has a multi-level data structure and can transform
random writes into sequential ones by compaction operations.
However, the compaction operations in LSM-tree introduce the
read/write amplification issue, which will increase the processing
latency and incur throughput drops. In this paper, to eliminate
the impact of compaction on the throughput stability and latency
of LSM-tree, we propose a new compaction method called DLC
(Delay Level-0 Compaction). We notice that workloads like OLTP
are periodically high. For example, an electronic business plat-
form may have high requests at noon and night but have few
requests in the early morning. When the workload becomes high,
many data will be flushed to Level-0 of LSM-tree from memory,
which will trigger frequent Level-0 compaction and lower the
system’s throughput. The main idea of DLC is to delay Level-0
compaction at a high load and resume compaction when the
system becomes low-loaded. As the low-loaded system generally
has enough free CPU cores and I/O bandwidths, performing the
delayed compaction will not affect the system’s overall perfor-
mance. Therefore, we can maintain stable throughput even when
the system is high-loaded. To implement DLC, we first define a
new I/O estimation model to characterize the workload. Then, we
determine whether to delay Level-0 compaction according to the
characteristics of the current workload. Moreover, to deal with
sustained high workloads, we invent a burst compaction strategy
to reduce throughput dropping and present two implementations
for the bursty compaction. We implemented DLC on Myrocks
and experimentally compared DLC with the original MyRocks
and a state-of-the-art scheme called SILK under various OLTP
workloads. The results show that DLC outperforms MyRocks
and SILK in both latency and throughput stability.

1 INTRODUCTION
LSM-tree (Log-Structure Merge tree)[17] has been widely used
in key-value stores, such as RocksDB and Cassandra. LSM-tree
maintains a multi-level data structure, and all data in each level
are stored using Sorted String Tables (SSTables), in which all
key-values are sorted in order. Data are flushed from memory
to the SSTables in the first level (Level-0, or L0 for simplicity)
through sequential writes. As sequential writes are much faster
than randomwrites, LSM-tree can offer highwriting performance.
However, when the SSTables in Level-0 exceeds a threshold, LSM-
tree performs a compaction operation to merge the SSTables in

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Figure 1: Throughput drops of RocksDBwhen running on
the default OLTP workload generated by sysbench.

Level-0 with those in Level-1. If Level-1 also exceeds the thresh-
old, next compaction will also be triggered to merge SSTables
in Level-1 with those in Level-2. During a compaction process,
both CPU and the I/O bandwidth will be highly used, resulting in
the decrease of the overall throughput. To validate the influence
of the compaction in LSM-tree, we ran the default OLTP work-
load in sysbench[13] (see Section 6.1 for the detailed settings) on
RocksDB and tested the system’s throughput. As shown in Fig.
1, there are periodical throughput-drops when the system has
been running for a long time, because the system has to perform
periodical compaction to merge up-level data into low levels.

The stability of throughput is critical to many applications.
For example, an online short-video social network platform like
TikTok can not tolerate periodical high latency when playing
videos. To improve the throughput stability of LSM-tree, various
solutions [3, 6, 16, 18] have been proposed. Among them, the
state-of-the-art method is SILK [3], which won the best paper of
ATC 2019. The experimental results of SILK showed that it can
maintain stable throughput for about 2500 seconds. However,
we experimentally found that when SILK kept running for 3500
seconds, it had dramatic throughput drops and the throughput be-
came unstable. This is mainly because the compaction scheduling
in SILK can not adapt to the workload changes well.

The compaction operations in LSM-tree are known as back-
ground operations (also called internal operations), because they
are scheduled on background periodically. A compaction oper-
ation consumes a great number of I/O bandwidths because it
has to read and write a large amount of data. This is the main
reason that affects the throughput stability of LSM-tree. The key

Industrial Paper

 

 

Series ISSN: 2367-2005 547 10.5441/002/edbt.2021.65

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2021.65


challenge to keep throughput stability is how to schedule com-
paction when the I/O bandwidth is used heavily. An intuitive
solution is to reserve some I/O bandwidths for compaction op-
erations, but different levels in LSM-tree have different needs of
I/O bandwidths. Therefore, it is hard to reserve appropriate I/O
bandwidths for LSM-tree to maintain throughput stability.

Basically, we can roughly divide workloads into two types,
namely write-intensive workloads and read-intensive workloads.
For write-intensive workloads, the competition for disk I/O be-
tween parallel compaction operations is the main reason causing
the instability of throughput. In such cases, write stalls may occur
and lower the throughput [16]. For this reason, most of exist-
ing studies[1, 3, 16, 18] were toward optimizing compaction for
write-intensive workloads. However, so far, there is no solution
that can offer continuously stable throughput for LSM-tree.

In this paper, we also focus on write-intensive workloads and
aim to improve the throughput stability of LSM-tree and lower
the processing latency. We propose a new compaction scheme
named DLC (Delay Level-0 Compaction). DLC aims to achieve
three goals. First, it should have a more stable throughput than
RocksDB and SILK [3] when running for a long time. Second,
it is expected to have lower latency. Third, it should adapt to
periodically varying workloads, i.e., the arriving rate of requests
is high for a period and then becomes low. The basic idea of
DLC is to delay L01 compaction at a high load and to resume L0
compaction at a load load. Thus, DLC canworkwell onworkloads
with periodically varying workloads[3]. Briefly, we make the
following contributions in this study:

(1) We propose a new I/O model to estimate the I/O band-
width of the current workload effectively and precisely.
Our I/O model is inspired by the model proposed by SILK
[3], but we devise new estimation functions. Differing
from the I/O model of SILK that simply summarizes the
data size of all read and write operations, our I/O model
introduces two new ideas. First, we remove the data size
of write operations, because LSM-tree always writes data
to in-memory Memtables, meaning that write operations
will not occupy I/O bandwidths. Thus, it is not reasonable
to include the written-data size in I/O bandwidth estima-
tion. Second, we divide read operations into Get and Scan
because these two read operations have different I/O costs
in LSM-tree. We demonstrate that our model is more accu-
rate than the SILK model and can allocate I/O bandwidths
for background compaction more effectively.

(2) Based on the proposed I/O model, we present a new com-
paction scheme called DLC that delays L0 compaction at
a high load and resumes L0 compaction at a load load. We
use the new I/O model to characterize the I/O bandwidth
need of the current workload, and determine whether the
workload is high or low. When the workload is high, we
delay L0 compaction. This differs from the compaction
schemes in RocksDB and SILK. RocksDB uses a threshold-
based compaction scheme and will trigger many com-
paction operations at a high load, leading to frequent
throughput drops. SILK also claims to delay compaction,
but it delays the bottom level2.

(3) Although DLCworks well for periodically high workloads,
the SSTables in L0 may accumulate under sustained high

1𝐿𝑖 means Level-i in this paper.
2Here, Level-0 is the top level, and Level-i with the biggest i is the bottom level.

load, leading to write stalls/stops and serious through-
put drops. Thus, we devise a bursty compaction strategy
to make DLC suitable for sustained high workloads. We
present two implementations for the bursty compaction,
namely "resume full compaction" and "resume part com-
paction". The former is to compact all the SSTables in L0,
while the latter is to compact selected part SSTables in L0.

(4) We implemented DLC inMyRocks (MySQLwith RocksDB)
and evaluated DLC using the sysbench tool. We gener-
ate various OLTP workloads, including periodically vary-
ing workloads, workloads with different read-write ratios,
workloads with a long time of a high load, and sustained
high workload. We compare DLC with MyRocks and SILK
(with the DLC I/O estimation model). The results in terms
of throughput and latency show that DLC achieves the
best throughput stability and the lowest latency in all
experiments.

The remainder of the paper is structured as follows. Section 2
introduces the background and related work. Section 3 presents
the I/O estimation model. Section 4 details the DLC strategy. Sec-
tion 5 discusses the bursty compaction policy. Section 6 reports
experimental results. And finally, in Section 7, we conclude the
paper and discuss future work.

2 BACKGROUND AND RELATEDWORK
2.1 LSM-tree
The basic client operations of LSM-tree are the same as the other
NoSQL key-value databases[14, 23], which include Insert, Delete,
Update, Get, and Scan. For convenience, we call Insert, Delete, and
Update as write operations and Get and Scan as read operations.
We take RocksDB as an example to introduce the LSM-tree struc-
ture. The RocksDB storage engine mainly consists of two part,
Memtable and Immutable Memtables in memory and SSTables
in the disk.

LSM-tree uses the Sorted String Table (SSTable) as the basic
data structure, which stores key-value pairs in the disk. SSTable
is a sorted table which mainly consists of data blocks and meta
blocks. Meta blocks store indexes about data block and Bloom
filter[5] for read. Data blocks store key-value pairs in sequence for
quickly visited by read operations. SSTables are grouped by levels.
We call the levels as L0, L1, ..., 𝐿𝑛 in short from top to bottom. We
call the levels near to the memory as up levels, e.g., L0, and the
other levels as low levels. The SSTables in L0 are mainly flushed
from Immutable Memtables in memory. The SStables in L1 and
low levels are generated by major compaction.

There is one Memtable and one or more Immutable Memtables
in memory. Memtable uses Skiplist as its structure. Skiplist is a
data structure that uses probabilistic balancing. Its algorithms
for insertion and deletion are much simpler and significantly
faster than equivalent algorithms for balanced trees[19]. We can
consider Memtable as an in-memory buffer for inserting, deleting,
and updating. When Memtable reaches its capacity threshold, it
will be transformed into Immutable Memtable, which cannot be
modified by any (write) operations, and a new Memtable will be
created for writing new key-value pairs. When a new Immutable
Memtable is created, a background thread would be scheduled to
flush the Immutable Memtable to disk as one SSTable, in which
all the flushed key-value pairs are stored. The flush operation is
also called minor compaction.

548



With SSTables being accumulated in the same level and reach-
ing the threshold of the level, a major compaction will be trig-
gered (in this paper, we simply use the term "compaction" to
represent "major compaction" by default) and may schedule com-
paction for garbage collection to reduce disk usage and read
cost[9][8]. Different levels have different thresholds for com-
paction, and when the SSTables in 𝐿𝑖 or low levels reach the
threshold of the level, compactionwill be triggered. A compaction
operation fetches one SSTable in the level, which triggers the
compaction and the SSTables in the next level that have over-
lapping keys with the SSTable in the up level, then merges sort
all key-value pairs in sequence. The merged key-value pairs are
then written to new SSTables in the next level. When the flush
and compaction of LSM-tree happen in the background, the sys-
tem can answer write and read requests normally. The new data
inserted by write operations can be put into Memtable directly,
while read operations will visit Memtable, Immutable Memtables,
and SSTables in all levels[9].

2.2 Compaction Optimizations for LSM-tree
2.2.1 Reducing Compaction Cost. There have been a lot of

studies toward optimizing the compaction for LSM-tree. One
idea is to reduce compaction cost. WiscKey[15] and HashKV[7]
separate keys from values to maintain a smaller LSM-tree that
contains keys and the pointer to the values, which is effective for
large keys and write-intensive workloads. But their optimizations
are not suitable for range scans. MonKey[9], Dostoevsky[10]
change the structure of LSM-tree by tuning related parameters
for different demands, and LSM-Bush[11] proposes a more gen-
eral structure for more demands. Ahmad and Kemme[1] cope
with spike caused by compaction by offloading compaction to a
dedicated compaction server, and it solve the cache avalanche by
smart warm-up strategy, which is a good method for a distributed
database like HBase or Cassandra.

Some people proposed efficient scheduling algorithms to op-
timize compaction for LSM-tree. bLSM[20] bounds the write
latency by using the spring-and-gear merge scheduler, which is
not suitable for partitioning structure. Luo and Carey[16] suggest
using 95% maximum throughput to run the experiments, which is
adjusted to 90% in DLC experiments. dCompaction[18] proposes
delayed compaction mainly for low-level compaction, which is a
lazy compaction mechanism for write-intensive workloads. Chen
et al.[8] uses a priority and fairness mixed compaction scheduling
mechanism to reduce write amplification and read amplification.

LDC[6] decreases the tail latency and reduces write ampli-
fication by a novel Lower-level Driven Compaction, which is
orthogonal to DLC. Most of them concentrate on low-level com-
paction and pay little attention to up-level compaction.

Other optimizations of compaction include LSbM-tree and
TRIAD. LSbM-tree[21] adds one buffer for every level to de-
crease block cache miss and improve read performance after
compaction, which concentrates on reducing cache miss after
compaction. TRIAD[2] is designed for skewed workloads. It also
delays L0 compaction until there is enough key overlap in L0 to
be compacted. However, DLC delays L0 compaction according
to the workload.

2.3 State-of-the-Art Optimization: SILK
SILK[3, 4] is the state-of-the-art optimization for the compaction
in LSM-tree. In this paper, we mainly focus on improving SILK.
Thus, in this section, we briefly introduce the details of SILK.

Figure 2: SILK’s throughput drops and latency increasing.

SILK proposed an effective way to prevent latency spikes
in RocksDB. It used an I/O scheduler for background analysis,
paused scheduling low-level compaction when in high loads. The
I/O scheduler in SILK can dynamically allocate bandwidth be-
tween client operations, so it can allocate more bandwidth to
compaction during a low-loaded period.

2.3.1 Compaction of SILK. SILK puts forward two main meth-
ods to reduce the compaction cost in RocksDB, namely priori-
tizing and preempting internal operations. SILK maintains two
internal thread pools, one with high priority is for flush and an-
other with low priority is for compaction. According to the SILK
I/O scheduler, when the computed bandwidth of client operations
exceeds the threshold, SILK will pause compaction. As a result,
only up-level compaction can be scheduled and low-level com-
paction will be delayed during the pausing time. Furthermore,
the up-level compaction will be scheduled in the high-priority
thread pools, meaning that the compaction may preempt the
low-level compaction scheduled in the low-priority thread pool.
The preempted compaction will recover compaction work when
the thread pool is free. By this way, compaction from L0 can
be scheduled along with other compaction paused, and the re-
maining I/O bandwidths (allocated to flush and compaction) can
be allocated to the compaction from L0. When the computed
bandwidth of client operations is over the threshold, SILK will
resume compaction. More bandwidth will be allocated to internal
operations, and parallel compaction can be scheduled. In short,
SILK pauses low-level compaction at a high load and resume
them at a load load.

2.3.2 Problems. As reported in the original SILK paper [3],
SILK can maintain stable throughput for 2000 seconds. However,
if a high workload lasts for a longer time than 2000 seconds, SILK
will incur dramatic throughput drops and latency increasing. We
ran SILK to see its performance and found that SILK has periodical
throughput drops and latency increasing after running for more
than 3500 seconds, as shown in Fig. 2. This is mainly because
after a long-time running, the frequent compaction operations in
SILK will consume a large amount of I/O bandwidths. In addition,
the I/O analyzer of SILK fails to estimate the workload level
accurately. This results in inappropriate compaction scheduling,
which will finally trigger write stalls or write stops to delay
writing or stop writing to the memory. For example, SILK will
resume compaction even when the system runs at a high load.

549



Although SILK proposed to delay the low-level compaction at a
high load, if the up-level compaction cannot finish in time during
a load load, SSTables will accumulate in up-levels, which will
incur the file retention of LSM-tree [8]. With the increasing of the
number of the SSTables to be merged, SILK will finally reach the
threshold of write stall or stop, resulting in throughput dropping
and latency increasing.

3 I/O ESTIMATION MODEL
In this section, we propose an I/O estimation model inspired by
the SILK I/O scheduler [3]. By this model, we can compute the I/O
bandwidth taken by client operations more accurately than SILK.
Note that the I/O bandwidth estimation is critical to compaction
scheduling. If we fail to estimate the bandwidth of the current
workload, we may resume compaction at a high load, like SILK,
and lead to throughput drops.

3.1 The I/O Estimation Model of SILK
SILK monitors the bandwidth used by client operations and al-
locates the available I/O bandwidth to internal operations. It
realizes its I/O scheduler by setting a separate thread on client
load (which is db_bench on RocksDB actually). The I/O sched-
uler can get actual numbers of client operations what client has
accomplished last time interval and computes client’s I/O band-
width according to Eq. 1, where 𝑁𝑟𝑒𝑎𝑑 and 𝑁𝑤𝑟𝑖𝑡𝑒 are the read
times and write times in the last time interval, 𝐵𝑘𝑣_𝑝𝑎𝑖𝑟𝑠 is the
Bytes of key and value, 𝑇𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 is the last time interval. SILK
sets the limit of total bandwidth 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑙𝑖𝑚𝑖𝑡 , so it can dy-
namically allocate left bandwidth to internal operations easily
using rate limiter according to Eq. 2, where 𝜀 is a small buffer
which are not significant enough to adjust internal operation
bandwidth.

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑐𝑙𝑖𝑒𝑛𝑡 = (𝑁𝑟𝑒𝑎𝑑 + 𝑁𝑤𝑟𝑖𝑡𝑒 ) ∗ 𝐵𝑘𝑣_𝑝𝑎𝑖𝑟𝑠/𝑇𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 (1)

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑙𝑖𝑚𝑖𝑡 −𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑐𝑙𝑖𝑒𝑛𝑡 −𝜀 (2)

3.2 The I/O Estimation Model of DLC
SILK has many restrictions so that it can not be applied to the
OLTP workload directly. DLC optimizes the SILK I/O scheduler
to make the model suit for the OLTP workload.

The separate thread used by SILK to monitor the bandwidth
cannot be used for OLTP workloads.This is because SILK is to-
ward the workloads generated by db_bench. But the OLTP work-
load is generated by sysbench. Therefore, we can not monitor the
bandwidth of OLTP workloads with the same method as SILK.
DLC uses a separate thread on RocksDB to monitor the band-
width so that it can work on any workloads independently. Other
than getting the specific counts of all client operations every time
interval, which is proposed by SILK, DLC gets data from Statistics,
which is a statistical tool provided by RocksDB. In this way, we
can get the concrete counts of every client operation. As we can
see in Table 1, we can get total counts of client operations ac-
cording to ticker name (which is added like ticker) from Statistics.
Based on the SILK’s I/O scheduler and the total counts of client
operations, we construct the I/O estimation model for DLC. This
model is workload-sensitive and it can classify the current load
into high or low quickly. This model has two functions, namely
computation and analyzing.

3.2.1 Computation. The I/O estimationmodel of DLC summa-
rizes a universal I/O cost analyzing equation based on Eq. 1 and

Table 1: Some related statistical data in Statistics.

Ticker name Description
NUMBER_KEYS_READ Total counts of get (k)
NUMBER_KEYS_WRITTEN Total counts of write (k, v)
NUMBER_DB_SEEK Total counts of scan(𝑘1 , 𝑘2)

Eq. 2. DLC computes new I/O bandwidth according to Eq. 3. In
contrast to SILK, DLC adds scan s for the client bandwidth estima-
tion because there are some scan operations on OLTP workloads.
We also add weights for all client operations so as to estimate
the actual I/O cost precisely. It is necessary to add weights for
client operations because there exists read amplification[15]. If a
Get operation is missed in the block cache, it will fetch at least
one block from the disk. Thus, one Get operation will read more
than one key-value pairs on average. Meanwhile, DLC ignores
to compute write cost for I/O bandwidths, because write opera-
tions insert key-value pairs into memory directly, which do not
consume I/O bandwidths. When flush and compaction opera-
tions happen, the bandwidth required for writing data to disk
belongs to 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 . Though it is possible to compute
the actual value of all weights for client operations, e.g., by a
linear programming method, it is inconvenient in practical ap-
plications. DLC changes Eq. 3 on the basis of OLTP workloads
to make it suitable for other workloads. As OLTP workloads
have only one type of transaction with ten Get operations, four
Scan operations, and four Write operations, we change Eq. 3 into
Eq. 4, 𝑁𝑡𝑟𝑎𝑛𝑠 is the numbers of the committed transactions in the
last time interval. Though there exists delay between operations
execution and transaction commits, it is reasonable to assume
that 𝑁𝑔𝑒𝑡 = 10 ∗ 𝑁𝑡𝑟𝑎𝑛𝑠 and 𝑁𝑠𝑐𝑎𝑛 = 4 ∗ 𝑁𝑡𝑟𝑎𝑛𝑠 . Eq. 4 shows
that for OLTP with one type of transaction, all operations in
the transaction have the same proportion. We only need to use
one operation (Get or Scan) to compute the real client operation
bandwidths. Taking the Get operation as an example, we can
compute 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑐𝑙𝑖𝑒𝑛𝑡 easily using Eq. 5. DLC allocates the
bandwidth to internal operations by using Eq. 2, which is the
same as SILK.

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑐𝑙𝑖𝑒𝑛𝑡 = (𝜔𝑔𝑒𝑡 ∗ 𝑁𝑔𝑒𝑡 +𝜔𝑠𝑐𝑎𝑛 ∗ 𝑁𝑠𝑐𝑎𝑛) ∗
𝐵𝑘𝑣_𝑝𝑎𝑖𝑟𝑠

𝑇𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙
(3)

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑐𝑙𝑖𝑒𝑛𝑡 = (𝜔𝑔𝑒𝑡 ∗ 10 ∗ 𝑁𝑡𝑟𝑎𝑛𝑠 +𝜔𝑠𝑐𝑎𝑛 ∗ 4 ∗ 𝑁𝑡𝑟𝑎𝑛𝑠 ) ∗
𝐵𝑘𝑣_𝑝𝑎𝑖𝑟𝑠

𝑇𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙

= 𝑁𝑠𝑐𝑎𝑛 ∗ (𝜔𝑔𝑒𝑡 ∗ 2.5 +𝜔𝑠𝑐𝑎𝑛) ∗ 𝐵𝑘𝑣_𝑝𝑎𝑖𝑟𝑠/𝑇𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙
= 𝑁𝑔𝑒𝑡 ∗ (𝜔𝑔𝑒𝑡 +𝜔𝑠𝑐𝑎𝑛 ∗ 0.4) ∗ 𝐵𝑘𝑣_𝑝𝑎𝑖𝑟𝑠/𝑇𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙

(4)

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑐𝑙𝑖𝑒𝑛𝑡 = 𝑁𝑔𝑒𝑡 ∗𝜔
′
𝑔𝑒𝑡 /𝑇𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 (5)

Though Eq. 5 is easy to compute the actual bandwidth for
client operations, there is still a problem that we must compute
𝜔

′
𝑔𝑒𝑡 every time when we change the workload or the parame-

ters of LSM-tree. It is difficult to change 𝜔
′
𝑔𝑒𝑡 when running for

changeable workloads or auto-tuning LSM-tree3. DLC proposes
a new idea to compute the actual I/O bandwidth, which is suit-
able for any workloads and any structures of LSM-tree. As we
know, a Get operation gets data from the block cache and block
cache gets blocks from the disk when a cache miss occurs, so
the actual I/O bandwidth is consumed when the block cache gets
blocks from the disk. DLC computes the actual I/O bandwidth by

3Changeable workload means the proportion of operations can change, auto-tuning
LSM-tree means that the parameters of LSM-tree can be changed when running.

550



Figure 3: Comparison of various I/O estimation models
(using iostat on RocksDB).

counting the number of the blocks added to the block cache in
the time interval, as we can see from Eq. 6, where 𝛾 is the com-
pression ratio of SSTable4, 𝑆𝑢𝑚𝑏𝑙𝑜𝑐𝑘_𝑐𝑎𝑐ℎ𝑒_𝑎𝑑𝑑𝑒𝑑 is the number
of the blocks added to the block cache, and 𝐵𝑏𝑙𝑜𝑐𝑘 is the bytes
within one block.

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑐𝑙𝑖𝑒𝑛𝑡 = 𝛾 ∗ 𝑆𝑢𝑚𝑏𝑙𝑜𝑐𝑘_𝑐𝑎𝑐ℎ𝑒_𝑎𝑑𝑑𝑒𝑑 ∗ 𝐵𝑏𝑙𝑜𝑐𝑘/𝑇𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙
(6)

We conducted an experiment on RocksDB to compare different
I/O estimation models with the actual I/O bandwidth. The results
are shown in Fig. 3. We can see that the SILK I/O estimation
model can not suit for the workload while the DLC I/O scheduler
and the SILK I/O scheduler with weights can estimate the actual
I/O bandwidth with a little tolerable error, both of which can be
applied to our experiments. The DLC I/O scheduler is easier to
use than the SILK I/O scheduler with weights.

3.2.2 Analyzing. SILK uses a simple threshold of bandwidth
to distinguish between a high load and a load load. It computes
𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑐𝑙𝑖𝑒𝑛𝑡 every 10ms and allocates the remaining band-
width to flush and compaction. DLC adds some parameters for
tuning the model, which we can see in Table 2. DLC uses these
parameters to distinguish a high load and a load load . For every
time_interval, DLC computes the bandwidth of client operations
according to Eq. 5. If the bandwidth exceeds the io_high_limit,
DLC will regard the workload as a high load. However, low band-
width is not a sufficient condition of a load load because there
are many reasons like flush and compaction that will lead to
low bandwidth over a period of time. Thus, even if the client
bandwidth is inferior to io_low_limit, we can not judge that it
is a low load. DLC uses softness to determine the sensitivity of
the model. Only when we get several continuous times of low
bandwidth can we conclude that the current workload is a low
load. By using these parameters, DLC can classify the current
workload more correctly than SILK.

4Because data in SSTable is compressed while data in the block cache is
uncompressed.

4 DESIGN OF DLC
DLC is an improved version of SILK (also an optimization of
RocksDB), which optimizes the I/O scheduler of SILK and pro-
poses to delay L0 compaction, which differs from SILK that delays
low-level compaction.

4.1 DLC’s Compaction Policy
DLC proposes a novel idea to reduce the compaction impact to
the throughput stability. The main idea of DLC is to delay L0
compaction5 at a high load, and to resume L0 compaction when
workload is low. DLC uses the I/O estimation model discussed in
Section 3.2 to compute the I/O bandwidth, analyze the workload,
and decide whether to delay or resume L0 compaction. As we
described before, the DLC I/O estimation model can judge the
workload more correctly than SILK. First, in the case of fluctu-
ation of workload, DLC sets the time_interval to 1s by default,
which can fit most workloads (including OLTP) because many of
them also conclude and summarize the statistical data every one
second by default. The other parameters in DLC are set according
to the workload so that DLC can distinguish the actual high or
low workload correctly. Second, on the basis of the actual work-
load, DLC gives two optional policies for scheduling compaction
in a sustained high load, namely delay full L0 compaction or
delay part L0 compaction.

To delay full L0 compaction means to delay compaction from
L0 to both L0 and L1 under a high load and to resume compaction
under a load load. Other than changing the threshold of L0, DLC
changes the scheduling mechanism so that it can really delay
compaction. Because of the compaction mechanism of RocksDB,
up-level compaction will be triggered unexpectedly. Increasing
the threshold of L0 can only delay compaction temporarily but the
compaction will still be triggered, which is almost uncontrollable.
DLC proposes a controllable delay mechanism so that it can delay
compaction at a high load and resume compaction at a load load.

To delay part L0 compaction means DLC only delays com-
paction from L0 to L1. It is a trade-off between read performance
and throughput stability. With the accumulation of the SSTables
in L0, the read latency will increase and the throughput will de-
crease. Thus, DLC allows compaction to be scheduled from L0 to
L0, which will impact the temporary throughput in a short time
but is helpful for future performance. To delay part L0 compaction
is suitable for a high load with a relatively long time, which also
needs a longer low load to resume compaction. However, this
method can not stop L0 compaction fully, so the throughput may
drop when compaction from L0 to L0 happens. Therefore, we
take "delay full L0 compaction" as the default policy. For both
policies, we allow only one low-level compaction under a high
load being scheduled.

DLC assumes that there are only a few bandwidths that can
be allocated to internal operations at a high load and the flush
operations from Immutable Memtable to L0 is unstoppable. Thus,
there must be some bandwidths allocated to flush, which may
cause a small fluctuation when flush happens. Compared to flush
operations and low-level compaction, up-level compaction will
cause longer time and bigger fluctuation. The reasons are as
follows. First, up-level compaction will merge more SSTables
than flush. Second, the key range of up-level compaction is wider
than low-level compaction, and the access frequency of the up-
level SSTtables is higher than the low-level files[9].

5We also call L0 compaction as up-level compaction in this paper.

551



Table 2: Some parameters added by DLC.

Parameter name Description Default Value
io_low_limit The limitation of io bandwidth to confirm the low load 180MB/s
io_high_limit The limitation of io bandwidth to confirm the high load 300MB/s
io_limit The io bandwidth of disk 350MB/s
softness The sensitivity of DLC to confirm low or high low 3
time_interval The time interval to compute and allocate the bandwidth 1000ms
𝜔

′
𝑔𝑒𝑡 The modified weight of get operation 16000

The throughput will decrease if up-level compaction is sched-
uled at high load. Because up-level compaction will occupy a
large quantity of I/O bandwidths, client operations cannot get
enough bandwidths, yielding the drops of throughput. Thus, DLC
delays up-level compaction until the next low load is detected.
When there are plenty of bandwidths allocated to compaction
at a load load, DLC resumes compaction to make full use of the
bandwidth.

4.2 Rate Limiter for DLC
When flush happens, it merge-sorts key-value pairs in all Im-
mutable Memtables (if only one Immutable Memtable, no merge-
sort will happen) and writes them to a new SSTable in L0, so flush
consumes disk I/O write bandwidth only. But when compaction
happens, it first reads related SSTable from disk, merge-sorts
them and writes them to a few SSTables in the corresponding
level, so compaction consumes both disk I/O write and read band-
width. Rate limiter is designed to throttle the maximum write
speed within a certain limit for lots of reasons. For example, flash
writes cause terrible spikes in read latency if they exceed a certain
threshold. In other words, the rate limiter is to limit the speed of
the data written to the disk. And the rate limiter can be modified
for throttling the maximum sum speed of both read and write
easily, which is used in DLC. By dynamically allocating left band-
width is available for flush and low-level compaction but cannot
quite effective for up-level compaction because bandwidth is not
the only reason for the fluctuation of throughput[1, 21]. The
bandwidth exceeds the limit of speed to cause terrible spikes,
leads to terrible fluctuation and long latency. So to delay L0 com-
paction under high load may be the best for OLTP workload to
maintain both high throughput and low latency and to resume
L0 compaction under a load load to achieve minimal losses of
throughput and latency.

5 BURSTY COMPACTION FOR DLC
DLC is mainly designed for the OLTP workload with periodical
high and low loads. By delaying L0 compaction at high load and
resuming L0 compaction at a load load, we can make full use of
the I/O bandwidth with the least throughput loss. However, if the
workload becomes continuously high, which is called a sustained
high load in this paper, the SSTables in L0 will become more and
more, leading to write stalls or stops. When running under a
sustained high load, DLC will keep delaying L0 compaction to
maintain throughput. The read performance will become worse
and the throughput will decrease gradually as time goes. There
is no time and bandwidth for compaction at a sustained high
load; all read operations amortize the influence of delaying L0
compaction. This problem could be solved when the workload
changes into a load load and DLC resumes L0 compaction. How-
ever, when running with a sustained high load, the workload will

Figure 4: DLC running on the sustained high workload.

not change into a load load, which will gradually affect through-
put of DLC, and cause some other unavoidable result such as
write stall or write stop[8].

Generally, the system will not always be at a high load. Thus,
we can assume that the system’s throughput is limited by the
number of the accumulated SSTables in L0. However, if the work-
load keeps high for a long time, we can infer that the system’s
throughput will finally decrease because more and more SSTables
will be accumulated in L0. To verify our analysis, we tested DLC
under a sustained high workload and the result is shown in Fig.
4, which shows that the throughput decreases with time. If we
do not take any action, the sustained high workload will finally
trigger write stalls or stops, which will worsen the performance
of DLC.

To make DLC suitable for sustained high workload, we fur-
ther propose a bursty compaction policy, which can avoid the
throughput drops of DLC under the sustained high workload.
The idea of bursty compaction is to compact selected SSTables
in L0 to avoid the continuous accumulation of SSTables and trig-
gering write stalls or stops. This is implemented by monitoring a
threshold representing the number of accumulated SSTables in
L0.

Figure 5: Bursty compaction from Immutable Memtable
to L0.

552



Resume Full Compaction. To resume full L0 compaction is that
when the amount of SSTables in L0 gets the threshold, or the
total size of SSTables in L0 gets the threshold, DLC stops delaying
and resumes compaction from L0 to L1, this cumulatively bursty
compaction would consume plenty of time and I/O bandwidth,
causing an inevitable degradation of throughput and increase
in latency. As we can see in Fig. 4, we could not maintain high
throughput all the time and we should schedule compaction in
time to keep high throughput and low latency by sacrificing
performance for a period of time.

Resume Part Compaction. To resume part L0 compaction is that
when the number of the SSTables in L0 flushed from MemTable
gets the threshold, DLC resumes compaction from Immutable
Memtable to L0. The difference between resume part L0 com-
paction in the bursty compaction and normal compaction from
Immutable Memtable to L0 in MyRocks is that our bursty com-
paction only merges and sorts the SSTables flushed from Im-
mutable MemTable but normal compaction will merge and sort
all SSTables in L0. As compaction will produce a big SSTable
that reserves in L0, the bursty compaction does not merge all
SSTables to reduce disk I/O bandwidth. Figure 5 shows the idea
of the bursty compaction. The SSTable generated from the bursty
compaction will not be scheduled again in future bursty com-
paction.

By controlling the parameters of the threshold, DLC can sched-
ule both two policies easily or only one policy according to the
need. Bursty compaction is a new compaction mechanism for
sustained high workload, which permits schedule up-level com-
paction temporarily for future throughput and latency with an
inevitable fluctuation for a period of time.

6 PERFORMANCE EVALUATION
6.1 Experimental Setting
We conducted experiments on the Elastic Cloud Server of Huawei
Cloud running Linux CentOS 7.6. The server has four Intel Xeon
4-core CPUs with 3.0GHz and 32GB of DRAM. It has one 128GB
super-high SSD for storing logs and another 640GB super-high
SSD (350MB/s approximately) for storing the MyRocks data.

We use 64 tables in the experiment and each table has 107
records. Each key-value pair has a 16B key and a 184B value. We
set a 128MBMemTable and only one ImmutableMemtable.We set
the threshold of L1 to 2GB, the size of SSTable to 64MB, the size-
ratio of each adjacent levels to 10, the level of LSM-tree to 5, the
block-cache size to 12GB, and the block size to 64KB. The database
size is nearly 140GB.We set level0_slowdown_writes_trigger and
level0_stop_writes_trigger to 100 both to avoid write stalls or
write stops too early.

We compare DLC with two competitors, including MyRocks
(MySQL 5.7.26-29 with RocksDB) and SILK. To make the com-
parison fair, we replace the I/O estimation model of SILK with
the DLC I/O estimation model, and we use SILK∗(SILK with the
DLC I/O estimation model) to indicate this modification.

We use OLTP in sysbench [13] as the basic benchmark. The
OLTP (Online Transaction Processing) workload in sysbench [13]
is a SQL workload that can be adjusted to read-intensive or write-
intensive. The OLTP workload in sysbench has only one type
of transaction, which has ten point queries, four range queries,
two update queries, one delete query, and one insert query. By
using sysbench, we can generate OLTP workloads with periodic
high and a load loads, which can satisfy most experiments in this
paper.

Figure 6: MyRocks, SILK* and RocksDB running on the
default OLTP workload.

To make the workload not overwhelm the maximum capacity
of the system, in our experiments, we first run the workload to
measure the maximum throughput of the system, then we set
90% maximum throughput as the threshold to ensure that the
workload will not overwhelm the capability of the system. We
mainly evaluate two metrics, namely throughput and latency. We
use transactions per second to represent throughput, and use the
P99 latency to represent latency. The P99 latency refers to the 99th
latency percentile, meaning that 99% of requests(transactions)
will be faster than the given latency number, and only 1% of the
requests will be slower than the P99 latency. These metrics have
also been used in prior work like SILK[3][4].

6.2 OLTP with Periodically Varying
Workloads

Both DLC and SILK are designed toward periodically varying
workloads, i.e., the arriving rate of requests is high for a period
and then becomes low. Note that a continuously-high workload
will overwhelm the maximum capacity of the system. In this
situation, all approaches will fail to keep a stable throughput.
On the other hand, most big-data applications like E-commerce
platforms have the feature of periodically varying workloads.
Another assumption of DLC and SILK is that the workload is
write-intensive. This is because only frequent writes can trigger
frequent compaction operations, which can be utilized to evaluate
the performance of DLC and SILK. How to avoid throughput
drops caused by compaction is more challenging that other issues
in current LSM-tree-based systems. Although it is important to
optimize the read performance of LSM-tree, e.g., under read-
intensive workloads, it is orthogonal to this study. An intuitive
way to improve read performance is to enlarge the block cache.

To generate appropriate workloads for DLC and SILK, we
run the default OLTP workload (each transaction has ten point
queries, four range queries, two update queries, one delete query,
and one insert query.) in sysbench with a high arriving rate for
500s, followed by a low arriving rate for 100s. The high arriving
rate is set to 1,200 transaction per second, and the low arriving
rate is 300 transactions per second. Note that the two rates and the
time period for high/low should be set according to the maximum
capacity of the system to be evaluated. In our experiment, the
time interval of two up-level compactions is between 400s and

553



(a) R:W = 5:5

(b) R:W = 1:9

Figure 7: MyRocks, SILK*, and DLC under different read-
write ratios.

600s. We list the parameters of the DLC’s I/O analyze model on
Table 2. We execute the workload on MyRocks, SILK∗, and DLC
and calculate the throughput and latency continuously. Since at
the beginning there is no compaction triggered, we only report
the results of all systems between 3,300s and 4,300s. When each
system has been running for over 3,000s, we notice that there will
be frequent compaction triggered by the insertions of key-value
pairs.

6.2.1 Under the Default OLTP Workload. Figure 6 shows the
throughput and latency of MyRocks, SILK∗, and DLC under the
default OLTP workload. In this experiment, the threshold of the
maximum capacity of the system is set to 1,200 tps. When the
throughput is high (about 1,200 tps in the figure), the system
runs at a high load. When the throughput is low (about 300
tps), the system runs at a load load. This is consistent with the
periodically varying feature of the workload. MyRocks shows the
worst performance. It can not keep stable throughput at a high
load because it has to perform up-level compaction at a high load,
which will consume additional system resources (I/O bandwidth,
CPU, and memory) and lower the throughput. This also leads
to the high latency of MyRocks. The throughput stability and
latency of SILK∗ is better than MyRocks, owing to the delay
of low-level compaction in SILK∗. However, SILK∗ has a lot of

throughput drops during the high-load period. We can see in Fig.
6 that there are serious throughput drops near 3,500s and 4,100s.
This is mainly because when the high load runs for a long time,
many up-level compactions have been triggered, but SILK∗ has
to perform those up-level compactions even when the system
runs at a high load, which also leads to the increasing of the
latency of SILK∗. On the contrary, DLC exhibits the most stable
throughput and the lowest latency compared to MyRocks and
SILK∗. When the system runs at a high load, DLC can always
keep the throughput around 1,200 tps, which is the arriving rate
of the high load. When the system runs at a load load, DLC can
keep the throughput around 300 tps, which is the arriving rate
of the low load. We can see in the figure that DLC has no serious
throughput drop. Moreover, the latency of DLC is much lower
than others, because it always performs up-level compaction at
a load load. In summary, DLC achieves a more stable throughput
and higher time performance than its competitors.

6.2.2 Varying the Read-Write Ratio. In this experiment, we
test the performance of DLC under OLTP workloads with dif-
ferent ratios of read and write requests. As DLC is proposed
for write-intensive workloads, we prepare two types of OLTP
workloads with a read-write ratio of 5:5 and 1:9. Note that in
this experiment, we remove the range and update queries from
the OLTP workloads to make the workload easier to be gener-
ated. When the read-write ratio is set to 5:5, the threshold of the
maximum capacity is set to 2,500 tps, which is determined by
running the workload before the experiment. When the read-
write ratio is 1:9, the threshold is set to 2,350 tps. Figure 7 shows
the throughput and latency of MyRocks, SILK∗, and DLC under
the two read-write ratios. We can see that DLC performs better
under the 1:9 read-write ratio, showing that DLC is more effi-
cient for write-intensive workloads. For the workload with the
5:5 read-write ratio, DLC also achieves the best stable throughput
and the lowest latency than MyRocks and SILK∗.

6.2.3 High Load with a Long Time. Next, we evaluate the
performance of DLC under a long period of a high load. This
experiment is to show whether DLC can still keep high perfor-
mance under a long time of a high load. For this sake, we also
use the default OLTP workload but shorten the time period of
a load load to only 50s, which means that we leave little time
for DLC to perform delayed up-level compaction. In addition,
we change the time period of a high load to 550s and 1,100, re-
spectively. Consequently, we get two workloads, one is with 550s
high load followed by 50s low load, and the other is 1,100s high
load followed by 50s low load.

Figure 8 shows the throughput and latency of DLC under
the two kinds of workloads. We can see that DLC maintains
a stable throughput even when the high-load period increases
from 550s to 1,100s, indicating that DLC can adapt to workloads
with varying periods of a high load. This also shows that the
compaction scheduling cost of DLC is relatively low and DLC can
quickly detect the status change of the workload and perform
the delayed up-level compaction. Note that DLC has periodic
high latency arising under the 1,100s high load, as shown in Fig.
8(b). This is because there are more accumulated SSTables in L0,
which cost more time of DLC to complete the compaction.

6.3 Performance of Bursty Compaction
In this experiment, we verify the efficiency of the bursty com-
paction of DLC. When the workload becomes continuously high

554



(a) 550s high load

(b) 1100s high load

Figure 8: DLC under high load with a long time.

(which is named sustained high load), the accumulated SSTables
in L0 will become more and more, which will worsen the read
performance and lower the throughput. DLC monitors the num-
ber of the accumulated SSTables in L0, and if the number exceeds
a threshold, DLC will perform the bursty compaction to merge
selected SSTables in L0 to L1.

To generate a sustained high load, we run the default OLTP
workload continuously at the high arriving rate (1,200 tps), and
let the system run for a long time to make the number of the
SSTables in L0 increase to the threshold (which is set to 20 in
this experiment). Figure 9 shows the throughout and latency
trend of DLC under a sustained high load. Figure 9(a) shows
the result of the "resume full compaction" policy, which is to
resume full L0 compaction when the number of SSTables flushed
from MemTable exceeds the threshold. Figure 9(b) shows the
result of the "resume part and full compaction" policy, which
is to resume part L0 compaction when the number of SSTables
flushed from MemTable reaches the threshold and to resume full
L0 compaction when part compaction has been scheduled for
four times.

Figure 9 shows that both the two policies can maintain stable
throughput for about 2,550s with a short time of throughput
degradation (about 60s for the "resume full compaction" and
about 40s for the "resume part compaction"). The "resume full
compaction" policy can quickly resume high throughput after

(a) resume full compaction only

(b) resume part and full compaction

Figure 9: Performance of DLC on a sustained high load.

bursty compaction, but it has to compact all SSTables in L0, which
is time-consuming. We can see in Fig. 9(a) that the latency of the
"resume full compaction" becomes extremely high when DLC
performs the full compaction. On the other hand, the "resume
part compaction" policy only compact selected partial SSTables
for maintaining a stable throughput of DLC. Thus, the cost of
part compaction is lower than that of full compaction. As shown
in the figure, the latency of part compaction is lower than that
of full compaction. However, the "resume part compaction" pol-
icy sacrifices part of the read performance (read requests still
need to read many SSTables in L0), resulting slightly dropping of
throughput. To avoid continuous throughput-drops caused by the
accumulation of the SSTables in L0 (even after part compaction),
the "resume part compaction" in DLC performs full compaction
when part compaction has been scheduled for four times. As
shown in Fig. 9(b), the throughput slightly drops with time but
resume to a high level after four part compactions (each serious
drop in the figure indicates part compaction).

6.4 Impact on Read Performance
In this experiment, we measure the impact of DLC on the read
performance. Basically, as DLC delays the up-level compaction,
there may be accumulated SSTables in L0, which will worsen the
read performance under read-intensive workloads.

555



Figure 10: MyRocks, SILK*, and DLC under read-intensive
workload with 90% reads and 10% writes.

We first modify the OLTP workload used in Fig. 7 by changing
the read-write ratio to 9:1, preparing a read-intensive workload.
Then, we run MyRocks, SILK∗, and DLC to compare the through-
put and latency. The results are shown in Fig. 10. Although DLC
shows worse performance compared to its performance under
write-intensive workloads (see Fig. 7), it still has comparable
throughput stability with SILK∗, and its latency is lower than
that of SILK∗ and MyRocks. Thus, DLC can also work for read-
intensive workloads.

Further, to measure the number of the SSTables in L0, we
conduct an additional experiment to see the change of the number
of L0 SSTables in DLC. In this experiment, we use the default
benchmark tool db_bench in RocksDB and simply run DLC on
RocksDB to calculate the number of the SSTables in L0 while
DLC is running. We set one thread for inserting key-value pairs
and thirty threads to perform Get operations. Figure 11 shows
the change of the number of the SSTables in L0 as well as the read
performance (in terms of QPS, because db_bench does not support
multi-transaction processing). We can see that the number of L0
SSTables increases with time stably. Note such increase is not a
linear function. We explicitly show a part of the enlarged curve in
the figure, indicating that the increasing of SSTables is step-wise.
This is because only when we flush Immutable Memtable to L0,
the number of SSTables in L0 can increase.With the accumulation
of the SSTables in L0, QPS slightly decreases while the read
latency increases. Figure 12 shows the change of the number of
the SSTables in L0 as well as the read performance when we use
Scan operations and other settings remain unchanged, which
shows similar results as Fig. 11.

In summary, DLC is especially suitable for write-intensive
workloads, but it can also maintain comparable performance with
SILK∗ under read-intensive workloads. Although the delay of
up-level compaction results in the accumulation of the SSTables
in L0, DLC can merge them to L1 at a load load or by performing
bursty compaction.

Figure 11: Accumulation of L0 SSTables and its impact on
Get performance.

Figure 12: Accumulation of L0 SSTables and its impact on
Scan performance.

7 CONCLUSION AND FUTUREWORK
LSM-tree has been widely used in many key-value stores, due
to its high writing performance. However, the compaction op-
erations in LSM-tree highly impact the throughput of LSM-tree,
especially when LSM-tree runs under write-intensive workloads.
Prior work has shown that compaction will result in serious
throughput drops and increasing in processing latency. In this
paper, aiming to provide stable high throughput and low latency,
we proposed to delay the L0 compaction in LSM-tree when the
system is at a high load and perform the delayed L0 compaction
at a load load. With such a mechanism, the system’s through-
put can maintain a high level at a high load because no up-level
compaction will be executed. On the other hand, performing
compaction at a load load has little impact on the throughput
because the system’ resources, including I/O bandwidth and CPU,
are not fully used.

Following the idea of delaying L0 compaction, we presented
the DLC approach to optimize the compaction scheme in LSM-
tree. We first proposed a new model to estimate the I/O band-
width that is needed by the workload. Based on the I/O estimation
model, DLC decided whether to delay the up-level compaction or

556



to perform the delayed compaction. DLC is especially designed
for periodically varying workloads, i.e., the arriving rate of re-
quests is high for a period and then becomes low. By scheduling
up-level compaction appropriately, DLC can main stable through-
put and latency. Further, to solve the problem that the workload
is continuously high for a long time, which is called a sustained
high load in the paper, we proposed the bursty compaction pol-
icy to perform mandatory compaction of the SSTables in L0, so
as to avoid the drops of the throughput. We designed two poli-
cies to implement the bursty compaction, namely "resume full
compaction" and "resume part compaction". The difference be-
tween the two policies lies in the range of the L0 SSTables to be
compacted.

Finally, we implemented DLC on RocksDB and compared DLC
with MyRocks and SILK* (SILK with the DLC I/O estimation
model), which is the state-of-the-art optimization of the com-
paction in LSM-tree. The experimental results under different
kinds of OLTP workloads suggest that DLC has the best through-
put stability and the lowest latency. We also demonstrated that
DLC can achieve comparable performance with SILK* under
read-intensive workloads.

In the future, we will consider optimizing the read perfor-
mance of LSM-tree and building a read/write-optimized tree
structure[12]. The current design of DLC is not read-friendly,
making it more suitable for write-intensive workloads. We will
focus on improving the block cache management scheme[22] and
the Bloom filter to reduce the read amplification and block-cache
miss in LSM-tree.

ACKNOWLEDGEMENT
We would like to thank the anonymous reviewers for their valu-
able comments on this paper. We are also grateful to Prof. Jian-
liang Xu for his constructive suggestions on improving the paper.
This work is partially supported by the National Science Foun-
dation of China (No. 62072419 and No. 61672479) and Huawei
Technologies Co., Ltd.

REFERENCES
[1] Muhammad Yousuf Ahmad and Bettina Kemme. 2015. Compaction manage-

ment in distributed key-value datastores. Proceedings of the VLDB Endowment
8, 8 (2015), 850–861.

[2] Oana Balmau, Diego Didona, Rachid Guerraoui, Willy Zwaenepoel, Huapeng
Yuan, Aashray Arora, Karan Gupta, and Pavan Konka. 2017. TRIAD: Creating
Synergies Between Memory, Disk and Log in Log Structured Key-Value Stores.
In Proceedings of 2017 USENIX Annual Technical Conference (ATC). 363–375.

[3] Oana Balmau, Florin Dinu, Willy Zwaenepoel, Karan Gupta, Ravishankar
Chandhiramoorthi, and Diego Didona. 2019. SILK: Preventing Latency Spikes
in Log-Structured Merge Key-Value Stores. In Proceedings of 2019 USENIX
Annual Technical Conference (ATC). 753–766.

[4] Oana Balmau, Florin Dinu,Willy Zwaenepoel, Karan Gupta, and Diego Didona.
2020. SILK+ Preventing Latency Spikes in Log-Structured Merge Key-Value
Stores Running Heterogeneous Workloads. ACM Transactions on Computer
Systems 36, 4 (2020), 1–27.

[5] Burton H Bloom. 1970. Space/time trade-offs in hash coding with allowable
errors. Commun. ACM 13, 7 (1970), 422–426.

[6] Yunpeng Chai, Yanfeng Chai, Xin Wang, Haocheng Wei, Ning Bao, and Yushi
Liang. 2019. LDC: A Lower-Level Driven CompactionMethod to Optimize SSD-
Oriented Key-Value Stores. In Proceedings of the 35th International Conference
on Data Engineering (ICDE). IEEE, 722–733.

[7] Helen H. W. Chan, Yongkun Li, Patrick P. C. Lee, and Yinlong Xu. 2018.
HashKV: Enabling Efficient Updates in KV Storage via Hashing. In Proceedings
of 2018 USENIX Annual Technical Conference (ATC). 1007–1019.

[8] Lidong Chen, Yinliang Yue, Haobo Wang, and Jianhua Wu. 2018. A Priority
and Fairness Mixed Compaction Scheduling Mechanism for LSM-tree Based
KV-Stores. In Proceedings of the International Conference on Algorithms and
Architectures for Parallel Processing (ICA3PP). Springer, 89–105.

[9] Niv Dayan, Manos Athanassoulis, and Stratos Idreos. 2017. Monkey: Opti-
mal navigable key-value store. In Proceedings of the 2017 ACM International
Conference on Management of Data (SIGMOD). ACM, 79–94.

[10] Niv Dayan and Stratos Idreos. 2018. Dostoevsky: Better space-time trade-
offs for LSM-tree based key-value stores via adaptive removal of superfluous
merging. In Proceedings of the 2018 International Conference on Management
of Data (SIGMOD). ACM, 505–520.

[11] Niv Dayan and Stratos Idreos. 2019. The log-structured merge-bush & the
wacky continuum. In Proceedings of the 2019 International Conference on Man-
agement of Data (SIGMOD). 449–466.

[12] Peiquan Jin, Chengcheng Yang, Christian S. Jensen, Puyuan Yang, and Lihua
Yue. 2016. Read/write-optimized tree indexing for solid-state drives. The VLDB
Journal 25, 5 (2016), 695–717.

[13] Alexey Kopytov. [n.d.]. Sysbench. https://github.com/akopytov/sysbench.
[14] Ruicheng Liu, Peiquan Jin, Xiaoliang Wang, Zhou Zhang, Shouhong Wan,

and Bei Hua. 2019. NVLevel: A high performance key-value store for non-
volatile memory. In Proceedings of the 21st IEEE International Conference on
High Performance Computing and Communications (HPCC). IEEE, 1020–1027.

[15] Lanyue Lu, Thanumalayan Sankaranarayana Pillai, HariharanGopalakrishnan,
Andrea C Arpaci-Dusseau, and Remzi H Arpaci-Dusseau. 2017. Wisckey:
Separating keys from values in ssd-conscious storage. ACM Transactions on
Storage 13, 1 (2017), 5.

[16] Chen Luo and Michael J. Carey. 2019. On Performance Stability in LSM-based
Storage Systems. Proceedings of the VLDB Endowment 13, 4 (2019), 449–462.

[17] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. 1996. The
log-structured merge-tree (LSM-tree). Acta Informatica 33, 4 (1996), 351–385.

[18] Fengfeng Pan, Yinliang Yue, and Jin Xiong. 2017. dCompaction: Delayed
compaction for the LSM-tree. International Journal of Parallel Programming
45, 6 (2017), 1310–1325.

[19] William Pugh. 1990. Skip lists: a probabilistic alternative to balanced trees.
Commun. ACM 33, 6 (1990).

[20] Russell Sears and Raghu Ramakrishnan. 2012. bLSM: a general purpose log
structured merge tree. In Proceedings of the 2012 International Conference on
Management of Data (SIGMOD). ACM, 217–228.

[21] Dejun Teng, Lei Guo, Rubao Lee, Feng Chen, Siyuan Ma, Yanfeng Zhang,
and Xiaodong Zhang. 2017. LSbM-tree: Re-enabling buffer caching in data
management formixed reads andwrites. In Proceedings of the 37th International
Conference on Distributed Computing Systems (ICDCS). IEEE, 68–79.

[22] Lei Yang, Hong Wu, Tieying Zhang, Xuntao Cheng, Feifei Li, Lei Zou, Yujie
Wang, Rongyao Chen, Jianying Wang, and Gui Huang. 2020. Leaper: A
learned prefetcher for cache invalidation in LSM-tree based storage engines.
Proceedings of the VLDB Endowment 13, 11 (2020), 1976–1989.

[23] Zhou Zhang, Peiquan Jin, Xingjun Hao, Ruicheng Liu, Xiaoliang Wang, and
Shouhong Wan. 2019. RadixKV: A memory efficient and high performance
key-value store. In Proceedings of the 21st IEEE International Conference on
High Performance Computing and Communications (HPCC). IEEE, 2774–2781.

557


	DLC: A New Compaction Scheme for LSM-tree with High Stability and Low LatencyPeiquan Jin, Jianchuang Li, Hai Long

