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Abstract

We study repeated games in which players have im-
perfect execution skill and one player’s true skill is
not common knowledge. In these settings the possi-
bility arises of a player “hustling”, or pretending to
have lower execution skill than they actually have.
Focusing on repeated zero-sum games, we provide
a hustle-proof strategy; this strategy maximizes a
player’s payoff, regardless of the true skill level of
the other player.

1 Introduction

In many games of interest agents have differing skill, and
sometimes the skill of the various players is not common
knowledge. Skill typically can refer broadly to any facet of a
player’s ability to perform both the mental and physical tasks
necessary to succeed in a particular game or undertaking. One
such facet, upon which we will focus, is execution skill.

An example of this aspect of skill can be seen in the game
of billiards. A billiards player utilizes planning and reason-
ing skills to survey the table and decide on a shot to attempt.
Execution skill determines how accurately the player is able
to execute the planned shot. This type of skill clearly has an
enormous impact on the success of a billiards player.

Execution skill has been studied in [Dreef et al., 2002] and
[Archibald et al., 2010], but these works were experimental
and concerned specific games. We present a model of exe-
cution skill for general games and discuss the impact that an
agent’s execution skill has on game situations. We then move
to our main setting, repeated zero-sum games where an agent
is facing an opponent with unknown execution skill. Our
main result is a strategy which maximizes a player’s payoff,
regardless of the true execution skill level of the opponent.
We then briefly discuss some related work and conclude.

2 Defining execution skill

One important property of execution skill, especially when
execution skill is not known by opponents, is that a player
may “hustle”, or imitate a player with less execution skill.
Conversely, of course, a less skilled player cannot imitate a
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player with more skill in the long run. For example, a 95%
free-throw shooter in basketball could intentionally miss 45
of 100 free throws and thus appear to be a 55% shooter. But
it would be highly improbable for a 55% shooter to make 95
of 100 free throws, yet this would be a likely outcome for the
first player, if she were attempting to make each shot.

A natural method for reasoning about execution skill is to
imagine that an agent’s selected action is perturbed by the
addition of noise, which results in the execution of an un-
intended action with some probability. A player with higher
execution skill would be expected to have a higher probability
of her intended action being executed, or alternatively, have
her selected action be perturbed by less noise.

When a player knows the characteristics of the noise that
will be applied to her action selection, then the situation is
equivalent to one in which she simply selects the distribu-
tion over actions that results from the addition of noise as her
original, but now mixed, strategy. Therefore, an equivalent
way of modeling the execution skill of a player is to consider
restrictions in the player’s mixed strategy space, instead of
explicitly reasoning about the addition of external noise. The
player is now permitted only to select mixed strategies in the
game that are “allowed”, given her execution skill. Execu-
tion skill can then be represented by a specific restriction of a
player’s mixed strategies.

Restricting a player’s mixed strategy space has been uti-
lized as a modeling device before, both in game theory [Sel-
ten, 1975] and AI [Bowling and Veloso, 2002]. Bowling
and Veloso studied limited agents in stochastic games and
the player limitations, whether physical, mechanical, or men-
tal, were modeled as restrictions in the space of mixed poli-
cies. Conditions were given which guaranteed the existence
of equilibria in these limited stochastic games. Our model is
a special subclass of that presented in [Bowling and Veloso,
2002], informed additionally by our intuition about the nature
of restrictions that result from imperfect execution skill. The
main focus of our work is execution skill in the case of in-
complete information, a topic not addressed by Bowling and
Veloso.

3 Execution skill with perfect information

We first present some preliminary game theory definitions
and then return to execution skill and how it can be modeled



in games. Much of our notation is derived from [Shoham and
Leyton-Brown, 2009].

3.1 Preliminaries

A game G is a triple (N, A,U) where N is a finite set of n
players indexed by i, A = A; x --- x A, where A; is the
finite set of pure strategies available to player ¢, and U is a
tuple (U, ...,U,), where U; : A — R is player i’s payoff
function. A subscript —j denotes the set of all players except
7.

For any set Y let A(Y") be the set of all probability distri-
butions over Y. Then the set of mixed strategies for player
iis S; = A(A;). We denote by S = S; x --- x S,
the set of mixed strategy profiles. The expected payoff of
mixed strategy s to player i (u;) is calculated by w;(s) =
Yaca Uia) [T5=, sj(az), where s;(a;) is the probability
with which player j plays action a; € A; under mixed strat-
cgy S;.

The safety value, or maxmin value for player i in
game G is denoted by v,(G) = max,, ming_, u;(S;, S—;).
The safety strategy for player ¢ is simply «;(G)
arg maxs, ming_, u;(s;, s—;). The safety value is the amount
that a player can guarantee himself in a game, regardless of
the actions of opponents.

The minmax value for player ¢ in game G is denoted by
0;(G) = mins_,maxs,u;(s;, S—;). The minmax value for
player 7 is the lowest payoff that player ¢’s opponents can
hold him to by any choice of s_;, given that player 7 correctly
predicts s_; and plays a best response to it.

A strategy profile s* forms a Nash equilibrium if for ev-
ery player ¢ and all strategies s; € S; it is the case that
ui(sf,s%;) > uisi, s*;).

3.2 Modeling execution skill

As discussed earlier, imperfect execution skill can be mod-
eled by introducing restrictions to the strategy spaces of play-
ers in games, as was used to model limitations on players in
[Bowling and Veloso, 2002]. We additionally require that the
restricted strategy spaces of the players be convex. This is
equivalent to saying that players can utilize external random-
ization in selecting a strategy, and thus can always randomly
select between any two allowed strategies. Once execution
skill has been precisely defined, it will be clear how our model
captures the afore-mentioned property of the higher skilled
player being able to imitate a lower skilled player.

For simplicity of exposition and analysis, we require exe-
cution skill restrictions to be symmetric in the action space of
the players. We now define execution skill in games.

Definition 3.1. Given a game G = (N, A, U), let | A;| be the
number of actions available to player i in the game. Player
1’s execution skill level in G is represented by k; € [\,Tli\v 1],
which bounds the probability that player © can assign to play-
ing any single action in G. This probability can be at most
K4, and must be at least 17"””_1’1.

[Ail

Note that it follows that if player ¢ plays an action with
probability ;, the remaining probability mass of 1 —k; is dis-
tributed equally among the other actions. Our results can be
generalized to the case where this common minimum bound
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does not exist, but it is included for the resulting notational
simplicity. If x; = 1 for player 7 in some game, then we
say that player ¢ has perfect skill in that game. The definition
also results in a total ordering over execution skill levels, as
follows.

Definition 3.2. If k; > kj, then we say that player i has
more execution skill than player j, while player j has less
execution skill than player i. If k; = kj, then player i and
player j have equal execution skill.

Definition 3.3. A game of execution skill is a tuple
(N,A,U,K). (N,AU) define a game, and K
(K1, ... kn) specifies the execution skill level for each player
in the game. If k; = 1 for each player 1, it is called a game
of perfect execution skill. Otherwise, it is called a game of
imperfect execution skill.

When dealing with a game of perfect execution skill we
often omit the K, for brevity.

Definition 3.4. Given a game of execution skill G, we denote
by K; the set of mixed strategies that player i can choose in
game G. This is the set of all mixtures that place no more
than k; probability on any action, and no less than I}Jﬁ
3.3 The effects of imperfect execution skill

In this section some basic analysis of a game of imperfect
execution skill is presented.

Game transformation

When the execution skill levels of the agents are common
knowledge, a game of imperfect execution skill can be rewrit-
ten as an equivalent (in expectation) game of perfect execu-
tion skill. The game of execution skill G = (N, A, U, K) is
transformed to G’ = (N’, A’,U’), where N' = N, A’ = A,
and (U (a)), is changed to

D
yeA

where 1{-} is an indicator function, which equals 1 when its
argument is true, and is O otherwise.

Thus, when the players in the transformed game G’ play a
pure joint action a € A’, the resulting payoff is equivalent to
what would have been obtained in expectation in the game of
imperfect execution skill G if each player ¢ were to play the
mixed strategy which places probability «; on action a;, with
the remaining 1 — k; probabilistic mass distributed evenly
among the other actions.

1—/11'

|Ai| —1

H <1{yi =a;fki + Hyi # ai} <

i€ N

Effects in zero-sum games

As prelude to the discussion of repeated zero sum games in
section 4, we briefly discuss the impact that a player’s execu-
tion skill level has on the value of a zero-sum game.

The famous minimax theorem [von Neumann, 1928] states
that in any finite, two-player, zero-sum game G, in any Nash
equilibrium each player receives a payoff v;(G) that is equal
to both his maxmin value and his minmax value (v;(G) =
0;(G) = v;(G). For this reason we focus on the impact that
execution skill has on a player’s safety value in a game. Due
to its fairly straightforward nature, we omit the proof of the
next theorem.



Theorem 3.5. Let G’ and G" be games of imperfect execu-
tion skill which differ only in the execution skill of player 1.
Assume that k), > k. Then the safety value of player i in G',
v;(G"), is greater than or equal to the safety value of player
iin G" (v;(G") > v,(G")).

Thus, greater execution skill for a player can never de-
crease their safety value in a particular game. This fact gives
intuition for the setting described in the next section. Many
other theorems can be stated regarding the effect of imperfect
execution skill in one-shot normal form games, but we omit
these due to space limitations.

4 Repeated games of incomplete information

We now come to our main focus, repeated game settings
where execution skill is not common knowledge. As a mo-
tivating example, consider the setting presented in the 1961
film “The Hustler”. In the film, Jackie Gleason’s character,
Minnesota Fats, is a famous champion of billiards. He has
participated in many publicly observed billiards games and
everyone is aware of his very high execution skill level. The
film introduces Eddie Felson, the character played by Paul
Newman, as a challenger to Minnesota Fats who desires to
beat him in a head-to-head match. In this case the execu-
tion skill of Eddie Felson is not known to Minnesota Fats,
whereas Eddie has knowledge of Minnesota’s skill level. As
the name of the movie indicates, one common strategy for
unknown players in such situations is to hustle, pretending
to have less execution skill than they actually have. The aim
of such behavior is to get the opponent to utilize a strategy
that he normally wouldn’t, which can lead to the opponent
receiving a lower payoff than he should in the game.

A strategy for an agent facing an opponent of unknown ex-
ecution skill in a game has two seeming opposing desiderata.
First, the strategy should not be susceptible to hustling, where
the agent loses payoff due to the opponent’s initial imitations
of low skill. Second, the strategy should not overestimate the
opponent’s execution skill and consequently cause the player
to fail to receive his maximal possible payoff given his op-
ponent’s actual skill level. In many settings maximizing the
payoff obtained against any opponent is crucial to overall suc-
cess.

The specific setting we investigate is two-player infinitely
repeated zero-sum games of imperfect execution skill. In this
setting player 2 retains the same execution skill level through-
out the infinite duration of the repeated game, and player 1
has no knowledge of this level. Conversely, it is common
knowledge between the players that player 1 has perfect exe-
cution skill. The players cannot communicate outside of the
game, but can observe the actions taken by each player in
all previous rounds. This repeated setting gives player 1 a
chance, throughout the course of the game, to learn about the
execution skill level of player 2.

4.1 Preliminaries

Foreacht = 1,2, ..., let H! be the set of possible histories
up to (but not including) stage ¢, namely H* = (A x ... x
A(t-1 times)). The empty history will be designated by h°.
A pure strategy for player i is a collection o; = {c!}°,
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where of: H' — A;. A mixed strategy for each player is a
probability distribution over pure strategies. Since our setting
assumes perfect recall, we can focus our attention on behav-
ioral strategies, as shown in [Kuhn, 1953]. Behavioral strate-
gies are strategies where the players randomize independently
at each stage of the game. The players’ behavioral strategies
can be defined as of: H' — A(A;) and 0: H' — Ko.
This ensures that player 2 selects only valid mixtures given
his execution skill level.

We now define the payoffs in the infinite repeated game.
For a history h” = ((a},ad), (a3,a3),... (al 71, al™1)), we
define the payoff to each player i as

T 1, t ot
Bi = (T) E ui(ay,ay)
t=1

A pair of strategies o = (01, 02) by the two players induces
a probability distribution over histories. Denote by E, (37 )
the expected value of 37 with respect to this induced distri-
bution.

A pair of strategies 0 = (01, 02) form a Nash equilibrium
if for each player i it is the case that for all strategies &; of
player ¢

i Iy > 1 50w (BL
Jim sup Eop(87) 2 lm sup B, o),p(8; )

4.2 Zero-sum repeated games of complete
information

We first briefly discuss what the value of the infinite repeated
game would be if player 2’s execution skill level were com-
mon knowledge. We let G, refer to a single stage zero-sum
game of imperfect execution skill where player 2 has an ex-
ecution skill level of z € [ﬁ, 1] and player 1 has perfect
execution skill, and where = is common knowledge. The in-
finite repetition of GG, is denoted by G5°. We will denote by
Go° the repetition of G, when x is only known to player 2.
Recall from the discussion in section 3.3 that there is a well-
defined value for each player in G,

Ui(Gw) = yi(Gw) = ﬁz(Gw)

Theorem 4.1. Given common knowledge of x, the value of
the infinite repeated game G°, is v;(G,) for each player i.

Proof. From the folk theorem for repeated games [Fudenberg
and Tirole, 1991] we know that in any Nash equilibrium of a
repeated game, each player will receive a payoff of at least
0;(G,). The only value which achieves this for each player,
since the game is zero-sum, is the value of the stage game
v;(G). This value can be obtained by playing an equilibrium
strategy of the stage game G, in each round of the repeated
game. |

4.3 From complete to incomplete information

Our goal is now to discover strategies for each player which
form an equilibrium in the repeated game G3°, and guarantee
that each will receive the v;(G) in the infinitely repeated
game, as if 2 were commonly known. Just attaining v (G, ) is
simple for player 2, as he knows the value of z and can simply



play the safety strategy of the game G, ensuring that he gets
at least va(Gy ), regardless of the actions of player 1. Two
issues remain. What strategy if any for player 1 also obtains
this value, and will these two strategies form an equilibrium?

To simplify the following notation, in what follows we as-
sume that |A;| = 2, although all our results extend simply to
the general case. As x is varied between 0.5 and 1, player
1 can have at most two different safety strategies, a1(Go.5)
and a1 (G1). Let ¢* be the value of x at which these strate-
gies both yield the same safety value. If x < ¢*, then the
safety strategy for player 1 is a1 (Go 5), while if x > ¢* it is
a1(G1). If player 1 has a single safety strategy for all pos-
sible values of z (i.e. a1(Gos) = a1(G1)), then she can
simply play this strategy and always be guaranteed v1 (G, ).
With that trivial solution discussed, we assume in what fol-
lows that 041(G0.5) 75 al(Gl).

An abstract analysis

At a high level there are two different approaches that player
1 could use. Player 1 can begin the game either by playing
a1(Go.5) or a1(G1) and then modify her strategy choice in
future rounds depending on player 2’s actions. Recall from
theorem 3.5 that v,(G5) will be at its minimum value (and
v, (G,) at its maximum value) when 2 = 0.5, and v,(G;)
will be at its maximum value (and (v, (G) at its minimum
value) when = 1. Also, when playing «;(G1) player 1 is
guaranteed exactly v1(G1) in expectation, regardless of the
actions of player 2.

It is clear then, that if player 1 were to begin by playing
a1(G1), player 2 could respond by randomizing equally be-
tween his two actions, regardless of what his true execution
skill level were. This would make it impossible for player 1
to tell from the action choices of player 2 anything about the
value of z, leaving player 1 nothing to base a change of strat-
egy upon. It seems clear that this approach by player 1 would
lead to an average payoff for player 1 in the repeated game of
v1(G1), which is the best payoff possible for player 2.

However, if player 1 begins by playing a1(Go5) then
player 2 is forced, in a certain sense, to reveal his execu-
tion skill level by playing his best response often enough to
get player 1 to change her strategy choice. Let 2 be player
2’s pure strategy best response to strategy «1(Go.5), and Ao
player 2’s other pure strategy. Throughout the duration of the
game, player 1 can keep track of r,,, the number of times that
player 2 plays action 73 in the first n rounds. Thus, 7, will
always be less than or equal to n.

If, in response to player 1’s strategy, player 2 never plays
72 more frequently than ¢* (“» < ¢*Vn), then player 1’s
payoff in the repeated game will be greater than v; (G1). Of
course, player 2 can only reliably play 2 more frequently
than ¢* if x > ¢*. When "= surpasses ¢*, player 1 can modify
her strategy. The difficulty, as we shall see, lies in switching
between the two strategies in such a way that does not leave
player 1 vulnerable to exploitation.

Example of a naive solution failing

Let’s see what can happen if player 1 uses a naive strategy
based on the previous idea, playing «;(Go5) in round n if
= < ¢* and a;(G1) otherwise. We consider the following

game, where Ul(Gl) = 2.5, Oél(Go,g,) = D, al(Gl) = (U :
0.5,D:0.5),¢* =0.75and y2 = R.

| [ LR
U | 1,-1] 3,3
D | 44|22

Figure 1: Example zero-sum game

When player 2 has perfect execution skill (z = 1) there
is a sequence of actions (a%) which yield player 1 a lower
payoff than v1(G1) = 2.5. We show this sequence, along
with, for each round, player 1’s strategy choice s7, %”, and
the expected payoff to player 1 in that round (EUT").

n st ay o EUY
0 D R - 2
1 al(Gl) L 1.0 2.5
2 D R 0.5 2
3 D R | 0.66 2
4 D R | 0.75 2
5 Oél(Gl) L 0.8 2.5
6 D R | 0.66 2
7 D R | 0.714 2
8 D R | 0.75 2
9| ai(Gy)| L | 077 ] 25

The cyclical nature of player 2’s exploitation of player 1’s
strategy is immediately apparent. This exploitation enables
player 2 to get a higher payoff than he should in the game.
This example shows that player 1’s strategy must be carefully
constructed to ensure that such exploitation does not occur.

A provably correct solution

We represent player 1’s strategy by a sequence of functions
{fn}, where each f,, : N — [0, 1). Each function f,, will be
a mapping from valid values of r,, to values in [0, 1). At any
point in the game, player 1 will play according to the function
fn» where n is the current round number. In each round player
1 will play the strategy 1 (G1) with probability f,(r,,) and
strategy a1 (Go.5) with probability 1 — f,(ry,).

Definition 4.2. We call a sequence of functions { f,,} Hustle-
proof, if

I fo=0

2 k<d = fu(k) < fuld)

Afrn <q* -m, then fr(r,) =0

. falng*+ k)l 0asn — oo, forallk € N
. folk-n) T lasn — oo, forall k € (¢*,1]

* Srt1(knnt1)— fn(knn) 1-q*
Af{kn} = ¢F, then gt — s — =0

Before we move to our main result, we give an example of
a hustle-proof sequence of functions.

0
wn(rn) = { 1-— 1

R

QA L AN W

T < ng*
Tn > ng* M



Theorem 4.3. If player 1’s strategy corresponds to a hustle-
proof function sequence she is guaranteed at least v1(Gy) in
the repeated game G2°.

Proof. We proceed to show that for any sequence of actions
by player 2, the value of the repeated game where player 1
uses the proposed strategy will be at least v1(G,). Since
player 1’s strategy depends upon n and r,, we characterize
player 2’s action sequences by the behavior of the ratio ~.

[Case 1] There exists a T and a k < ¢* such that V¢ > T,
It < k.

' By property 3 we also then have that player 1 will be play-
ing a1 (G 5) after the point T'. Player 1’s average payoff will
converge to at least v1(Gy). For any skill level x > k of
player 2, this ensures player 2 at least v1 (G, ) as desired. No-
tice that if x < ¢*, then by the definition of execution skill
and the law of large numbers, the observed frequency with
which player 2 plays action 5 can converge to at most x.
Thus, any sequence created by such a player must fall into
this case, guaranteeing player 1 at least v1(G.,).

[Case 2] There exists a T and a k > ¢* such that V¢ > T,
ot > k.

' Since for n. > T we know that *» > k > ¢* holds, by
properties 2 and 5 we know that f,,(r,) — 1, which means
that player 2 will play the strategy «;(G1) with probability
converging to 1. This strategy guarantees player 1 a payoff
of v1(G1), which is equal to v1 (G,,), since player 2 can only
create such a sequence when = > k.

[Case 3] For any T" and any k& > ¢*, there existsat > T
such that 7+ < k.

The only types of action sequences not handled by the pre-
vious cases are those which will cause the ratio = to return
arbitrarily close to ¢* an infinite number of times. We note
that for this to occur it must be the case that z > ¢*. In each
of these cases v1(G;) = v1(G1) = v1(Gg+).

In this case we need to ensure that the magnitude of any
gains by player 2 will decrease to 0 over time. In a round
where player 2 plays s, player 1 has expected payoff of less
than v1(G,), while if player 2 plays 42, player 1 receives
more than v1(G,). For any k > ¢*, if there is an infinite
subsequence of = which is above £, then by case 2 this sub-
sequence will eventually yield an average payoff of v, (G1),
as desired. The other subsequence of %”, which must con-
verge to ¢*, will by properties 4 and 6 converge to yielding
an average reward of v1 (G1).

Thus, we have shown that for any action sequence and pos-
sible skill level « of player 2 given that action sequence, the
proposed strategy guarantees player 1 an expected payoff in
the infinite repeated game of v1 (G ). |

Figure 2 shows some example payoff sequences corre-
sponding to the example game in figure 4.3, when player 1
utilizes the strategy corresponding to equation 1. Each graph
demonstrates the convergence of the average payoff of strat-
egy {wy, } against different opponent strategies. In figure 2(a),
player 2 plays a constant strategy of c2(G1) in each round,
and the average payoff converges to v1(G1) = v1(Gg+) =
2.5. In figure 2(b), player 2 plays the constant strategy of
a2(Gog) in each round, and the average payoff converges
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to v1(Gog) = 2.8. In figure 2(c), player 2 plays 2 with
probability 0.85 in each round, and the average payoff again
converges to v1(G1) = 2.5. In the final figure, 2(d), player
2 utilizes a strategy which causes = to cycle higher than
q¢* = 0.75 and then back down to ¢*. In each graph the value
to which the average payoff should converge is shown by a
dashed line.

4 4
235 =
] 35
o 3 Y
e e
] s 3
Z 25 z
2 25
10° ? 10* 10° 10° 10° 10* 10°
Round number Round number
(a) P2 plays a2(G1) (b) P2 plays a2(Go.6)
26 3
225 228
s 26
22 4 o
(] (]
g Bas
o3 2
< < 20
22 5

o’ 10* ° 10° 10° 10* 10°
Round number

Round number
(c) P2 plays v2 w.p. 0.8

10°

(d) P2 plays cyclically

Figure 2: Average P1 payoff against different P2 strategies

Corollary 4.4. The following two strategies are in equilib-
rium in the game G :

e player I uses a strategy corresponding to a hustle-proof
sequence of functions

e player 2 plays as(Gy), his safety strategy in the game
where x is common knowledge

Proof. Follows directly from the fact that the strategy
a2 (G5 ) by definition guarantees player 2 at least v2(G,) =
—v1(Gy), while player 1’s strategy guarantees her at least
v1(Gy ), by theorem 4.3. O

One thing we can consider is how much information player
1 learns throughout the entire course of the game about player
2’s execution skill level. If z < ¢*, then player 1 will learn
exactly what the execution skill level of player 2 is, because
the limit average payoff v1(G,) achieved in equilibrium at
each such skill level is unique. If z > ¢*, player 1 will not
know anything more than this fact. Since player 2’s strategy
is the same at each of these skill levels, the only information
player 1 gets is that player 2 has enough execution skill to
secure his safety value in the game G .

At this point we can say a few words about how this method
extends to games beyond 2 x 2. It these games, instead of a
single ¢*, there will be a finite set of g* values, since there can
be multiple execution skill values for player 2 where player
1’s safety strategy changes. These ¢* values will divide up
player 2’s execution skill range into intervals, where player
1’s safety strategy is constant on each interval. Player 1 will



still begin by playing her safety strategy assuming that player
2 has minimal execution skill, forcing player 2 to reveal the
fact that he in fact has more execution skill. At any point in
time player 1 will use a hustleproof function to randomize
between the safety strategy corresponding to the interval in
which the current skill estimate (“ in this paper) lies and the
safety strategy of the next lower interval.

5 Related work

Work has been done in the game theory community where
players are considered to “tremble”. One example is the work
regarding trembling-hand perfect equilibria [Selten, 1975].
However, the mathematics involved only treats these errors in
the limit as their magnitudes approach zero. Work that inves-
tigates finite trembles, or execution error, can be found in that
on proper equilibria [Myerson, 1978], quantal response equi-
libria [McKelvey and Palfrey, 1995] and imperfect equilibria
[Beja, 1992]. The goal of these works is to refine notions
of equilibrium. In each of these works the trembles of the
players are correlated with the expected payoff each of their
actions will receive, and so are only clearly defined given a
strategy profile for the opposing players. We view imperfect
execution skill in a more fundamental way, inherently related
only to the actions possible and the action being attempted,
not with the payoff each action might garner. For example
we wouldn’t expect a reward of one million dollars for the
55% shooter in the basketball example to have an impact on
the probability that he could make 95 of the 100 shots.

Other work has focused on repeated games of incomplete
information. The first work in the area can be found in [Au-
mann and Maschler, 1995]. In these games there is a finite
set of k£ normal form games, one of which is chosen accord-
ing to a distribution p, and that game is played repeatedly.
Much of the subsequent work in the area (e.g. [Hart, 1985;
Shalev, 1994]) focuses, like us, on the setting where the play-
ers have different information about the actual game being
played. In that setting, one player is informed of the game
being played, while the other is not. Recent work within
the multiagent community [Gilpin and Sandholm, 2008] ad-
dressed these games with the purpose of calculating an equi-
librium strategy in the repeated game for the players.

6 Conclusion

In this paper we introduced the concept of execution skill and
presented a hustle-proof strategy for an agent in a repeated
zero-sum game of imperfect execution skill, when that agent
does not know the execution skill level of her opponent. This
strategy is robust in the sense that it ensures that the agent
achieves the same value that she would achieve in the game
if she knew exactly the opponent’s skill level. This strategy
in essence forces the opponent to exhibit his execution skill
in the game since otherwise his payoff will suffer. This high
level approach in zero-sum games with imperfectly skilled
opponents can give insight into other situations where partic-
ipants in multiagent settings have imperfect execution skill.
In the future we intend to investigate similar strategies for
non-zero-sum games, enabling agents to avoid being hustled,
and indeed to gain when it is advantageous. We hope this
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work lays a foundation for future investigations into other as-
pects of execution skill, including incorporating models of
changing execution skill in repeated game settings. We can
also evaluate payoffs differently in the infinite game, using
discounted future rewards, and we plan to compare success-
ful strategies in that setting with the results shown here.

References

[Archibald ef al., 2010] Christopher Archibald, Alon Alt-
man, and Yoav Shoham. Success, strategy and skill: an
experimental study. In Proceedings of AAMAS 2010, 2010.

[Aumann and Maschler, 1995] R. Aumann and M. Maschler.
Repeated Games with Incomplete Information. The MIT
Press, 1995.

[Beja, 1992] Avraham Beja. Imperfect equilibrium. Games
and Economic Behavior, 4(1):18-36, 1992.

[Bowling and Veloso, 2002] Michael Bowling and Manuela
Veloso. Existence of multiagent equilibria with limited
agents. 2002.

[Dreef et al., 2002] M. Dreef, P. Borm, and B. van der
Genugten. On strategy and relative skill in poker. Techni-
cal report, 2002.

[Fudenberg and Tirole, 1991] D. Fudenberg and J. Tirole.
Game Theory. The MIT Press, 1991.

[Gilpin and Sandholm, 2008] A. Gilpin and T. Sandholm.
Solving two-person zero-sum repeated games of incom-
plete information. Proceedings of AAMAS-08, 2008.

[Hart, 1985] Sergiu Hart. Nonzero-sum two-person repeated
games with incomplete information. Mathematics of Op-
erations Research, 10(1):pp. 117-153, 1985.

[Kuhn, 1953] Harold W. Kuhn. Extensive games and the
problem of information. Annals of Mathematics Studies,
28, 1953.

[McKelvey and Palfrey, 1995] Richard D. McKelvey and
Thomas R. Palfrey. Quantal response equilibria for normal
form games. Games and Economic Behavior, 10(1):6-38,
July 1995.

[Myerson, 1978] R. Myerson. Refinements of the Nash equi-
librium concept. International Journal of Game Theory,
7:73-80, 1978.

[Selten, 1975] R. Selten. Reexamination of the perfectness
concept for equilibrium points in extensive games. Inter-
national Journal of Game Theory, 4(1):25-55, 1975.

[Shalev, 1994] Jonathan Shalev. Nonzero-sum two-person
repeated games with incomplete information and known-
own payoffs. Games and Economic Behavior, 7(2):246—
259, September 1994.

[Shoham and Leyton-Brown, 2009] Y. Shoham and
K. Leyton-Brown. Multiagent Systems: algorithmic,
game-theoretic, and logical foundations. —Cambridge

University Press, 2009.

[von Neumann, 1928] J. von Neumann. Zur Theorie der
Gesellschaftsspiele. Mathematische Annalen, 100:295—
320, 1928.





