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Abstract. A good mesh moving method is
an important part of flow computations with
moving-mesh methods like the space–time (ST)
and Arbitrary Lagrangian–Eulerian (ALE)
methods. With a good mesh moving method,
we can decrease the remeshing frequency even
when the fluid–solid and fluid–fluid interfaces
undergo large displacements, decrease the el-
ement distortion in parts of the flow domain
where we care about the solution accuracy
more, and maintain the quality of the boundary
layer meshes near the fluid–solid interfaces
as the mesh moves to follow those interfaces.
Since 1990, quite a few good mesh moving
methods have been developed for use with the
ST computational methods, from the mesh-
Jacobian-based stiffening to a mesh moving
method based on fiber-reinforced hyperelasticity
to a linear-elasticity mesh moving method with
no cycle-to-cycle accumulated distortion. These
methods have been used in computation of many
complex flow problems in the categories of fluid–
particle interaction, fluid–structure interaction,
and more generally, moving boundaries and
interfaces. The computations were with both the
ST and ALE methods. We provide an overview
of these methods and present examples of the
computations performed.

Keywords

Flow computation, fluid–structure inter-
action, mesh moving method, space–time
method, ALE method, mesh-Jacobian-
based stiffening, mesh moving based on
fiber-reinforced hyperelasticity.

1. Introduction

Many real-world fluid mechanics problems
involve fluid-structure interaction (FSI), fluid–
particle interaction, free-surface and two
fluid-flows, and flows with moving mechanical
components. These categories of problems can
be seen as subcategories of flows with moving
boundaries and interfaces (MBI) [1]-[3]. In
FSI and MBI computations with moving-mesh
methods [1]-[3], as the flow domain changes
its shape, the mesh moves to facilitate that
shape change, to follow the moving interfaces,
and to control the mesh resolution near the
moving solid surfaces. The moving-mesh meth-
ods are also called interface-tracking methods
[1]-[3] since the mesh is moving to “track”
the interface, as opposed to just “capturing”
it over a nonmoving mesh. More discus-
sion on the moving-mesh (interface-tracking)
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and nonmoving-mesh (interface-capturing)
methods, including the Mixed Interface-
Tracking/Interface-Capturing Technique [4]
and Fluid–Solid Interface-Tracking/Interface-
Capturing Technique (FSITICT) [5] can be
found in [1]-[3], [6].

The Deforming-Spatial-Domain/Stabilized
Space–Time (DSD/SST) method [7]-[9], intro-
duced in 1990, is a moving-mesh method. It is
also called the “ST-SUPS” [2] because of its sta-
bilization components SUPG and PSPG, and it
is widely known that those abbreviations stand
for the Streamline-Upwind/Petrov-Galerkin [10]
and Pressure-Stabilizing/Petrov-Galerkin [7].
The Arbitrary Lagrangian–Eulerian (ALE)
method is an older moving-mesh method, with
its finite element version going at least as far
back as 1981 [11]. It is far more commonly used
than the ST computational methods. One of
the earliest computations with the ALE-SUPS
method was for parachute FSI [12]. The ALE-
VMS method [2], [13]-[18] is the variational
multiscale version of the ALE, with the VMS
components coming from the residual-based
VMS (RBVMS) method [19]-[22]. The VMS
components of the ST-VMS method [23]-[25]
also come from the RBVMS.

Over the years since their inception, the ST-
SUPS, ALE-SUPS, RBVMS, ALE-VMS, and
ST-VMS have become a powerful set of com-
putational methods and have been applied to
some of the most challenging classes of flow
problems. The classes of problems computed
with the ALE-SUPS, RBVMS, and ALE-VMS
include parachutes [12], wind turbines [26]-[47],
medical applications [13], [48]-[61], free-surface
flows [62]-[66], aircraft applications [67, 68], tur-
bomachinery [69]-[75], marine applications [76]-
[78], bridges [79]-[83], stratified flows [84, 85],
hypersonic flows [86], two-phase flows [87]-[93],
additive manufacturing [94], immersogeometric
FSI and flow analysis [95]-[99], and mixed ALE-
VMS/Immersogeometric computations [57]-[59],
[100]-[108] in the framework of the FSITICT.
A comprehensive summary of the classes of
flow problems computed with ST-SUPS and
ST-VMS prior to July 2018 was provided in
[109]. The classes of problems computed be-
fore and after July 2018 include parachutes
[2, 45, 44], [110]-[120], wind turbines [2, 26, 33],

[40]-[43], [121]-[130], flapping-wing aerodynam-
ics [2, 124, 125], [131]-[137], medical applications
[60, 61, 124, 135], [138]-[152], spacecraft [112,
153], ground vehicles and tires [25, 45, 44, 144],
[154]-[160], disk brakes [161], turbomachinery
[42, 43], [162]-[169], fluid films [157, 160, 170], U-
ducts [171], and Taylor–Couette flow [172, 173].

A good mesh moving method is an impor-
tant part of flow computations with moving-
mesh methods like the ST-SUPS, ALE-SUPS,
ALE-VMS, and ST-VMS. The mesh moving
method serves as a component of the mesh up-
date method, with the other component being
remeshing. Most of the time remeshing involves
generating a new set of nodes, which was called
“renoding” in [9, 174], but can also just con-
sist of generating a new set of elements “recon-
necting” [9, 174] the existing nodes. Remeshing
can be full, or partial, as done in [175]. With
a good mesh moving method, we can decrease
the remeshing frequency even when the fluid–
solid and fluid–fluid interfaces undergo large dis-
placements, decrease the element distortion in
parts of the flow domain where we care about
the solution accuracy more, and maintain the
quality of the boundary layer meshes near the
fluid–solid interfaces as the mesh moves to follow
those interfaces. A mesh moving method can be
a special-purpose or general-purpose one. Nor-
mally, a special-purpose mesh moving method
can be used for meshes generated with special-
purpose mesh generation methods. A general-
purpose mesh moving method, which requires
solution of a set of equations governing the mo-
tion of the mesh, can be used for meshes gen-
erated with both special-purpose and general-
purpose mesh generation methods. Since 1990
[7], quite a few good mesh moving methods have
been developed for use with the ST-SUPS and
ST-VMS, from the mesh-Jacobian-based stiffen-
ing [172, 176, 177] to a mesh moving method
based on fiber-reinforced hyperelasticity [6] to
a linear-elasticity-based mesh moving method
with no cycle-to-cycle accumulated distortion
[150]. These methods have been used in com-
putation of many complex flow problems in the
categories of fluid–particle interaction, FSI, and
more generally, MBI. The computations were
with both the ST and ALE methods, as re-
ported in many of the publications cited in the
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previous paragraph. In this article, we pro-
vide an overview of these mesh moving meth-
ods and present examples of the computations
performed. The overview of the methods is in
Sections 2-8, and the examples are in Sections
9-11. The concluding remarks are given in Sec-
tion 12.

2. Special-purpose mesh
moving methods

The first ST-SUPS computations reported in
[7] were performed with special-purpose mesh
moving methods. They included a “pulsating
drop”, driven by surface tension, large-amplitude
sloshing in a tank, and a cylinder drifting in a
shear flow, translating in two directions. For
the drifting cylinder, for example, the square-
shaped inner mesh around the cylinder moves
“glued” to the cylinder, with no deformation in
the inner mesh. The mesh outside the square
region absorbs all the mesh deformation. As an-
other example, the ST-SUPS computation of a
“freely falling NACA 0012 airfoil”, first reported
in [176], was performed again with a square-
shaped mesh translating with the airfoil in two
directions. In that case, however, because the
airfoil had also a pitching motion, the inner
mesh around the airfoil was of circular shape,
rotating with the airfoil, with no deformation
inside that mesh. A ring-shaped mesh, with
layers of elements, surrounded the inner mesh
and absorbed all the rotation-driven deforma-
tion. The rest of the mesh inside the square-
shaped region remained undeformed, only trans-
lating with the airfoil in two directions. Over
the years since 1990, more special-purpose mesh
moving methods were developed for ST-SUPS
and ST-VMS computations, including those in
3D and with complex geometries. Examples
of more recent computations are heart valve
flow [149, 150] and tire aerodynamics with near-
actual tire geometry, road contact, and tire de-
formation [156, 157].

3. Linear-elasticity mesh
moving method and
mesh-Jacobian-based
stiffening

In the linear-elasticity mesh moving method in-
troduced in [172, 176, 177], in computing the
mesh motion from time level tn to tn+1, the
nodal displacements are governed by the equa-
tions of linear elasticity. At the boundaries
and interfaces, the required condition is for the
normal component of the mesh velocity match-
ing the normal component of the fluid velocity.
However, typically, especially at curved bound-
aries and interfaces, all components of the mesh
velocity matching all components of the fluid ve-
locity is simpler to implement. It was also pro-
posed in [172, 176, 177] that, in solving the elas-
ticity equations with the finite element method,
the Jacobian of the transformation from the
element parent domain to physical domain be
dropped. The purpose was, of course, to make
the smaller elements, typically encountered near
the interfaces and in regions where we care about
the flow solution accuracy more, stiffer than the
larger ones. That is how the mesh-Jacobian-
based stiffening (MJBS) method was born in
1992. It did not have a name when it was born.
The first time it was given a name was in [178];
it was called “Jacobian-based stiffening”. Also in
[178], the method was generalized by introduc-
ing a “stiffening power”, denoted by the symbol
χ. Defined as being always positive, χ governs to
what degree the smaller elements become stiffer
than the larger ones. When χ = 1, the method
is, of course, the same as the original method,
and typically χ = 1. Realizing that the method
name should be clearer on which Jacobian is im-
plied, the method was renamed “mesh-Jacobian-
based stiffening”. in [150].

Since its inception in 1992, the MJBS has
been used in computation of many complex flow
problems in the categories of fluid–particle in-
teraction, FSI, and more generally, MBI. The
computations were with both the ST and ALE
methods, as reported in many of the publica-
tions cited in the third paragraph of Section 1.
.
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4. Solid-extension mesh
moving technique

In computing flow problems with fluid–solid in-
terfaces, if the solid part is not deforming, main-
taining the quality of the boundary layer meshes
near the interfaces can be achieved by simply
having some layers of elements around the object
moving glued to the object. This can be done by
using a special-purpose mesh moving method or
by activating the elasticity-based mesh moving
method outside the layers of elements around
the object. The inner-boundary conditions for
the elasticity equations come from the outer sur-
faces of the layers of elements. Either way, we
get full control of the mesh resolution in these
layers throughout the computation. The earliest
examples of ST-SUPS computations with layers
of elements moving glued to solid objects can
be found in [7] in the context of special-purpose
mesh moving methods, and in [172, 177] in com-
bination with an elasticity-based mesh moving
method activated outside the layers.

Moving the layers of elements glued to the
solid object is not applicable in an FSI com-
putation where the solid part is deforming.
The Solid-Extension Mesh Moving Technique
(SEMMT) was introduced in 2001[179] to main-
tain the quality of the boundary layer meshes
near the fluid–solid interfaces also in FSI com-
putations. In the SEMMT [2], [179]-[182], in
solving the elasticity equations, the layered in-
ner meshes around the solid surfaces are dealt
with like extensions of the structure mesh. The
SEMMT has two versions: “SEMMT – Single
Domain” (SEMMT-SD) and “SEMMT – Multi-
ple Domain” (SEMMT-MD). In the SEMMT-
SD, the elements in the inner mesh are assigned
higher stiffness, and the elasticity equations gov-
erning the motion of the inner and outer meshes
are solved together, over a single domain. In the
SEMMT-MD, the equations governing the mo-
tion of the inner and outer meshes are solved
separately, over multiple domains. In Step 1,
the motion of the inner mesh is solved for, with
zero-stress boundary condition on the outer sur-
faces. In Step 2, the motion of the outer mesh
is solved for, with displacement boundary con-
dition on the inner surfaces. Test computations

with both versions were presented in [2], [181]-
[183]. The tests included simple but revealing
2D deformation cases in [2], [181]-[183] and a 2D
FSI model problem in [181, 182]. The SEMMT
was also used, in combination with the MJBS,
in computational flow analysis of wind turbine
blade strip subjected to environmental erosion in
[184] and particle-laden-airflow erosion in [185].

5. ST NURBS mesh
update method

The isogeometric analysis (IGA), with the con-
vincing results obtained by using IGA basis
functions in space [13, 48, 186, 187], offered a
new direction in computational flow analysis.
It offered higher accuracy in representing the
geometry and in the flow solution. The ST-
IGA [23], in addition to offering an ST frame-
work in using IGA basis functions in space
[118, 145, 146, 163] with even higher accuracy in
the flow solution, offered the option of using IGA
basis functions also in time [23, 24, 131, 132].
That enabled higher accuracy in representing
the path or trajectory and creation of new meth-
ods that are possible in an ST framework (see
Section 1 in [159] for the most recent summary of
those methods). The ST/NURBS Mesh Update
Method (STNMUM), introduced in [131, 132]
and named in [123], is one of those methods.

With the ST-IGA and IGA basis functions in
time, motion of the solid surfaces can be repre-
sented more accurately, and the representation
of the corresponding mesh motion would be con-
sistent with that. These features of the ST-IGA
were pointed out in [23, 24] and shown at work in
[131, 132]. Also with the ST-IGA and IGA basis
functions in time, we can have better efficiency
in time representation of the mesh motion and
deformation and in remeshing. These features
made the STNMUM what it is. The classes of
problems with spinning surfaces, for example,
can be handled very effectively with the STN-
MUM. With quadratic NURBS basis function in
time representing the spinning motion, we can
represent the circular paths exactly, provided
that we have sufficient number of patches for
the full rotation. It is of course also desirable
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to be able to specify a constant angular veloc-
ity for speeds invariant along the circular paths.
That is achieved by the secondary mapping in-
troduced in [23, 24, 131]

The STNMUM has been used in a large num-
ber of 3D computations with complex geome-
tries. The classes of problems computed in-
clude flapping-wing aerodynamics [2, 124, 125],
[131]-[137], spacecraft [112], wind turbines [33],
[40]-[43], [123]-[127], ground vehicles and tires
[25, 44, 45, 144], [154]-[160], disk brakes [161],
and turbomachinery [42, 43], [162]-[169].

6. Nonlinear-elasticity
mesh moving method

In the linear-elasticity mesh moving methods, a
common practice in computing the mesh motion
from tn to tn+1 is to compute the nodal displace-
ments from the configuration at tn. Although
many flow computations were successfully per-
formed this way, it is known that (see, for ex-
ample, [6, 150]), the method is path-dependent.
Because of that, in flow computations where we
expect cyclic or near-cyclic results, the method
leads to non-cyclic results and cycle-to-cycle ac-
cumulated mesh distortion. It is hard to re-
verse the process if the nodes accumulate in
some region of the mesh. Moving the mesh
as governed by the nonlinear-elasticity equa-
tions of large-deformation mechanics is path-
independent. The nonlinear-elasticity mesh
moving method was used in a good number of
ST-SUPS and ST-VMS computations of flow
problems with FSI and other MBI (see, for ex-
ample, [25, 113, 125, 135, 142]). It was com-
mented in [113] that one would have a good se-
lection of constitutive models and can define the
zero-stress state (ZSS) of the large-deformation
mechanics locally in arbitrary orientations. In
the computations reported in [113], the con-
stitutive model was St. Venant–Kirchhoff, in
[25, 125, 135, 142], neo-Hookean. The MJBS
can of course be used also in the nonlinear-
elasticity mesh moving method, as was the case
in [25, 142]. In the remainder of this sec-
tion, we will cover two closely related meth-

ods: element-based mesh relaxation (EBMR)
and locally-defined ZSS.

6.1. EBMR

The EBMR, introduced in [113], restores the
mesh integrity lost during the mesh motion, but
does that without remeshing. The loss of mesh
integrity in regions that we care more about does
not happen so often because of the mesh moving
methods discussed so far, but could happen in
computations with high complexity. The FSI
computations reported in [111, 113, 114, 115,
116, 124] for spacecraft parachute clusters had
that type of complexity. It was proposed in [113]
that, when we see a loss of mesh integrity, with
the EBMR, the mesh is relaxed, without chang-
ing the mesh at the fluid–structure interface, and
the mesh integrity is restored to some extent.
This is, as commented in [113], is less less dis-
ruptive and less time-consuming than remesh-
ing. The EBMR does not change the number of
elements or nodes. It only moves slightly some of
the nodes and thus improves the element quality
in parts of the mesh. The motion of the nodes is
determined from the nonlinear-elasticity equa-
tions of large-deformation mechanics and an
element-based ZSS (EBZSS). The EBZSS is es-
sentially a shape generated for each element,
and by design, the undeformed shape consists
of “target elements” and is the shape we want to
reach by solving the nonlinear-elasticity equa-
tions. The options for constructing the tar-
get element shapes can be found in [113]. The
FSI computations reported in [113] for space-
craft parachute clusters were performed with the
EBMR.

6.2. Locally-defined ZSS

The locally-defined ZSS was created as an ar-
terial ZSS estimation [60], [188]-[193]. It was
formulated, at the beginning, as the EBZSS
in the context of finite element discretization
[188, 189], then as the EBZSS in the context
of isogeometric discretization [190, 191], and
then as the integration-point-based ZSS (IP-
BZSS) in the context of isogeometric discretiza-
tion [192, 193]. In the EBZSS, for each element,
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the ZSS is defined by a set of positions. When
nodes (or control points) from different elements
map to the same node in the mesh, their ZSS-
defining positions do not have to be the same.
In the reference configuration, however, all el-
ements are connected by nodes, with the dis-
placements measured from that configuration.
Formulating the structural mechanics problem
in this fashion was called “element-based to-
tal Lagrangian” (EBTL) method in [188]. The
EBTL is a key part of the EBMR [113]. In
the IPBZSS, how we define the EBZSS is ex-
tended to its integration-point counterpart, with
the ZSS represented in terms of the metric ten-
sor. The IPBZSS has more parameters than the
EBZSS. Consequently, while the conversion from
the EBZSS representation to IPBZSS represen-
tation is straightforward and will be exact, the
conversion, in general, will not be exact. Formu-
lating the structural mechanics problem in this
fashion was called “integration-point-based total
Lagrangian” (IPBTL) method in [6].

7. Mesh relaxation and
mesh moving based on
fiber-reinforced
hyperelasticity and
optimized ZSS

Methods for mesh relaxation and mesh moving
based on fiber-reinforced hyperelasticity and op-
timized ZSS were introduced in [6]. The meth-
ods were introduced targeting isogeometric dis-
cretization, but they are, of course, also appli-
cable to finite element discretization. To reduce
distortion during the mesh deformation, the el-
ement is stiffened in multiple directions by plac-
ing reinforcement fibers in those directions. The
ZSS is optimized by seeking, with mesh relax-
ation, orthogonality of the parametric directions
and making the ZSS time-dependent as needed.
With the mesh relaxation, after the initial cre-
ation of a mesh, we improve its quality and have
an equilibrium state with the optimized ZSS,
boundary conditions, and constitutive law. The
NURBS mesh used in the computational flow
analysis reported in [127] for a tsunami-shelter

vertical-axis wind turbine was obtained with the
mesh relaxation method.

8. Back-cycle-based mesh
moving method

As mentioned in Section 6, in computing the
mesh motion from tn to tn+1 with a linear-
elasticity mesh moving method, if the nodal dis-
placements are computed from the configura-
tion at tn, the mesh moving method is path-
dependent. As also mentioned in that section,
in flow computations where we expect cyclic
or near-cyclic results, a path-dependent mesh
moving method leads to non-cyclic results and
cycle-to-cycle accumulated mesh distortion. The
methods described in that section for moving
the mesh as governed by the nonlinear-elasticity
equations of large-deformation mechanics give
us the path-independence we want. Never-
theless, linear-elasticity mesh moving methods
where the displacements are not computed from
the configuration at t0, and other methods where
the displacements are not computed from the
configuration at t0, are still widely used.

The back-cycle-based mesh moving
(BCBMM) method, introduced in [150] as
a linear-elasticity mesh moving method, has
no cycle-to-cycle accumulated distortion. In
the BCBMM, in computing the mesh motion
from tn and tn+1 with the linear-elasticity
equations, in any cycle, the nodal displacements
are computed from the configurations in the
first cycle. It was pointed out in [150] that
in later cycles, as needed, the configurations
the nodal displacements are computed from
can be changed from the first cycle to a higher
cycle and the need may arise if, prior to the
solution becoming cyclic or near-cyclic, there
are significant differences between the solutions
at different cycles.

The half-cycle-based mesh moving (HCBMM)
method was introduced in [194] as a special-case
version of the BCBMM. It is for special cases
where the boundary or interface motion in the
second half of the cycle consists of reversing the
steps in the first half and we prefer the mesh
motion to have the same reversal pattern. This
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is accomplished by modifying how the displace-
ments are computed in the second half of the
first cycle. In the second half, at a given time
level, the displacements are computed from the
configuration at the corresponding time level in
the first half. In the second and higher cy-
cles, the displacements are computed as in the
BCBMM.

Detailed 2D and 3D test computations with fi-
nite element meshes were presented in [194], us-
ing the mesh motion associated with wing pitch-
ing as the test case, to demonstrate how the
BCBMM and HCBMM function as mesh mov-
ing methods with no cycle-to-cycle accumulated
mesh distortion. The BCBMM and HCBMM
were introduced and tested in the context of a
linear-elasticity mesh moving method. However,
it is clear that they are applicable also to other
mesh moving methods, such as those based on
the Poisson’s equation, where the displacements
are not computed from the configuration at t0.

9. Flapping aerodynamics
of actual locust wings

This is an example of the classes of computations
performed with the STNMUM. The details of
this class of computations can be found in [2],
[131]-[134]. The motion and deformation of the
wings come from video recordings a locust while
in flight in a wind tunnel. The video data was
obtained by our research collaborators at Baylor
College of Medicine in Houston. Figure 1 shows
the wing geometries, as represented by quadratic
NURBS.

The results presented here come from a fi-
nite element computation with tetrahedral ele-
ments. The triangular meshes over the wing and
body surfaces were generated from the NURBS-
represented surface geometries. The wings have
a finite thickness, 1% of the forewing root chord.
Figure 2 shows the surface meshes.

The volume mesh has one layer of manually-
generated refined mesh near the wing surfaces.
The locust is placed in a cylindrical region to
have increased refinement around the locust.
The region between the forewing and hindwing

Fig. 1: Flapping aerodynamics of actual locust wings.
Forewing and hindwing geometries as repre-
sented by NURBS and the control mesh. The
forewing is made of a single patch, and the hind-
wing two patches.

Fig. 2: Flapping aerodynamics of actual locust wings.
Surface meshes.

has even more refinement. The cylindrical re-
gion is tilted to the body angle of the locust
during the flight. The meshes inside and outside
the cylindrical region were both generated by an
automatic mesh generator. Figure 3 shows the
boundaries of the volume mesh and cylindrical
refinement region.

The mesh deformation and remeshing, when
needed, occur only inside the cylindrical region.
The mesh motion in each flapping cycle is rep-
resented by four cubic NURBS patches in time.
This can be seen in Fig. 4.

The patches have different number of control
points in time, and the volume mesh has differ-
ent number of nodes and elements in each patch.
The numbers are shown in Tab. 1.
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Fig. 3: Flapping aerodynamics of actual locust wings.
Boundaries of the volume mesh and cylindrical
refinement region.

Tab. 1: Flapping aerodynamics of actual locust wings.
Number of temporal control points and knot
spans in each NURBS patch. Number of nodes
and elements in the volume mesh in each patch
and the control point where the mesh is gener-
ated.

Temporal Fig. 4 Control Knot
Patch Color Points Spans

1 Blue 7 4
2 Orange 6 3
3 Purple 5 2
4 Green 5 2

Temporal Meshing Nodes Elements
Patch Point

1 4 355,229 2,115,916
2 3 389,981 2,323,144
3 2 346,993 2,066,797
4 3 380,034 2,264,324

In each patch, the volume mesh is generated
at an interior control point and moved to the
other control points with the linear-elasticity
mesh moving method and MJBS. This means
that the remeshing occurs at the patch bound-
aries. The control points where the volume mesh
is generated are shown in the caption of Fig. 4
and in Tab. 1. With all those control points, the
motion of the volume mesh now has the cubic
NURBS representation in time. The representa-
tion is built only once, in the first flapping cycle,
with the same representation used in the subse-
quent cycles. The volume mesh is generated only

Fig. 4: Flapping aerodynamics of actual locust wings.
Hindwing tip trajectory represented by four
cubic NURBS patches in time. The figure
also shows the temporal control points for each
patch. The numbers in parentheses indicate the
control points that are at the end of one patch
and start of the next. The volume mesh is gen-
erated at the control points 4, 3, 2, and 3 of the
blue, orange, purple, and green patches. Then,
in each patch, the mesh is moved to the other
control points with the linear-elasticity mesh
moving method and MJBS. This means that
the remeshing occurs at the patch boundaries.
With all those control points, the motion of the
volume mesh now has the cubic NURBS repre-
sentation in time. The representation is built
only once, in the first flapping cycle, with the
same representation used in the subsequent cy-
cles. The volume mesh is generated only four
times for the entire flow computation with mul-
tiple flapping cycles.

four times for the entire flow computation with
multiple flapping cycles.

Figure 5 shows length scales. The flight speed
is 2.4 m/s. The flapping cycle is T = 0.047 s.
Each knot span has 25 time steps, resulting in
275 time steps per flapping cycle. There are 4
nonlinear iterations per time step. The compu-
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90 mm 

80 mm 

Fig. 5: Flapping aerodynamics of actual locust wings.
Boundaries of the volume mesh and cylindrical
refinement region.

Fig. 6: Flapping aerodynamics of actual locust wings.
Vorticity magnitude for the first four of eight
equally-spaced instants during the second flap-
ping cycle.

tation was performed with the ST-SUPS in the
first two nonlinear iterations, and the ST-VMS
in the last two. Figures. 6 and 7 show the vortic-
ity magnitude at equally-spaced instants during
the second flapping cycle.

Fig. 7: Flapping aerodynamics of actual locust wings.
Vorticity magnitude for the last four of eight
equally-spaced instants during the second flap-
ping cycle.

10. A square-section block
undergoing torsion

This is an example of mesh relaxation and mesh
moving based on fiber-reinforced hyperelastic-
ity and optimized ZSS. For comparison pur-
poses, we also show the results from mesh mov-
ing based on the MJBS and mesh relaxation and
mesh moving based on neo-Hookean hyperelas-
ticity. The details of the mesh relaxation and
mesh moving computations can be found in [6].
Table 2 shows the material properties for the
MJBS, and Tab. 3 shows the material properties
for the neo-Hookean (“NH”) and fiber-reinforced
(“FR”) hyperelasticity. We are using nondimen-
sional values. In the case of Tab. 3, the Poisson’s
ratio can be written as ν = 3κB−2µ

2(3κB+µ) .

Figure 8 shows the box-shaped domain used in
the mesh relaxation and mesh moving computa-
tions, with the square-section block in its initial
and twisted configurations. The deformation of
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Fig. 8: A square-section block undergoing torsion. Box-
shaped domain used in the mesh relaxation and
mesh moving computations, with the square-
section block in its initial (red) and twisted
(green) configurations. One end of the block is
fixed centrally on the front plane of the box. The
other end is at the midpoint between the front
and back planes and undergoes a 90o rotation
about its own center.

Fig. 9: A square-section block undergoing torsion. The
initial mesh x0. The checkerboard pattern is for
differentiating between the NURBS elements.
The colors are for differentiating between the
NURBS patches.

Tab. 2: A square-section block undergoing torsion. Ma-
terial properties and χ for the MJBS. For the
definitions of the symbols, see [6].

ν E χ
MJBS1 0.3 1 2
MJBS2 0.3 1 1

the block, as given in Fig. 8, defines the specified
boundary positions in computing the positions
of the rest of the points in the box-shaped do-
main. We use different material properties for

Fig. 10: A square-section block undergoing torsion.
Mesh after the relaxation. Neo-Hookean (top)
and fiber-reinforced (bottom) hyperelasticity.
The checkerboard pattern is for differentiat-
ing between the NURBS elements. The col-
ors are for differentiating between the NURBS
patches.

Tab. 3: A square-section block undergoing torsion. Ma-
terial properties for the neo-Hookean (“NH”)
and fiber-reinforced (“FR”) hyperelasticity. For
the definitions of the symbols, see [6].

κB βB µ C1 C2

NH1 10−1 4 2×102 0 -
NH2 10−3 0 1 0 -
FR1 10−1 4 2×102 102 101

FR2 10−3 0 1 0.5 1.0

the first two layers of elements around the block
and the rest of the elements, which we define
as the “inner” and “outer” elements. In the test
computations with the MJBS, NH, and FR, we
use the material properties of MJBS1, NH1, and
FR1 for the inner elements, and MJBS2, NH2,
and FR2 for the outer elements.
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Fig. 11: A square-section block undergoing torsion.
The portion of x0 used in visualizing the
deformed-mesh configurations. The checker-
board pattern is for differentiating between the
NURBS elements. The colors are for differen-
tiating between the NURBS patches.

Tab. 4: A square-section block undergoing torsion.
Mesh orthogonality measures for the initial and
post-relaxation meshes, with the neo-Hookean
(“NH”) and fiber-reinforced (“FR”) hyperelastic-
ity. Deviation of the mesh-line angles from π/2,
represented in terms of the L2 and max norms.

Method L2 norm Max norm
x0 4.8◦ 43.1◦

NH 0.4◦ 75.8◦

FR 0.1◦ 35.6◦

Tab. 5: A square-section block undergoing torsion.
Mesh orthogonality measures for the initial and
post-relaxation meshes, with the neo-Hookean
(“NH”) and fiber-reinforced (“FR”) hyperelastic-
ity. Deviation of the mesh-line angles from π/2,
represented in terms of the L2 and max norms.

Method L2 norm Max norm
MJBS 8.4◦ 78.1◦

NH 1.2◦ 88.5◦

FR 1.1◦ 64.2◦

We use a quadratic NURBS mesh with
136,000 elements and 167,728 control points.
The initial mesh, x0, is shown in Fig. 9. Fig-
ure 10 shows the mesh after the relaxation. No
mesh relaxation is used with the MJBS. Ta-
ble 4 shows the mesh orthogonality measures for
the initial and post-relaxation meshes. The tor-
sion takes place in 500 steps. In visualizing the
deformed-mesh configurations, we use the por-
tion of x0 shown in Fig. 11. Of that portion, be-

Fig. 12: A square-section block undergoing torsion.
Post-torsion meshes. MJBS (top) and neo-
Hookean (middle) and fiber-reinforced (bot-
tom) hyperelasticity. The right frame is the
zoomed view. The checkerboard pattern is for
differentiating between the NURBS elements.
The colors are for differentiating between the
NURBS patches.

cause of the symmetry, we visualize only half of
the NURBS patches. Figure 12 shows the post-
torsion meshes. Table 5 shows the mesh orthog-
onality measures for the post-torsion meshes.

11. Ventricular assist
device

This is an example of the classes of computations
performed with the MJBS. It is FSI simulation
of a ventricular assist device, coming from [54].
The computational model has a width of 7.7 cm,
and an apex-to-apex height of 4.5 cm. The main
blood chamber has two arms, with one assigned
exclusively as the inlet, and the other as the out-
let, each with a dimeter of 1.5 cm. The air cham-
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ber has one small inlet/outlet port with a diame-
ter of 0.8 cm. These are labeled in Fig. 13. The
device is driven by the prescribed flow in and
out of the air chamber. The fill period is 0.45 s
and the ejection period is 0.3 s, with the stroke
volume of 73 mL.

Fig. 13: Ventricular assist device. The blood domain
is in (red), and the air domain is in (blue).
The inlet and outlet faces of the blood chamber
are labeled 1 and 2, respectively. The air-side
inlet/outlet face is labeled 3.

Fig. 14: Ventricular assist device. Flow speed in the
deformed blood chamber configuration at t =
0.15 s.

The ALE-VMS method employing linear
tetrahedral elements was used for the flow sim-
ulation. At the start of the simulation, the
number of elements is 238,322 in the air cham-
ber and 497,160 in the blood chamber. Isogeo-
metric Kirchhoff–Love shell [195]-[198] was used
in modeling the thin membrane, with a thick-
ness of 0.25 mm, separating the blood and air
chambers. The shell was discretized using 1,024
C1-continuous quadratic NURBS elements. The
simulations were run for two time cycles of 0.75 s
each, with 750 time steps per cycle.

Due to very large deformations of the mem-
brane, an occasional remeshing was necessary

Fig. 15: Ventricular assist device. Top view of the
membrane deformed configuration at t =
0.15 s. Note the smoothness of the wrinkles.

to keep the fluid mesh quality under control.
Remeshing was triggered once an element vol-
ume was reduced to 70% or increased to 170%.
During the remesh, the surface meshes of the
blood and air chambers, and the fluid–structure
interface mesh, were preserved, and a new tetra-
hedral mesh was generated in the interiors. The
solution data at the current step (fluid velocity,
acceleration, pressure, and mesh velocity and
displacement) were transferred to the new mesh
by means of nodal interpolation. No special pro-
cedures for transferring the pressure field (e.g.,
pressure clipping [9, 23, 199]) were employed.

The results reported are for the second cy-
cle. Figures 14–16 show snapshots of the com-
puted flow speed and membrane deformation.
The simulation captures complex membrane mo-
tion, with many folds, clearly seen in Figs. 15
and 16. The deformed membrane surface is
notably smooth, with no sharp kinks on the
mesh edges, which is due to the presence of
the bending terms in the Kirchhoff–Love shell
formulation and the underlying smoothness of
the NURBS discretization. The smooth buck-
ling motion of the membrane combined with the
MJBS retains the quality of the fluid mechanics
mesh near the fluid–structure interface and in
the interiors.

During the fill stage, a strong vortex is cre-
ated in the blood chamber. The vortex is then
destroyed early in the eject phase, as seen in
Fig. 17.
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(a)

(b)

(c)

(d)

Fig. 16: Ventricular assist device. The membrane de-
formed configuration at time (a) t = 0 s, (b)
t = 0.15 s, (c) t = 0.3 s, and (d) t = 0.525 s.

(a)

(b)

Fig. 17: Ventricular assist device. Blood flow speed
above the plane separating the blood and air
chambers. In-plane vectors shown during (a)
expel stage (t = 0.14 s) and (b) fill stage
(t = 0.665 s).

12. Concluding remarks

We have provided an overview of some of the
mesh moving methods developed since 1990 in
connection with the ST-SUPS and ST-VMS
and used also with the ALE-SUPS and ALE-
VMS. A good mesh moving method can decrease
the element distortion in parts of the flow do-
main where we care about the solution accu-
racy more, maintain the quality of the bound-
ary layer meshes near the fluid–solid interfaces
as the mesh moves to follow those interfaces,
and decrease the remeshing frequency even when
the fluid–solid and fluid–fluid interfaces undergo
large displacements. The mesh moving methods
we provided an overview for range from special-
purpose mesh moving methods to the MJBS to
a mesh moving method based on fiber-reinforced
hyperelasticity. These methods have been used
in computation of many complex flow problems
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in the categories of fluid–particle interaction,
FSI, and more generally, MBI. The classes of ap-
plications range from flapping aerodynamics of
actual locust wings to ventricular assist devices,
and we also presented in this article examples of
the computations performed.
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