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ABSTRACT
We study the problem of frequent itemset mining in domains
where data is not recorded in a conventional database but
only exists in human knowledge. We provide examples of
such scenarios, and present a crowdsourcing model for them.
The model uses the crowd as an oracle to find out whether an
itemset is frequent or not, and relies on a known taxonomy
of the item domain to guide the search for frequent itemsets.
In the spirit of data mining with oracles, we analyze the
complexity of this problem in terms of (i) crowd complexity,
that measures the number of crowd questions required to
identify the frequent itemsets; and (ii) computational com-
plexity, that measures the computational effort required to
choose the questions. We provide lower and upper complex-
ity bounds in terms of the size and structure of the input
taxonomy, as well as the size of a concise description of the
output itemsets. We also provide constructive algorithms
that achieve the upper bounds, and consider more efficient
variants for practical situations.

General Terms
Algorithms, Theory

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data mining

1. INTRODUCTION
The identification of frequent itemsets, namely sets of items

that frequently occur together, is a basic ingredient in data
mining algorithms and is used to discover interesting pat-
terns in large data sets [1]. A common assumption in such
algorithms is that the transactions to be mined (the sets of
co-occurring items) have been recorded and are stored in a
database. In contrast, there is data which is not recorded in
a systematic manner, but only exists in human knowledge.
Mining this type of data is the goal of this paper.
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As a simple example, consider a social scientist analyzing
the life habits of people, in terms of activities (watching TV,
jogging, reading, etc.) and their contexts (time, location,
weather, etc.). Typically, for large communities, there is no
comprehensive database that records all transactions where
an individual performs some combination of activities in
a certain context. Yet, some trace of the data remains
in the memories of the individuals involved. As another
example, consider a health researcher who wants to identify
new drugs by analyzing the practices of folk medicine (also
known as traditional medicine, i.e., medicinal practice that
is neither documented in writing nor tested out under a
scientific protocol): the researcher may want to determine,
for instance, which treatments are often applied together for
a given combination of symptoms. For this purpose too, the
main source of knowledge are the folk healers and patients
themselves.

In a previous work [3, 4] we have proposed to address this
challenge using crowdsourcing to mine the relevant infor-
mation from the crowd. Crowdsourcing platforms (such as,
e.g., [4, 14, 28, 30, 34]) are an effective tool for harnessing
a crowd of Web users to perform various tasks. In [3, 4] we
incorporated crowdsourcing into a crowd mining framework
for identifying frequent data patterns in human knowledge,
and demonstrated its efficiency experimentally. The goal of
the present paper is to develop the theoretical foundations
for crowd mining, and, in particular, to formally study the
complexity of identifying frequent itemsets using the crowd.

Before presenting our results, let us explain three important
principles that guide our solution.

First, in our settings, no comprehensive database can be
built. Not only would it be prohibitively expensive to ask all
the relevant people to provide all the required information,
but it is also impossible for people to recall all the details
of their individual transactions such as activity occurrences,
illnesses, treatments, etc. [3, 7]. Hence, one cannot simply
collect the transactions into a database that could be mined
directly. Instead, studies show that people do remember
some summary information about their transactions [7], and
thus, as demonstrated in [3, 4], itemset frequencies can be
learned by asking the crowd directly about them.

Second, as we want to mine the crowd by posing questions
about itemset frequencies, we must define a suitable cost
model to evaluate mining algorithms. In data mining there
are two main approaches for measuring algorithm cost. The
first one (see, e.g., [1]) measures running time, including the
cost of accessing the database (database scans), which is not
suitable for a crowd setting as there is no database that can
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be accessed in this manner. The second approach (see, e.g.,
[26]) assumes the existence of an oracle that can be queried
for insights about data patterns (frequency of itemsets, in
our case); the cost is then measured by the number of oracle
calls. Our setting is closer to this second approach: the crowd
serves as an oracle, and we count the number of questions
posed to the crowd, namely, crowd complexity. In addition,
we study computational complexity, namely, the time required
to compute the itemsets about which we want to ask the
crowd. There is a clear tradeoff between the costs: investing
more computational effort to select questions carefully may
reduce the crowd complexity, and vice versa. See Section 7
for a further comparison of our work with existing approaches
in data mining.

Finally, for the human-knowledge domains that we con-
sider, one can make mining algorithms more efficient by
leveraging semantic knowledge captured by taxonomies. A
taxonomy in our context is a partial “is-a” relationship on
the items relevant to the domain, e.g., tennis is a sport, sport
is an activity, etc. Many such taxonomies are available, both
domain-specific (e.g., for diseases [36]) and general-purpose
(e.g., Wordnet [31]). The use of taxonomies in mining is
twofold. First, the semantic dependencies between items in-
duce a frequency dependency between itemsets: e.g., because
tennis is a sport, the itemset {sunglasses, sport} implicitly
appears in all transactions where {sunglasses, tennis} appears.
Hence, if the latter itemset is frequent then so is the former.
Second, with taxonomical knowledge we can avoid asking
questions about semantically equivalent itemsets, such as
{sport, tennis} and {tennis}. Taxonomies are known to be a
useful tool in data mining [37] and we study their use under
our complexity measures.

Results. For our theoretical results, we harness tools from
three areas of computer science: data mining, order theory
and Boolean function learning [6, 8, 16, 18, 25, 26, 37]. Order
theory is relevant to our discussion, because a taxonomy is
in fact a partial order over data items; and Boolean function
learning is relevant since the set of frequent itemsets to
identify can be represented as a Boolean function indicating
whether itemsets are frequent, a connection that was also
pointed out in previous works in data mining [26]. Our
contribution in this paper is combining and extending these
tools to characterize the complexity of crowd mining.

A summary of our main results is presented in Table 1,
where we give upper and lower bounds for our two complexity
measures. In the first column, we give such bounds as a
function of the structure of the input taxonomy Ψ. These
bounds are not affected by properties of the output, such as
the actual number of frequent itemsets to be identified. In
contrast, in the second column, we give complexity bounds as
a function of the number of maximal frequent itemsets (MFIs)
and minimal infrequent itemsets (MIIs). Intuitively, the MFIs
and MIIs (to be defined formally later) are alternative concise
descriptions of the frequent itemsets, and thus capture the
output of the mining process.

The first row of Table 1 presents crowd complexity results.
We show that, given a taxonomy Ψ, the problem of identifying
the frequent itemsets has a tight bound logarithmic in |S(Ψ)| –
the number of possible Boolean frequency functions, which
depends on Ψ. As reflected in the inequalities at the bottom
of Table 1 (and explained in Section 3), log |S(Ψ)| is at most
exponential in |Ψ|. When the output is considered, our lower

complexity bound is the sum of the numbers of MFIs and
MIIs, and the upper bound adds the taxonomy size as a
multiplicative factor. We provide a constructive algorithm
(Algorithm 1) that achieves this bound.

In the second row of Table 1, we study computational
complexity. We focus on “crowd-efficient” algorithms, which
achieve the crowd complexity upper bound mentioned above.
The crowd complexity lower bound is trivially a lower bound
of computational complexity; however, w.r.t. the output,
we can obtain a stronger hardness result by showing that
the problem is EQ-hard in the taxonomy size and in the
numbers of MFIs and MIIs. EQ is a well-known problem in
Boolean function learning which is not known to be solvable
in PTIME [6, 17]. As for upper bounds, from Algorithm 1,
we obtain an upper computational bound polynomial in
|I(Ψ)| – the number of (relevant) itemsets of Ψ. This size is
at most exponential in |Ψ| (see Section 2). Algorithm 1 is
not crowd-efficient w.r.t. the input alone, but for the upper
computational complexity bound we relax this requirement
in order to achieve a more feasible bound. Omitted from
Table 1 are results for the case in which the size of itemsets
is bounded by a constant k, which we also study for the
problem axes mentioned above.

Finally, given the relatively high lower complexity bounds,
we examine two additional approaches. The chain parti-
tioning approach, following a standard technique in data
mining and Boolean function learning, suggests an alterna-
tive algorithm for crowd mining. We show that while this
algorithm is not crowd-efficient in general, it outperforms
Algorithm 1 given certain conditions on the frequent itemsets.
The greedy approach attempts to maximize, at each question
to the crowd, the number of itemsets that are classified as
frequent or infrequent. We show that choosing a question
that maximizes this number is FP#P-hard in |Ψ|.

Paper organization. We start in Section 2 by formally
defining the setting and the problem. Crowd and computa-
tional complexity are studied in Sections 3 and 4 respectively.
We consider chain partitioning in Section 5, and a greedy
approach in Section 6. Related work is discussed in Section 7
and we conclude in Section 8.

2. PRELIMINARIES
We now present the formal model and problem settings

for taxonomy-based crowd mining. Table 2 summarizes all
the introduced notation. We start by recalling some basic
itemset mining definitions from [1] and explain how they
apply to our settings.

Let I = {i1, i2, i3, . . . } be a finite set of distinct item
names. Define an itemset (or transaction) A as a subset
of I. Define a database D as a bag (multiset) of transac-
tions. |D| denotes the number of transactions in D. The
frequency or support of an itemset A ⊆ I in D is supp

D
(A) :=

|{T ∈ D | A ⊆ T}| / |D|. A is considered frequent if its sup-
port exceeds a predefined threshold Θ: we assume that
0 < Θ < 1 as mining is trivial when Θ ∈ {0, 1}. Given a
database D, we define the predicate freq(·) which takes an
itemset as input and returns true iff this itemset is frequent
in D (the dependency on D is omitted from the notation).

For example, in the domain of leisure activities, I may
include different activities, relevant equipment, locations, etc.
Each transaction T may represent all the items involved in a
particular leisure event (a vacation day, a night out, etc.). If,
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With respect to the input With respect to the input and output

Crowd
Lower Ω(log |S(Ψ)|) (Prop. 3.6) Ω(|mfi |+ |mii |) (Prop. 3.10)

Upper O(log |S(Ψ)|) (Prop. 3.9) O(|Ψ| · (|mfi |+ |mii |)) (Thm. 3.12)

Comp.
Lower Ω(log |S(Ψ)|) (Cor. of Prop. 3.6) EQ-hard (Prop. 4.2)

Upper O
(
|I(Ψ)| ·

(
|Ψ|2 + |I(Ψ)|

))
(Cor. 4.4) O

(
|I(Ψ)| ·

(
|Ψ|2 + |mfi |+ |mii |

))
(Prop. 4.3)

Table 1: Summary of the main complexity results, where we have |I(Ψ)| ≤ 2O(|Ψ|) and |S(Ψ)| ≤ 2O(|I(Ψ)|)

e.g., the set {tennis, racket, sunglasses} is frequent, it means
that a racket and sunglasses are commonly used for tennis.
Or, if {indoor cycling, TV} is frequent, it may imply that
indoor cyclists often watch TV while cycling.

In our crowd-based setting, the database of interest D is
not materialized and only models the knowledge of people,
so we can only access D by asking them questions. As shown
in [3], we can ask people for summaries of their personal
knowledge, which we can then interpret as data patterns –
itemset frequencies in our case. We thus abstractly model a
crowd query as follows:

Definition 2.1 (Crowd query). A crowd query takes
as input an itemset A ⊆ I and returns freq(A).

When using crowdsourcing to answer this type of crowd
queries, and when posing questions to the crowd in general,
one must deal with imprecise or partial answers. This general
problem was studied in previous crowdsourcing works [3, 4,
33]. We can employ one of their methods as a black-box
and assume that each crowd query is posed to a sufficient
(constant) number of users, so as to gain sufficient confidence
in the obtained Boolean answer. Thus, the cost of a crowd
mining algorithm can be defined as the number of crowd
queries rather than the number of posed questions: the crowd
acts as an oracle for itemset frequency. The cost metric does
not depend on the size of the hypothetic database D, nor does
it depend on the number of scans that would be necessary
to determine the frequency of the queried itemsets if D were
materialized.

Itemset Dependency and Taxonomies. The support of
different itemsets can be dependent. For example, if A ⊆ B
then B ⊆ T implies A ⊆ T so supp

D
(A) ≥ supp

D
(B) for

every D. This fundamental property is used by classic mining
algorithms such as Apriori [1].

Moreover, as noted in [37], there may be dependencies
between itemsets resulting from semantic relations between
items. For instance, in our example from the Introduction,
the itemset {sunglasses, sport} is semantically implied by any
transaction containing {sunglasses, tennis}, since tennis is a
sport.

Such semantic dependencies can be naturally captured by a
taxonomy [37]. Formally, we define a taxonomy as a partially
ordered set (or poset) Ψ = (I,≤) where ≤ is a partial order
over the element domain I. i ≤ i′ indicates that item i′ is
more specific than i (any i′ is also an i). Observe that the
antisymmetry of ≤ implies that no two different items in I

are equivalent by ≤.1 We use i < i′ when i ≤ i′ and i 6= i′,
and denote by l the covering relation of ≤: il i′ iff i < i′

and there exists no i′′ s.t. i < i′′ < i′.
We represent posets as DAGs, whose vertices are the poset

elements, and where a directed edge (i, i′) indicates that ili′.
This is in line with standard representations of posets such
as, e.g., Hasse diagrams. We denote by |Ψ| = O(|I|2) the
size of the taxonomy including the number of elements and
pairs in l.

Example 2.2. Consider the taxonomy Ψ1 shown in Fig-
ure 1a. We can label its elements with items, e.g.: 1. cycling,
2. sport, 3. bicycle touring, 4. indoor cycling. The interpre-
tation of the taxonomy would then be: both bicycle touring
and indoor cycling are types of cycling, and indoor cycling is
also a sport.

Let us briefly define some general useful terms in the
context of posets. When i ≤ i′ we call i an ancestor and i′ a
descendant. Similarly, when il i′ we call i a parent and i′ its
child. A chain is a sequence of elements i1 < i2 < · · · < in.
An antichain is a set of elements A = {i1, . . . , in} that
are incomparable with respect to ≤, i.e., there exist no
ij 6= ik ∈ A s.t. ij ≤ ik. The width of a poset P , denoted by
w[P ], is the size of its largest antichain. An order ideal (or
lower set) A of a poset P is a subset of its elements s.t. if
i ∈ A then all the ancestors of i are in A.

Example 2.3. The antichains of the example taxonomy
Ψ1 include the empty antichain {}; singleton itemsets such
as {3}; and antichains of size 2 such as {2, 3} (since 2 and 3
are incomparable). There are no larger antichains, and thus
w[Ψ1] = 2.

We denote by AC[Ψ] the domain of antichains of elements
from Ψ. Antichains are concise in the sense that they contain
no items implied by other items. In this way, e.g., {tennis}
concisely represents {tennis, sport}, {tennis, sport, activity},
etc. Thus, unless stated otherwise, whenever we mention
itemsets we assume that the items form an antichain. This
is also useful for practical purposes: it would be strange, e.g.,
to ask users whether they simultaneously play tennis and do
sport.

Based on ≤, the semantic relationship between items, we
can define the corresponding relationship between itemsets.
For itemsets A,B we define A ≤ B iff every item in A is
implied by some item in B. Formally:

1Such equivalence would stand for semantic synonyms such
as cycling and biking. We thus assume that every group of
synonyms is represented by a single item.
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(a) Ψ1
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(b) I(Ψ1)
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{3}

(c) I(1)(Ψ1)

1

2

3

(d) Ψ2 – “chain”

{}

{1}

{2}

{3}

(e) I(Ψ2)

1 2 3

(f) Ψ3 – “flat”

{2}

{1,3}

{}

{1}

{1,2,3}

{3}

{2,3}{1,2}

(g) I(Ψ3) – Boolean lattice

Figure 1: Example taxonomies

Definition 2.4 (Itemset taxonomy). Given a taxon-
omy Ψ = (I,≤) we define its itemset taxonomy as the poset
I(Ψ) = (AC[Ψ] ,≤).

By an abuse of notation, we extend ≤ to itemsets, where
for every two itemsets A,B ∈ AC[Ψ], A ≤ B iff ∀i ∈ A,∃i′ ∈
B i ≤ i′. Similarly, we extend < and l to itemsets: A < B
when A ≤ B and A 6= B, and A l B iff A < B and there
exists no C s.t. A < C < B.

Figure 1b illustrates I(Ψ1), the itemset taxonomy of Ψ1

from Figure 1a. Observe that, for singleton itemsets, ≤
corresponds to the order on items.

Finally, we redefine support to take I(Ψ) into account.

Definition 2.5 (Itemset support). Let A ⊆ I be an
itemset. We define the support of A w.r.t. a database D and
a taxonomy Ψ to be 0 if D is empty, and otherwise as

supp
D,Ψ

(A) := |{T ∈ D | A ≤ T}| / |D|

Properties of the itemset taxonomy. By construction, the
itemset taxonomy I(Ψ) is not an arbitrary poset. For in-
stance, it will always have a single “root” element, namely
the empty itemset, which must precede all other elements
by ≤.

More generally, the domain of all possible itemset tax-
onomies can be precisely characterized as the domain of all
distributive lattices (see full version [2] for details).

Let us now illustrate the structure of I(Ψ) in two extreme
but useful examples.

Example 2.6. Figure 1d illustrates a total order or “chain”
taxonomy, whose itemset taxonomy is a chain with one more
element (Figure 1e). Figure 1f displays a “flat” taxonomy,
where all the elements are incomparable. Its itemset tax-
onomy (Figure 1g) contains all the possible itemsets: it is
the Boolean lattice structure explored by classic data mining
algorithms such as Apriori [1]. Hence, if a flat Ψ has n
elements, I(Ψ) has exactly 2n elements and ≤ corresponds
exactly to set inclusion.

Maximal frequent itemsets. By the definition of support,
freq is a (decreasing) monotone predicate over itemsets, i.e., if
A ≤ B then freq(B) implies freq(A). Consequently, freq can
be uniquely and concisely characterized by a set of maximal
frequent itemsets (MFIs), namely all the frequent itemsets
with no frequent descendants. Equivalently, it can be charac-
terized by a set of minimal infrequent itemsets (MIIs), which
are all the infrequent itemsets with no infrequent ancestors.

MFIs and MIIs were introduced for knowledge discovery
in [26] (where they are called respectively the positive border
and negative border), and existing data mining algorithms
such as [5] try to identify them as a concise representation
of the frequent itemsets. We denote the MFIs and MIIs of a
predicate freq by mfi and mii respectively, where freq is clear
from the context. More generally, we call maximal elements
the analogue of MFIs for decreasing monotone predicates
over an arbitrary poset.

Example 2.7. Consider I(Ψ1) in Figure 1b. Assume, e.g.,
that we know freq({2}) = freq({3}) = freq({4}) = true. By
the monotonicity of freq, their ancestors (e.g., {1, 2}) are
also frequent. Assume that freq returns false for any other
itemset. Then freq can be uniquely characterized by its MFIs
{3} and {4}, or by its MII {3, 2}: the values of freq for the
other itemsets follow.

Restricting the itemset size. In typical crowd scenarios,
there are often restrictions on the number of elements that
may be presented in a crowd query [27], so it is impractical
to ask users about very large itemsets. We therefore define a
variant of the problem in which the itemset size is bounded
from above by a constant.

Definition 2.8 (k-itemset taxonomy). We define

the k-itemset taxonomy I(k)(Ψ) := (AC(k)[Ψ] ,≤) where we

define AC(k)[Ψ] := {A ∈ AC[Ψ] | |A| ≤ k} and k is constant.

We refer to the elements ofAC(k)[Ψ] as k-itemsets. Observe

that, unlike for I(Ψ), the number of itemsets in I(k)(Ψ) is

always polynomial in |I|, i.e., O(|I|k). In addition, I(k)(Ψ)
need not be a distributive lattice: for instance, by setting
k = 1, I(k)(Ψ) is almost identical to Ψ, i.e., it is an arbitrary
poset except for the added {} element. Compare for example

I(1)(Ψ1) (Figure 1c) with Ψ1 (Figure 1a).

Problem statement. Given a known taxonomy Ψ and an
unknown database D, defining the (also unknown) frequency
predicate freq over the itemsets in I(Ψ) , we denote by Mine-

Freq the problem of identifying, using only crowd queries,
all the frequent itemsets in D (or, equivalently, of identify-
ing freq exactly). We consider interactive algorithms that
iteratively compute, based on the knowledge collected so far,
which crowd query to pose next, until MineFreq is solved.

As mentioned in the Introduction, we study the complex-
ity bounds of such algorithms for two metrics. We first
consider the number of crowd queries that need to be asked,
namely the crowd complexity. Then, we study the feasibility
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supp
D

(A) Support of itemset A in database D
Θ Support threshold, 0 < Θ < 1
freq(A) True iff supp

D
(A) exceeds Θ

I Set of all items
Ψ Taxonomy – a partial order (I,≤)
i ≤ i′ Item i′ is more specific than i
l Covering relation of ≤
|Ψ| Size of the taxonomy (as the DAG of l)
w[Ψ] Width of Ψ

AC[Ψ] Antichains of Ψ
I(Ψ) Itemset taxonomy (AC[Ψ] ,≤)
A ≤ B ∀i ∈ A,∃i′ ∈ B i ≤ i′

AC(k)[Ψ] Itemsets of size ≤ k

I(k)(Ψ) k-itemset taxonomy (AC(k)[Ψ] ,≤)

mfi Maximal frequent itemsets
mii Minimal infrequent itemsets
S(Ψ) Solution taxonomy I(I(Ψ))

S(k)(Ψ) Solution taxonomy I
(

I(k)(Ψ)
)

MineFreq Problem of identifying freq exactly

Table 2: Summary of notations

of “crowd-efficient” algorithms, by considering the computa-
tional complexity of algorithms that achieve the upper crowd
complexity bound. This last restriction is relaxed in the
sequel.

3. CROWD COMPLEXITY
We now analyze the crowd complexity of MineFreq, first

w.r.t. the input taxonomy. Then, we consider the com-
plexity w.r.t. the output, which allows for a finer analysis
depending on properties of freq. As a general remark for
our analysis, note that we can always avoid querying the
same itemset twice, e.g., by caching query answers. Thus,
every upper bound O(X) presented in this section is actually
O(min{X, |I(Ψ)|}).

3.1 With Respect to the Input
To illustrate the problem boundaries, consider the following

specific cases of Ψ for which we know the optimal solution
strategy. For a chain taxonomy (as in Figure 1d), identifying
freq amounts to a binary search for the single MFI. This
can be done in O(log |I|) steps. For a flat taxonomy (as in
Figure 1f), for which the elements of I(Ψ) are the power set
of I, identifying freq is equivalent to learning a monotone
Boolean function over n variables, where n = |I|. For this
problem, a tight bound of Θ(2n

/√n) is known [22, 23].
We study the solution for a general taxonomy structure.

Let us start by defining the following:

Definition 3.1. (Solution taxonomy). Given a tax-
onomy Ψ, we define its solution taxonomy S(Ψ) = I(I(Ψ)).
The domain of elements of S(Ψ) is AC[I(Ψ)], i.e., antichains
of itemsets.

We call this construction the solution taxonomy, since its
elements correspond, precisely, to the frequency predicates
over I(Ψ), i.e., all possible solutions to MineFreq for a given
Ψ. More precisely, each element of S(Ψ) is an antichain
of itemsets that is exactly the set of MFIs mfi of some

{{}}

{{2}}

{{1},{2}}

{{1,2}}

{{1}}

{{3}}

{{3},{2}}

{{3,4}}

{}

{{4}}{{3},{1,2}}

{{3},{4}}{{3,2}}

{{3,2},{4}}

Figure 2: Example solution taxonomy S(Ψ1)

freq predicate. We prove this below but first illustrate the
structure via an example.

Example 3.2. Figure 2 illustrates the solution taxonomy
of the running example, Ψ1. Consider, e.g., {{1}, {2}}. This
element of S(Ψ1) corresponds to the freq predicate assigning
true (only) to {1}, {2} and their ancestor {} in I(Ψ1). Simi-
larly, {} in S(Ψ1) corresponds to a predicate assigning false
to every itemset, and {{3, 4}} to the one assigning true to
every itemset.

Next, we show the correspondence between S(Ψ) elements
and frequency predicates. We proceed by first showing a
bijective correspondence between elements of S(Ψ) and be-
tween (decreasing) monotone predicates over I(Ψ). Then, we
show that each such predicate can indeed serve as a frequency
predicate for some database.

Proposition 3.3. There exists a bijective mapping from
AC[I(Ψ)] to the monotone predicates over I(Ψ).

The proof maps every predicate in a general poset to its
(unique) set of maximal elements, which necessarily forms an
antichain. Thus, every predicate over I(Ψ) can be mapped
to an antichain of itemsets, which is an element of S(Ψ) (see
formal proof in [2]).

Proposition 3.4. For every threshold 0 < Θ < 1, every
monotone predicate F over I(Ψ) is the frequency predicate
freq of some database D.

Proof. Given F , letM be its set of maximal elements. If
M is empty, i.e., no itemset should be frequent, F is realized
by the empty database. Otherwise, construct D to consist
of the following d transactions: n “full” transactions with
all the items of I, one transaction per A ∈ M containing
exactly A, and d− n− |M| empty transactions. We choose
d and n s.t. every (non-empty) itemset B is frequent in D iff
it is supported by > n transactions, or, equivalently, iff it is
supported by at least one of the |M| non-trivial transactions.
To do that, pick an integer d that is large enough such that
there exists an integer n such that 0 ≤ n/d < Θ < (n + 1)/d <
(n + |M|)/d ≤ 1. When this holds, the frequent itemsets of D
are exactly the ancestors of itemsets in M, so freq = F as
desired.
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We have now shown that the MineFreq problem (iden-
tifying freq) is equivalent to finding the element of S(Ψ)
corresponding to freq, namely mfi . Before we study the com-
plexity of this last task, let us first describe abstractly how the
solutions space is narrowed down during the execution of any
algorithm that solves MineFreq. In the beginning of the exe-
cution, all the elements of S(Ψ) are possible. The algorithm
uses some decision method to pick an itemset A ∈ AC[Ψ] and
queries it. If the answer is true (A is frequent), this means
that mfi contains A or one of its descendants in I(Ψ), so
we can eliminate all MFI sets of S(Ψ) that do not have this
property, which we can show are exactly the non-descendants
of {A} in S(Ψ). Conversely, if the answer is false (A is infre-
quent), we can eliminate all the descendants of {A} in S(Ψ)
(including {A}). The last remaining element in S(Ψ) at the
end corresponds to the correct freq predicate, because it is
the only one consistent with the observations.

Example 3.5. Consider again S(Ψ1) in Example 3.2. By
discovering that, e.g., freq({1}), we know e.g.: that {2}
cannot be the only MFI so we can eliminate the solution
element {{2}}, that its ancestor {} is not an MFI so we can
eliminate {{}}, and so on. In total, all non-descendants of
{{1}} in S(Ψ1) can be eliminated.

Lower Bound. We now give a lower crowd complexity
bound for solving MineFreq in terms of the input, which
is proved to be tight in the sequel. The proof relies on
the fact that solving MineFreq amounts to searching for an
element in S(Ψ); it can be given as a simple information-
theoretic argument (see [2]), but we present it in connection
with [25] as we will reuse this link to obtain our upper bound.

Proposition 3.6. The worst-case crowd complexity of
identifying freq is Ω(log (|S(Ψ)|)).

Proof. This is implied by the analogous claim of [25]
about order ideals in general posets. By characterizing an
order ideal by its maximal elements (whose descendants are
not in the ideal) we obtain an antichain, which defines a
bijective correspondence between order ideals and antichains.
Thus, we can map antichains to order ideals, and use the ob-
servation in [25] directly to obtain the same lower bound.

In the worst case, log |S(Ψ)| can be linear in |I(Ψ)|, which
itself may be exponential in |Ψ| (e.g., for a flat taxonomy).
When this is the case, a trivial algorithm achieves the com-
plexity bound by querying every element in I(Ψ). However,
for some taxonomy structures (e.g., chain taxonomies), the
size of S(Ψ) is much smaller. We now use w[I(Ψ)] to deduce
a more explicit lower bound for Prop. 3.6.

Proposition 3.7. w[I(Ψ)] ≥
(

w[Ψ]
bw[Ψ]/2c

)
.

Proof. By definition, there exists at least one itemset in
I(Ψ) of size w[Ψ]. This itemset has

(
w[Ψ]
bw[Ψ]/2c

)
subsets of size

bw[Ψ] /2c. These itemsets are also in I(Ψ), since they only
contain incomparable items. Moreover, they are pairwise
incomparable in I(Ψ), and thus form an antichain whose size
yields the lower bound.

By replacing Ψ with I(Ψ) we get a lower bound for w[S(Ψ)].
We can thus prove the following bound which, though weaker,
is more explicit than Prop. 3.6 as it is expressed in terms of
the original ontology width rather than |S(Ψ)|.

Corollary 3.8. The worst-case crowd complexity of iden-
tifying freq is Ω(2w[Ψ]/

√
w[Ψ]).

Proof. We have |S(Ψ)| > w[S(Ψ)] ≥
(

w[I(Ψ)]
bw[I(Ψ)]/2c

)
. We ob-

tain log |S(Ψ)| ≥ Ω(log (2w[I(Ψ)]/
√

w[I(Ψ)])) = Ω(w[I(Ψ)]) using
Stirling’s approximation; and finally, using the lower bound
of w[I(Ψ)] and applying the approximation again, we express
the bound in terms of w[Ψ].

Upper Bound. We now state a tight upper bound (i.e., that
matches the lower bound up to a multiplicative constant).
The proof relies on Theorem 1.1 of [25], which shows that, in
any poset, there exists an element such that the proportion of
order ideals (or, in our case, elements of S(Ψ)) that contain
the element is within a constant range of 1/2. Hence, a
greedy strategy that queries such elements will eliminate a
constant fraction of the possible solutions at each step and
completes in a time that is logarithmic in the size of the
search space. See [2] for proof details.

Proposition 3.9. The worst-case crowd complexity of
identifying freq is O(log |S(Ψ)|).

3.2 With Respect to the Input and Output
So far our results only relied on the structure and size

of the input taxonomy Ψ. However, as noted in Section 2,
the characteristics of the output freq predicate may have a
crucial effect on the problem complexity, because, in practical
scenarios, the number of MFIs and MIIs is usually small.
For instance, when dealing with leisure habits, the number
of activities that are commonly performed together in the
population is typically very small w.r.t. all the combinations
that the taxonomy allows. Hence, we next study the effect of
the output on the crowd complexity boundaries of MineFreq.

Lower Bound. Since each of the sets of MFIs and MIIs
uniquely represents the freq predicate, one could hope that
it would be sufficient to identify only one of them to solve
MineFreq. However, it turns out that one must query at
least all the MIIs to verify that the MFIs are maximal, and
vice versa. This result is well-known for Boolean lattices [16];
in our setting it follows from the more general Thm. 2 of [26]
(which concerns any partial order rather than just distributive
lattices).

Proposition 3.10. The worst-case crowd complexity of
identifying freq is Ω(|mfi |+ |mii |).

Hence, though we can describe the output by its set of
MFIs (or MIIs), we need to query both the MFIs and MIIs.
This implies that the crowd complexity may be exponential
even in the minimal output size, since the difference between
|mfi | and |mii | may be large though only one suffices to
describe the output. This is derived from a known result in
Boolean function learning [8].

Corollary 3.11. (see [8]). The worst-case crowd com-

plexity of identifying freq is Ω
(

2min{|mfi|,|mii|}
)

We note that the current lower bound is not tight: for in-
stance, over a chain taxonomy, |mfi | + |mii | ≤ 2 for any
freq predicate, but we already noted in Section 3.1 that the
worst-case crowd complexity in this case is Ω(log |I|).
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Data: Ψ: a taxonomy
Result: M = mfi and N = mii , for the correct freq

predicate over I(Ψ)
M,N ← ∅;
while there is an unclassified element A ∈ I(Ψ) do

if freq(A) then
/* A is an ancestor of an MFI, search for

it by traversing A’s frequent

descendants. */

for i ∈ I do
B ← get-AC(A ∪ anc(i))
if A < B and freq(B) then A← B;

/* A’s descendants are infrequent */

mark-freq(A); add A to M ;

else
/* A is a descendant of an MII, search

for it by traversing A’s infrequent

ancestors. */

for i ∈ I do
B ← get-AC(A\desc(i))
if B < A and ¬ freq(B) then A← B;

/* A’s ancestors are frequent */

mark-infreq(A); add A to N ;
return M , N ;

Algorithm 1: Identify mfi and mii

Upper bound. We next show an upper bound that is within
a factor |I| of the lower bound of Prop. 3.10. It generalizes
known MFI and MII identification algorithms for the case
where there is no underlying taxonomy, such as the monotone
Boolean function learning algorithm of [16] and the Dualize
and Advance algorithm of [18, 19]; see Section 7 for an in-
depth comparison. Intuitively, our algorithm traverses the
elements of I(Ψ) in an efficient way to identify an MFI or an
MII, and repeats this process as long as there are unclassified
elements in I(Ψ), i.e., elements that are not known to be
frequent or infrequent. This method can be used to identify
each MFI or MII in time O(|I|), which yields the desired
bound.

Theorem 3.12. Algorithm 1 identifies freq in crowd com-
plexity O(|I| · (|mfi |+ |mii |)).

Proof. We explain the course of Algorithm 1, prove that
it is correct (i.e., identifies freq correctly), and analyze its
crowd complexity.

Algorithm 1 uses a few sub-routines: mark-freq(A) (resp.,
mark-infreq(A)) classifies the itemset A and its ancestors
(resp., descendants) as frequent (resp., infrequent). get-AC(A)
removes from A all the items that are implied by other items
(i.e., all i ∈ A such that i < i′ for some i′ ∈ A) so that
get-AC(A) returns an antichain representing A. anc(i) and
desc(i) return, respectively, the ancestors and descendants
of i in Ψ (including i).

We argue that each iteration of the main while loop of
Algorithm 1 identifies exactly one new MFI or MII. First,
an unclassified node A ∈ I(Ψ) is chosen. If A is frequent
(first if statement), it is either an MFI or an ancestor of an
MFI. Since it used to be unclassified, at this point each of
its descendants is unclassified or infrequent: in particular, A
is not an ancestor of an already discovered MFI. We thus
start traversing descendants of A by adding items from I to

A and using get-AC to turn the result into an antichain.2

Either the current A is an MFI so all of its children are
infrequent, the inner for loop ends, and we identify A as an
MFI. Otherwise, as A is frequent but not maximal, there
exists some frequent B ∈ I(Ψ) s.t. B = get-AC(A ∪ anc(i′))
for some item i′. If i′ had already been considered by the
for loop but was dismissed, it would mean that we dismissed
an ancestor of B as infrequent, contradicting the assumption
that B is frequent. Thus, i′ cannot have been considered
by the for loop yet, so we will replace A by B before the
for loop terminates. Hence, at the end of the for loop, we
identify a new MFI. In the same manner, the code within the
else part identifies an MII by traversing infrequent ancestors
until reaching an infrequent element that has only frequent
parents.

Correctness. The above implies that the algorithm termi-
nates, that each identified MFI and MII is correct, and that
all elements are correctly marked as frequent and infrequent.
To prove completeness, consider an MFI A. By the end of
the algorithm, A is known to be frequent; since it has no
frequent descendants, mark-freq(A) was necessarily called,
which implies that A was added to M . The proof for MIIs
is similar.

Complexity. Since Algorithm 1 identifies an MFI or MII
in each while iteration, there can be at most |mfi |+ |mii |
iterations. The inner loop performs O(|I|) queries, and thus
the total complexity is as stated above.

Following an idea of [18], we observe that the bound can
be improved to O(|mii |+ |I| · |mfi |) if we always choose the
unclassified element A to be minimal, because this ensures
that no queries need to be performed whenever we are in the
else branch. Moreover, if we run two instances of Algorithm 1
in parallel, one choosing maximal unclassified elements for A
and the other one choosing minimal unclassified elements for
A, we improve the bound to

O(|mfi |+ |mii |+ |I| ·min{|mfi | , |mii|})

3.3 Restricted Itemset Size
We next consider the k-itemset taxonomy, I(k)(Ψ). Beyond

the practical motivations for using I(k)(Ψ) (see Section 2),
restricting the number of MFIs and MIIs may naturally
improve the complexity bounds.

As explained in Section 2, I(k)(Ψ) is not necessarily a dis-

tributive lattice; and the size of I(k)(Ψ) is always polynomial
while that of I(Ψ) may be exponential (w.r.t. |I|). How-
ever, for every I(Ψ) such that k ≥ w[I(Ψ)], it holds that

I(k)(Ψ) = I(Ψ).
Note that in Section 3.1 we did not make any assumptions

on the itemset taxonomy structure, so our results apply
to any poset and in particular to I(k)(Ψ). We obtain the

following, where S(k)(Ψ) := I
(

I(k)(Ψ)
)

.

Corollary 3.13. The worst-case crowd complexity of iden-

tifying freq over I(k)(Ψ) is Ω
(

log
∣∣∣S(k)(Ψ)

∣∣∣); and there exists

an algorithm to identify freq over I(k)(Ψ) in crowd complexity

O
(

log
∣∣∣S(k)(Ψ)

∣∣∣) ≤ O(|I|k).

For the complexity w.r.t. the output over restricted item-
sets, the lower bound of Thm. 3.10 holds as well, with the
2We add anc(i) to A to simplify the analysis in the next
section; just adding i would also work here.
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same proof. However, we cannot use Algorithm 1 directly to
obtain an upper bound, as, in a k-itemset taxonomy, adding
(or removing) a single item to a k-itemset may not yield a
k-itemset: improving the trivial upper bound remains an
open problem.

4. COMPUTATIONAL COMPLEXITY
We next study the feasibility of“crowd-efficient”algorithms,

by considering the computational complexity of algorithms
that achieve the upper crowd complexity bound. We follow
the same axes as in the previous section. In all problem
variants, we have the crowd complexity lower bound as a
simple (and possibly not tight) lower bound. For some
variants, we show that, even when the crowd complexity is
feasible, the underlying computational complexity may still
be infeasible.

4.1 With Respect to the Input
As a simple lower bound, we know that the computational

complexity of MineFreq is higher than the crowd complexity,
and is thus Ω(log (|S(Ψ)|)).

The problem of finding tighter bounds for computational
complexity w.r.t. the input remains open. Many works [11,
13] provide efficient algorithms for computing a good split el-
ement in particular types of posets, but no efficient algorithm
is known for the more general case of distributive lattices (or
for arbitrary posets). We now give evidence suggesting that
no such algorithm exists.

At any point of a MineFreq-solving algorithm, we define
the best-split element as the element of I(Ψ) which is guar-
anteed to eliminate the largest number of solutions of S(Ψ)
when queried. Following the proof of Prop. 3.9, if we could
efficiently compute the best-split element, we would obtain
a computationally efficient greedy algorithm that is also
crowd-efficient. We now show that this is impossible for
bounded-size itemsets (and the corresponding restricted item-
set taxonomies). This, of course, does not prove that there
exists no computationally efficient non-greedy algorithm, but
it suggests that such an algorithm probably does not exist,
because of the close relationship between finding best-split
elements and counting the antichains of I(Ψ). This relates
to a result of [13], which proves that identifying a good-split
element (which guarantees eliminating a constant fraction
of the solutions) is computationally equivalent to a relative
approximation of the number of order ideals (though this is
not known to be #P-complete).

Theorem 4.1. The problem of identifying, given Ψ and
k, the best-split element in I(k)(Ψ) is FP#P-complete3 in |Ψ|.

Proof. (Sketch). To prove membership, we show a re-
duction from our problem to counting antichains in a general
poset, which is known to be in #P [35]. Using an oracle for
antichain counting, we can count the number of eliminated
antichains in S(k)(Ψ) for every element of I(Ψ), and thus find
the best-split element.

To prove hardness, we show a reduction from the antichain
counting problem (which is FP#P-hard) to our problem.
Let us call ancestor (resp. descendant) solutions of A the

3#P is the class of counting problems that return the number
of solutions of NP problems. FP#P is the class of function
problems that can be computed in polynomial time using a
#P oracle.

solutions (elements of S(k)(Ψ)) that are eliminated if an
itemset A is discovered to be frequent (resp. infrequent).
For any poset P and natural number n, we show that we
can construct a k-itemset taxonomy I(k)(Ψ) with an itemset
A0 such that, for some increasing affine function F, A0 has
F(|AC[P ]|) descendant solutions and F(n) ancestor solutions.

As the best-split element A∗ in I(k)(Ψ) has a roughly equal
number of ancestor and descendant solutions, comparing
the position of A0 and A∗ allows us to compare |AC[P ]|
and n: if A∗ is an ancestor of A0, it has more descendant
solutions than A0, and hence |AC[P ]| < n. Similarly, if A∗

is a descendant of A0, |AC[P ]| > n. We can then perform a

binary search on values of n between 0 and 2|P | using this
method and find the exact value of |AC[P ]|.

As for upper bounds, our complexity results w.r.t. the
input, namely Cor. 4.4, will follow from the results w.r.t. the
input and output presented in the next section.

4.2 With Respect to the Input and Output
Lower Bound. As shown by Algorithm 1, finding an MFI
or MII requires a number of queries linear in |I|. However,
note that the algorithm assumes that at any point we are
able to determine if the set of unclassified elements of the
itemset taxonomy is empty. We next show that this is a
non-trivial problem. We recall the definition of problem
EQ [6]. Let Bn = {0, 1}n be the set of Boolean vectors of
length n. Define the order ≤ on Bn by x ≤ y iff xi ≤ yi for
all i. For X ⊆ Bn, write T (X) = {y ∈ Bn | ∃z ∈ X, z ≤ y}
and F (X) = {y ∈ Bn | ∃z ∈ X, y ≤ z}. Problem EQ is
the following: given X,Y ⊆ Bn such that T (X) ∩ F (Y ) = ∅,
decide whether T (X) ∪ F (Y ) = Bn.

Proposition 4.2. If MineFreq can be solved in compu-
tational time O(poly(|mii | , |mfi | ,w[Ψ])) then there exists a
PTIME solution for problem EQ from [6].

It is unknown whether EQ is solvable in polynomial time
(see [12, 17] for a survey); the connection between frequent
itemset mining and EQ (and its other equivalent formulations,
such as monotone dualization or hypergraph transversals)
was already noted in [26]. Note that the proof above uses
the fact that the itemset size is not restricted. For k-itemset
taxonomies, finding a tighter lower bound than the trivial
|mfi |+ |mii | remains an open problem.

Upper Bound. We consider again Algorithm 1, whose crowd
complexity we analyzed in Section 3.2. By completing some
implementation details, we can now analyze its computa-
tional complexity as well, and obtain an upper bound. For
simplicity, this bound is presented in the Introduction with
|Ψ| which is ≥ |I|.

Proposition 4.3. There exists an algorithm to solve Mine-

Freq in computational time

O
(
|I(Ψ)| ·

(
|I|2 + |mfi |+ |mii |

))
Proof. Algorithm 1 uses a computation of an unclassi-

fied element of I(Ψ). Since by Prop. 4.2 this is probably
non-polynomial, we can use the brute-force method of ma-
terializing the itemset taxonomy I(Ψ). We use a hash table
to find any element in the I(Ψ) structure in time linear
in the element size. The implementation of mark-freq and
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mark-infreq locates A in I(Ψ) using the hash table, traverses
its ancestors or descendants respectively, and marks them as
(in)frequent.

To compare itemsets efficiently, we represent each itemset
A by an ordered list of the items in its order ideal, i.e.,
↓A = {i ∈ I | ∃i′ ∈ A, i′ ≤ i}. In this case, A ≤ B iff ↓A ⊆
↓B, which can be verified in time O(| ↓A|+ | ↓B|) ≤ O(|I|).
Using this representation, we do not need the sub-routine
get-AC. We generate once, for every i ∈ I, two ordered lists:
desc(i) and anc(i), holding its descendants and ancestors
respectively. These lists can be computed in time O(|I|2) by
building the transitive closure of I(Ψ), and can be used to
compute ↓A ∪ anc(i) and ↓A\ desc(i) in time O(|I|).

Let us analyze the overall complexity of the suggested
implementation. We construct I(Ψ) (where each element
has both its antichain and order ideal representations) in
O(|AC[Ψ]| · |I|2) (see [2]), and construct anc(i) and desc(i) in
time O(|I|2). Now, we run |mfi |+ |mii | times the body of the
outer while loop, which 1. finds an unclassified element by a
brute-force search taking time |AC[Ψ]|, 2. runs O(|I|) times
the body of one of the for loops that computes ↓A ∪ anc(i)
or ↓A\desc(i) and verifies ≤ in time O(|I|), and 3. calls
mark-freq or mark-infreq which takes time O(|I|+ |I(Ψ)|)
to locate the itemset in I(Ψ) and traverse its ancestors or
descendants. Summing these numbers and simplifying the
expression yields the claimed complexity bound.

Since we know that |mfi |+ |mii | ≤ |AC[Ψ]|, we can plug
|AC[Ψ]| in the complexity formula and obtain an upper bound
that does not depend on the numbers of MFIs and MIIs. In
this manner we achieve a bound polynomial in |I(Ψ)| and
improve the upper bound described in Section 4.1. However,
note that this is in fact a relaxation of our requirement for
crowd-efficient algorithms, since Algorithm 1 is not crowd-
efficient w.r.t. the upper bound of Prop. 3.9, in terms of
the input. This result is also simplified in the Introduction,
replacing |I| by |Ψ| which is ≥ |I|, and |AC[Ψ]| by |I(Ψ)|
which is ≥ |AC[Ψ]|.

Corollary 4.4. There exists an algorithm to solve Mine-

Freq in computational complexity

O
(
|I(Ψ)| ·

(
|I|2 + |AC[Ψ]|

))
5. CHAIN PARTITIONING

Recall that in the beginning of Section 3.1 we mentioned
the special case of chain taxonomies, for which a binary
search achieves a tight complexity bound, both crowd and
computational, of Θ(log |I|). We generalize this insight to
solve MineFreq for taxonomies partitioned in disjoint chain
taxonomies. Chain partitioning is a standard technique in
Boolean function learning [22, 24], that splits the Boolean
lattice elements into disjoint chains, and then performs a
binary search for the maximal frequent element on each
chain. The following easy proposition holds (we justify how
the partition P is obtained at the end of the section):

Proposition 5.1. Given a partition P of I(Ψ) into w[I(Ψ)]
chains, freq can be identified in both crowd and computational
complexity O(w[I(Ψ)] · log |I|).

The log |I| factor comes from the binary search in the
chains. To understand intuitively why the length of the
chains is at most |I|, notice that the worst case is achieved by

the full Boolean lattice, and that, in this case, for every chain
of the form A0 ≤ . . . ≤ An, it holds that |Ai|+ 1 ≤ |Ai+1|,
so that at most |I| items can be added to A0 in total (see
Figure 1g).

Let us compare the result of Prop. 5.1 with previous results.
In terms of crowd complexity, if |S(Ψ)| is close to its lower

bound, 2w[I(Ψ)], then the partition binary search performs
more queries by a multiplicative factor of log |I| than the
upper bound of Prop. 3.9. On the other hand, since we know
that the bound of Prop. 3.9 is tight, we get an upper bound
for |S(Ψ)| that depends on w[I(Ψ)] (in addition to the trivial

upper bound 2|I(Ψ)|).

Corollary 5.2. |S(Ψ)| ≤ 2w[I(Ψ)] log|I|.

When |mfi |+ |mii | = Ω(w[I(Ψ)]), the crowd complexity of
the partition binary search is asymptotically smaller than
that of Algorithm 1, O(|I| · (|mfi |+ |mii |)). The intuitive
explanation to this is the following: Algorithm 1, in the
worst case, can traverse a full chain for every MFI and MII,
taking linear time whereas the partition binary search takes
logarithmic time. However, when |mfi |+ |mii | is small w.r.t.
w[I(Ψ)], Algorithm 1 will consider significantly less chains
and is thus more efficient.

It remains to explain how to obtain the partition P . By
Dilworth’s theorem, it is possible to partition the poset I(Ψ)
into exactly w[I(Ψ)] chains [10]. Computing the partition
can be done in O(poly(|I(Ψ)|)), by a reduction to maximum
matching (or maximal join) in a bipartite graph [15]. See [2]
for a discussion on the complexity of taxonomy chain parti-
tioning.

6. GREEDY ALGORITHMS
In the previous sections, we have attempted to fully iden-

tify freq. The solutions that we presented try to do so by
maximizing the number of eliminated solutions, or identifying
MFIs or MIIs. However, we may not be able to pose enough
questions to identify freq exactly. In a dynamic crowd setting
we could assume, e.g., that the cost of obtaining answers
from the crowd (both in terms of money and latency) is
not controlled, and that the identification of freq may be
interrupted at any time. In such cases, our algorithms would
perform badly:

Example 6.1. Assume that the unclassified part of the
itemset taxonomy I(Ψ) contains a chain C of even length 2n,
for some n > 1, and one incomparable itemset A. There are
exactly 2 + 4n antichains in this poset (one empty, 1 + 2n
of size 1 and 2n of size 2), which is also the number of
possible solutions. Asking about A eliminates exactly half
of the possible solutions for freq and finds an MII or MFI.
However, if we have to interrupt the computation after only
one query, we have only obtained information about A. It
would have been better to query a middle element of C: though
this eliminates less solutions and does not identify an MII of
MFI, it classifies ≥ n itemsets.

Motivated by this example, in this section, we assume that
the computation can be halted at any time, and look at
the intuitive strategy that tries to maximize the number of
classified itemsets at halting time using the following greedy
approach: compute, for every itemset, what is the worst-case
(minimal) number of itemsets that could be classified if we
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query it; then query the greedy best-split itemset, namely
the itemset which maximizes this number. To perform the
greedy best-split computation, we need to count the number
of ancestors and descendants of each element; this may be
done in time linear in |I(Ψ)| per itemset. In terms of |Ψ|, we
can show that this computation is hard.

Proposition 6.2. Finding the greedy best-split itemset is
FP#P-hard w.r.t. |Ψ|. There exists an algorithm which finds
it in time O(|AC[Ψ]| · (|I|2 + |I(Ψ)|)).

To prove this, we first observe that the structure of S(1)(Ψ)
is almost identical to that of I(Ψ). Then, for the structure
used in the proof of Thm. 4.1, we show a reduction from
finding the best-split element in S(1)(Ψ) to finding the greedy

best-split element in I(1)(Ψ). The second part follows from
the brute-force method described above, in combination with
the complexity of materializing I(Ψ). See the full version [2]
for details.

7. RELATED WORK
Throughout the paper, we have combined and extended

results from order theory, Boolean function learning and data
mining [6, 8, 16, 18, 19, 25], to obtain our characterization
of the complexity of the crowd mining problem. We now
discuss further related work.

Several recent works consider the use of crowdsourcing
platforms as a powerful means of data procurement (e.g., [14,
28, 34]). As the crowd is an expensive resource, many works
focus on minimizing the number of questions posed to the
crowd to perform a certain task: for instance, computing
common query operators such as filter, join and max [9, 21,
29, 33, 38], performing entity resolution [39], etc. The present
work considers the mining of data patterns from the crowd,
and thus is closely related to this line of work.

The most relevant work, by some of the present authors,
is [3], which proposes a general crowd mining framework.
That work focused on a technique to estimate the confidence
in a mined data pattern and how much it increases if more
answers are gathered: we could use this technique to imple-
ment the crowd query black-box mechanism in our context.
However, [3] did not address the issue of the dependencies
between rules, or study the implied complexity boundaries,
which is the objective of the present paper. Another particu-
larly relevant work is [32], which considers a crowd-assisted
search problem in a graph. While it is possible to reformulate
some of our problems as graph searches in the itemset and
solution taxonomies, there are two important differences be-
tween our setting and theirs. First, our itemset and solution
taxonomies may be exponential in the size of the original tax-
onomy but have a specific structure, which allows, in some
cases, to perform the search without materializing them.
Second, we allow algorithms for MineFreq to choose crowd
queries interactively based on the answers to previous queries,
whereas [32] studies “offline” algorithms where all questions
are selected in advance. Consequently, our algorithms and
complexity results are inherently different.

Frequent itemset discovery is a fundamental building block
in data mining algorithms (see, e.g., [1]). The idea of using
taxonomies in data mining was suggested in [37], which we
use as a basis for our definitions.

Another line of works in data mining considers the discov-
ery of interesting data patterns by performing oracle calls [26].

This work is closely connected to ours by (i) the use of or-
acles, which may be seen as an abstraction of the crowd
(compared to our setting), and (ii) the separation between
the complexity analysis of the number of oracle calls (which
corresponds to crowd complexity in our case) and of the com-
putational process. However, because our motivation is to
query the crowd, we focus on the specific problem of mining
under a taxonomy over the itemsets (and related variants
such as limiting the itemset size) which is not studied in
itself in this line of work. On the one hand, [26] studies a
generalization of our setting, namely the problem of finding
all interesting sentences given a specialization relation on sen-
tences. They introduce the notion of border (corresponding
to MFIs and MIIs) as a way to bound the number of oracle
calls. However, in this general setting, they are not able to
prove complexity bounds on the performance of applicable
algorithms (e.g., Algorithm All MSS from [20]) to match
the bounds that we obtain for the more specific setting of
mining frequent itemsets under a taxonomy. On the other
hand, the aforementioned papers also study the restricted
case of Boolean lattices and provide some complexity bounds
in this case (e.g., for the Dualize and Advance algorithm [18,
19]); however, those algorithms exploit the connection with
hypergraph transversals which is very specific to the Boolean
lattice. Hence, these algorithms cannot be used to mine
frequent itemsets under a taxonomy, which is very natural
when working with the crowd, and their complexity bounds
are not applicable to our problem.

Finally, among the many works that discuss the connec-
tion of data mining and hypergraph traversals, we note the
recent work [17] which is relevant to our EQ-hardness re-
sult (Prop. 4.2) as it sheds more light on the (still open)
complexity of EQ.

8. CONCLUSION
In this paper, we have considered the identification of

frequent itemsets in human knowledge domains by posing
questions to the crowd, under a taxonomy which captures the
semantic dependencies between items. We have studied the
complexity boundaries of solutions to this problem, in terms
of two cost metrics: the number of crowd queries required
for identifying the frequent itemsets, and the computational
complexity of choosing these queries. We identified two main
factors that affect both complexities: the structure of the
taxonomy; and properties of the frequency predicate.

Our results leave some intriguing theoretical questions
open: in particular, we would like to find tighter complexity
bounds where possible, and to further study the nature of
the tradeoff between crowd and computational complexities.
In addition, due to the high complexity of taxonomy-based
crowd mining, practical implementations could further resort
to approximations and randomized algorithms in order to
identify (in expectation) a large portion of the frequent item-
sets, while reducing the complexity. The greedy approach
mentioned in Section 6 forms a first step in this direction
of further research. A different approach involves filtering
the itemsets according to a user request, which could reduce
the solution search space: for instance, the user may wish to
mine itemsets composed of small fragments of the taxonomy,
or respecting certain constraints. We intend to investigate
this approach in future work.
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