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Abstract

An important task in the analysis of multiagent sys-
tems is to understand how groups of selfish players
can form coalitions, i.e., work together in teams. In
this paper, we study the dynamics of coalition for-
mation under bounded rationality. We consider set-
tings where each team’s profit is given by a concave
function, and propose three profit-sharing schemes,
each of which is based on the concept of marginal
utility. The agents are assumed to be myopic, i.e.,
they keep changing teams as long as they can in-
crease their payoff by doing so. We study the prop-
erties (such as closeness to Nash equilibrium or to-
tal profit) of the states that result after a polyno-
mial number of such moves, and prove bounds on
the price of anarchy and the price of stability of the
corresponding games.

1 Introduction

Cooperation and collaborative task execution are fundamen-
tally important both for human societies and for multiagent
systems. Indeed, many tasks are too complicated or resource-
consuming to be executed by a single agent, and a collective
effort is needed. Such settings are usually modeled using the
framework of cooperative games, which specify the amount
of payoff that each subset of agents can achieve: when the
game is played the agents split into teams (coalitions), and
the payoff of each team is divided among its members.

The standard framework of cooperative game theory is
static, i.e., it does not explain how the players arrive at a
particular set of teams and a payoff distribution. However,
understanding the dynamics of coalition formation is impor-
tant for many applications of cooperative games, and game
theorists have studied bargaining and coalition formation in
cooperative environments (see, e.g. [Chatterjee et al., 1993;
Moldovanu and Winter, 1995; Yan, 2003]). Much of this
research assumes that the agents are fully rational, i.e., can
predict the consequences of their actions and maximize their
(expected) utility based on these predictions. However, full
rationality is a strong assumption that is unlikely to hold in
many real-life scenarios: first, the agents may not have the
computational resources to infer their optimal strategies, and
second, they may not be sophisticated enough to do so, or lack

information about other players. Such agents may simply re-
spond to their current environment without worrying about
the subsequent reaction of other agents; such behavior is said
to be myopic. Now, coalition formation by computationally
limited agents has been studied by a number of researchers in
multi-agent systems, starting with the work of [Shehory and
Kraus, 1999] and [Sandholm and Lesser, 1997]. However,
myopic behavior in coalition formation received relatively lit-
tle attention in the literature (for some exceptions, see [Dieck-
mann and Schwalbe, 2002; Chalkiadakis and Boutilier, 2004;
Airiau and Sen, 2009]). In contrast, myopic dynamics of
non-cooperative games is the subject of a growing body of
research (see, e.g. [Fabrikant et al., 2004; Awerbuch et al.,
2008; Fanelli et al., 2008]).

In this paper, we merge these streams of research and ap-
ply techniques developed in the context of analyzing the dy-
namics of non-cooperative games to coalition formation set-
tings. In doing so, we depart from the standard model of
games with transferable utility, which allows the players in
a team to share the payoff arbitrarily: indeed, such flexibility
will necessitate a complicated negotiation process whenever a
player wants to switch teams. Instead, we consider three pay-
off models that are based on the concept of marginal utility,
i.e., the contribution that the player makes to his current team.
Each of the payoff schemes, when combined with a coopera-
tive game, induces a non-cooperative game, whose dynamics
can then be studied using the rich set of tools developed for
such games in recent years.

We will now describe our payment schemes in more detail.
We assume that we are given a concave cooperative game,
i.e., the values of the teams are given by a submodular func-
tion; the submodularity property means that a player is more
useful when he joins a smaller team, and plays an important
role in our analysis. In our first scheme, the payment to each
agent is given by his marginal utility for his current team; by
submodularity, the total payment to the team members never
exceeds the team’s value. This payment scheme rewards each
agent according to the value he creates; we will therefore call
these games Fair Value games. Our second scheme takes into
account the history of the interaction: we keep track of the or-
der in which the players have joined their teams, and pay each
agent his marginal contribution to the coalition formed by the
players who joined his current team before him. This ensures
that the entire payoff of each team is fully distributed among
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its members. Moreover, due to the submodularity property
a player’s payoff never goes down as long as he stays with
the same team. This payoff scheme is somewhat reminiscent
of the reward schemes employed in industries with strong la-
bor unions; we will therefore refer to these games as Labor
Union games. Our third scheme can be viewed as a hybrid
of the first two: it distributes the team’s payoff according to
the players’ Shapley values, i.e., it pays each player his ex-
pected marginal contribution to a coalition formed by its pre-
decessors when players are reordered randomly; the resulting
games are called Shapley games.
Our Contributions We study the equilibria and dynamics
of the three games described above. We establish that all our
games admit a Nash equilibrium. Further, we argue that in
all these games the total profit of the system in a Nash equi-
librium, i.e., the sum of teams’ values, is within a factor of 2
from optimal. In addition, for the first two classes of games,
a natural dynamic process quickly converges to a state that is
almost as good as a Nash equilibrium, and the best Nash equi-
librium is in fact an optimal state. We also show that Labor
Union games have other desirable properties.
Related Work The games studied in this paper belong to
the class of potential games, introduced by Monderer and
Shapley [1996]. In potential games, any sequence of im-
provements by players converges to a pure Nash equilibrium.
However, the number of steps can be exponential in the de-
scription of the game. The complexity of computing (ap-
proximate) Nash equilibrium in various subclasses of poten-
tial games such as congestion games, cut games, or party
affiliation games has received a lot of attention in recent
years [Fabrikant et al., 2004; Skopalik and Vöcking, 2008;
Bhalgat et al., 2010]. Related issues are how long it takes
for some form of best response dynamics to reach an equilib-
rium [Chien and Sinclair, 2007; Ackermann et al., 2008], or
how good are the states reached after a polynomial number of
steps [Awerbuch et al., 2008; Fanelli et al., 2008].

[Dieckmann and Schwalbe, 2002] study myopic behavior
in coalition formation; however, unlike us they assume that
the payoffs may be distributed arbitrarily, which leads to very
different outcomes; [Chalkiadakis and Boutilier, 2004] ex-
tend their approach to incomplete information games. Most
similar to our work are recent papers [Gairing and Savani,
2010; Gairing and Savani, 2011], which study the dynamics
of a class of cooperative games known as additively separable
hedonic games; however, in this paper we consider a much
broader class of games.

2 Preliminaries

Non-Cooperative Games A non-cooperative game is de-
fined by a tuple G = (N, (Σi)i∈N , (ui)i∈N ), where N =
{1, 2, . . . , n} is the set of players, Σi is the set of (pure)
strategies of player i, and ui : ×i∈NΣi → R

+ ∪ {0} is the
payoff function of player i.

Let Σ = ×i∈NΣi be the strategy profile set or state
set of the game, and let S = (s1, s2, . . . , sn) ∈ Σ be a
generic state in which each player i chooses strategy si ∈ Σi.
Given a strategy profile S = (s1, s2, . . . , sn) and a strategy
s′i ∈ Σi, let (S−i, s

′
i) be the strategy profile obtained from

S by changing the strategy of player i from si to s′i, i.e.,
(S−i, s

′
i) = (s1, s2, . . . , si−1, s

′
i, si+1, . . . , sn).

Nash Equilibria and Dynamics Given a strategy profile
S = (s1, s2, . . . , sn), a strategy s′i ∈ Σi is an improvement
move for player i if ui(S−i, s

′
i) > ui(S); further, s′i is called

an α-improvement move for i if ui(S−i, s
′
i) > (1 + α)ui(S),

where α > 0. A strategy sbi ∈ Σi is a best response for player
i in state S if it yields the maximum possible payoff given
the strategy choices of the other players, i.e., ui(S−i, s

b
i ) ≥

ui(S−i, s
′
i) for any s′i ∈ Σi. An α-best response move is both

an α-improvement and a best response move.
A (pure) Nash equilibrium is a strategy profile in which

every player plays her best response. Formally, S =
(s1, s2, . . . , sn) is a Nash equilibrium if for all i ∈ N and
for any strategy s′i ∈ Σi we have ui(S) ≥ ui(S−i, s

′
i). We

denote the set of all (pure) Nash equilibria of a game G by
NE(G). A profile S = (s1, . . . , sn) is called an α-Nash equi-
librium if no player can improve his payoff by more than a
factor of (1+α) by deviating, i.e., (1+α)ui(S) ≥ ui(S−i, s

′
i)

for any i ∈ N and any u′i ∈ Σi. The set of all α-Nash equilib-
ria of G is denoted byNEα(G). In a strong Nash equilibrium,
no group of players can improve their payoffs by deviating,
i.e., S = (s1, . . . , sn) is a strong Nash equilibrium if for all
I ⊆ N and any strategy vector S′ = (s′1, . . . , s

′
n) such that

s′i = si for i ∈ N \ I , if ui(S
′) > ui(S) for some i ∈ I , then

uj(S
′) < uj(S) for some j ∈ I .

Let Δi(S) be the improvement in the player’s payoff if
he performs his best response, i.e., Δi(S) = ui(S−i, s

b
i ) −

ui(S), where sbi is the best response of player i in state
S. For any Z ⊆ N let ΔZ(S) =

∑
i∈Z Δi(S), and let

Δ(S) = ΔN (S). A Nash dynamic (respectively, α-Nash
dynamic) is any sequence of best response (respectively, α-
best response) moves. A basic Nash dynamic (respectively,
basic α-Nash dynamic) is any Nash dynamic (respectively,
α-Nash dynamic) such that at each state S the player i that
makes a move has the maximum absolute improvement, i.e.,
i ∈ argmaxj∈N Δj(S).

Price of Anarchy Given a game G with a set of states Σ,
and a function f : Σ → R

+ ∪ {0}, we write OPTf (G) =
maxS∈Σ f(S). The price of anarchy PoAf (G) and the
price of stability PoSf (G) of a game G with respect to a
function f are, respectively, the worst-case ratio and the
best-case ratio between the value of f in a Nash equilib-
rium and OPTf (G), i.e., PoAf (G) = maxS∈NE(G)

OPTf (G)
f(S) ,

PoSf (G) = minS∈NE(G)
OPTf (G)
f(S) . The strong price of anar-

chy and the strong price of stability are defined similarly; the
only difference is that the maximum (respectively, minimum)
is taken over all strong Nash equilibria. Further, the α-price
of anarchy PoAα

f (G) of a game G with respect to f is de-

fined as PoAα
f (G) = maxS∈NEα(G)

OPTf (G)
f(S) ; the α-price of

stability PoSαf (G) can be defined similarly. Originally, these
notions were defined with respect to the social welfare func-
tion, i.e., f =

∑
i∈N ui(S). However, we give a more general

definition since in the setting of this paper it is natural to use
a different function f . We omit the index f when the function
f is clear from the context.
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Potential Games A non-cooperative game G is called a
potential game if there is a function Φ : Σ → N such that
for any state S and any improvement move s′i of a player i in
S we have Φ(S−i, s

′
i) − Φ(S) > 0; the function Φ is called

the potential function of G. The game G is called an exact
potential game if we have Φ(S−i, s

′
i)−Φ(S) = ui(S−i, s

′
i)−

ui(S). It is known that any potential game has a pure Nash
equilibrium [Monderer and Shapley, 1996; Rosenthal, 1973].

Cooperative Games A cooperative game G = (N, v) is
given by a set of players N and a characteristic function v :
2N → R

+ ∪ {0} that for each set I ⊆ N specifies the profit
that the players in I can earn by working together. We assume
that v(∅) = 0. A coalition structure over N is a partition of
players in N , i.e., a collection of sets I1, . . . , Ik such that (i)
Ii ⊆ N for i = 1, . . . , k; (ii) Ii∩Ij = ∅ for all i < j ≤ k; and
(iii) ∪k

j=1Ij = N . A game G = (N, v) is called monotone if
v is non-decreasing, i.e., v(I) ≤ v(J) for any I ⊂ J ⊆ N .
Further, G is called concave if v is submodular, i.e., for any
I ⊂ J ⊆ N and any i ∈ N \ J we have v(I ∪ {i})− v(I) ≥
v(J ∪ {i})− v(J). Informally, in a concave game a player is
more useful when he joins a smaller coalition.

3 Perfect β-Nice Games

In this section, we define the class of perfect β-nice games
(our definition is inspired by [Awerbuch et al., 2008], but dif-
fers from the one given there), and prove a number of results
for such games. Later, we will show that many of the profit-
sharing games considered in the paper belong to this class.

Definition 1. A potential game G with a potential function Φ
is called perfect with respect to a function f : Σ→ R

+∪{0}
if for any state S it holds that f(S) ≥ ∑

i∈N ui(S), and,
moreover, for any improvement move s′i of player i we have

f(S−i, s
′
i)−f(S) ≥ Φ(S−i, s

′
i)−Φ(S) ≥ ui(S−i, s

′
i)−ui(S).

Also, a game G is called β-nice with respect to f if for every
state S we have f(S) ≥∑

i∈N ui(S) and β ·f(S)+Δ(S) ≥
OPTf (G).

We can bound the price of anarchy of a β-nice game by β.

Lemma 1. For any f : Σ→ R
+ ∪ {0} and any game G that

is β-nice w.r.t. f we have PoAf (G) ≤ β.

Lemma 1 extends to α-price of anarchy for any α ≥ 0.

Lemma 2. For any f : Σ→ R
+ ∪ {0}, any α ≥ 0, and any

game G that is β-nice w.r.t. f we have PoAα
f (G) ≤ α+ β.

The next theorem states that after a polynomial number of
steps, for every perfect β-nice potential game the basic Nash
dynamic reaches a state whose relative quality (with respect
to f ) is close to our bound on the price of anarchy.

Theorem 1. Consider any function f : Σ → R
+ ∪ {0} and

any game G that is perfect β-nice with respect to f . For any
ε > 0 the basic Nash dynamic converges to a state SF with
f(SF ) ≥ OPTf (G)

β (1 − ε) in at most
⌈
n
β ln 1

ε

⌉
steps, starting

from any initial state.

4 Profit-Sharing Games

We will now describe three non-cooperative games that
can be constructed from any monotone concave coopera-
tive game. Each of our games can be described by a triple
G = (N, v,M), where (N, v) is a monotone concave coop-
erative game with N = {1, . . . , n}, and M = {1, . . . ,m} is
a set of m parties; we require m ≤ n. All three games con-
sidered in this section model the setting where the players in
N form a coalition structure over N that consists of m coali-
tions. Thus, each player needs to choose exactly one party
from M , i.e., for each i ∈ N we have Σi = M . In some
cases (see Section 4.2), we also allow players to be unaffili-
ated. To model this, we expand the set of strategies by setting
Σi = M ∪{0}. Intuitively, the parties correspond to different
companies, and the players correspond to the potential em-
ployees of these companies; we desire to assign employees to
companies so as to maximize the total productivity.

In two of our games (see Section 4.1 and Section 4.3),
a state of the game is completely described by the assign-
ment of the players to the parties, i.e., we can write S =
(s1, . . . , sn), where si ∈ M for all i ∈ N . Alternatively,
we can specify a state of the game by providing a partition
of the set N into m components Q1, . . . , Qm, where Qj is
the set of all players that chose party j, i.e., we can write
S = (Q1, . . . , Qm); we will use both forms of notation
throughout the paper. In the game described in Section 4.2,
the state of the game depends not only on which parties the
players chose, but also on the order in which they joined the
party; we postpone the formal description of this model till
Section 4.2. In all three models, each player’s payoff is based
on the concept of marginal utility; however, in different mod-
els this idea is instantiated in different ways.

An important parameter of a state S = (Q1, . . . , Qm) in
each of these games is its total profit tp(S) =

∑
j∈M v(Qj).

While for the games defined in Section 4.2 and Section 4.3,
the total profit coincides with the social welfare, for the game
described in Section 4.1 this is not necessarily the case. As we
are interested in finding the most efficient partition of players
into teams, we consider the total profit of a state a more rele-
vant quantity than its social welfare. Hence, in what follows,
we consider the price of anarchy and the price of stability with
respect to the total profit, i.e., we have OPT(G) = OPTtp(G),
PoA(G) = PoAtp(G), PoS(G) = PoStp(G).

All of our results generalize to the setting where each party
j ∈ M is associated with a different non-decreasing sub-
modular profit function vj : 2N → R

+ ∪ {0}, i.e., differ-
ent companies possess different technologies, and therefore
may have different levels of productivity. Formally, any such
game is given by a tuple G = (N, v1, . . . , vm,M), where
M = {1, . . . ,m}, and for each j ∈ M the function vj is a
non-decreasing submodular function vj : 2N → R

+ ∪ {0},
where vj(∅) = 0. In this case, the total profit function in a
state S = (Q1, . . . , Qm) is tp(S) =

∑
j∈M vj(Qj). In what

follows, we present our results for this more general setting.

4.1 Fair Value Games

In our first model, the utility ui(S) of a player i in a state
S = (Q1, . . . , Qm) is given by i’s marginal contribution to
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the coalition he belongs to, i.e., if i ∈ Qj , we set ui(S) =
vj(S) − vj(S \ {i}). As this payment scheme rewards each
player according to the value he creates, we will refer to
this type of games as Fair Value games. Observe that since
the functions vj are assumed to be submodular, we have∑

i∈Qj
ui(S) ≤ vj(Qj) for all j ∈ M , i.e., the total pay-

ment to the employees of a company never exceeds the profit
of the company. Moreover, it may be the case that the profit
of a company is strictly greater than the amount it pays to its
employees; we can think of the difference between the two
quantities as the owner’s/shareholders’ value. Consequently,
in these games the total profit of all parties may differ from
the social welfare, as defined in Section 2.

We will now argue that Fair Value games have a number of
desirable properties. In particular, any such game is a poten-
tial game, and therefore has a pure Nash equilibrium.

Theorem 2. Every Fair Value game G is a perfect 2-nice ex-
act potential game w.r.t. the total profit function.

Combining Theorem 2, Lemmas 1 and 2 and Theorem 1,
we obtain the following corollaries.

Corollary 1. For every Fair Value game G and every α ≥ 0
we have PoAα(G) ≤ 2 + α. In particular, PoA(G) ≤ 2.

Corollary 2. For every Fair Value game G and any ε > 0, the
basic Nash dynamic converges to a state SF with total profit
tp(SF ) ≥ OPT(G)

2 (1− ε) in at most
⌈
n
2 ln 1

ε

⌉
steps,

Corollary 2 generalizes to basic α-Nash dynamic; we omit
the exact statement of this result due to space constraints.

Since every Fair Value game is an exact potential game
with the potential function given by the total profit, any profit-
maximizing state is necessarily a Nash equilibrium. This im-
plies the following proposition.

Proposition 1. PoS(G) = 1 for any Fair Value game G.

4.2 Labor Union Games

In Fair Value games, the player’s payoff only depends on his
current marginal value to the enterprise, i.e., one’s salary may
go down as the company expands. However, in many real-life
settings, this is not the case. For instance, in many industries,
especially ones that are highly unionized, an employee that
has spent many years working for the company typically re-
ceives a higher salary than a new hire with the same set of
skills. Our second class of games, which we will refer to
as Labor Union games, aims to model this type of settings.
Specifically, in this class of games, we modify the notion of
state so as to take into account the order in which the play-
ers have joined their respective parties; the payment to each
player is then determined by his marginal utility for the coali-
tion formed by his predecessors. The submodularity property
guarantees than a player’s payoff never goes down as long as
he stays with the same party.

Formally, in a Labor Union game G that corresponds to a
tuple (N, v1, . . . , vm,M), we allow the players to be unaffil-
iated, i.e., for each i ∈ N we set Σi = M ∪ {0}. If player
i plays strategy 0, we set his payoff to be 0 irrespective of
the other players’ strategies. A state of G is given by a tu-
ple P = (P1, . . . , Pm), where Pj is the sequence of players

in party j, ordered according to their arrival time. As be-
fore, the profit of party j is given by the function vj ; note
that the value of vj does not depend on the order in which
the players join j. The payoff of each player, however, is
dependent on their position in the affiliation order. Specifi-
cally, for a player i ∈ Pj , let Pj(i) be the set of players that
appear in Pj before i. Player i’s payoff is then defined as
ui(P) = vj(Pj(i) ∪ {i})− vj(Pj(i)).

We remark that, technically speaking, Labor Union games
are not non-cooperative games. Rather, each state of a La-
bor Union game induces a non-cooperative game as described
above; after any player makes a move, the induced non-
cooperative game changes. Abusing terminology, we will say
that a state P of a Labor Union game G is a Nash equilibrium
if for each player i ∈ N staying with his current party is a
best response in the induced game; all other notions that were
defined for non-cooperative games in Section 2, as well as the
results in Section 3, can be extended to Labor Union games
in a similar manner.

We now state two fundamental properties of our model.
• Guaranteed payoff: Consider two players i and i′ in Pj .

Suppose i′ moves to another party. The payoff of player
i will not decrease. Indeed, if i′ succeeds i in the se-
quence Pj , then by definition, i’s payoff is unchanged. If
i′ precedes i in Pj , then, since vj is non-decreasing and
submodular, i’s payoff will not decrease; it may, how-
ever, increase.

• Full payoff distribution: The sum of the payoffs of
players within a party j is a telescopic sum that eval-
uates to vj(Pj). Therefore, the total profit tp(P) =∑

j∈M vj(Pj) in a state P equals to the social wel-
fare in this state. In other words, in Labor Union
games, the profit of each enterprise is distributed among
its employees, without creating any value for the own-
ers/shareholders.

The guaranteed payoff property distinguishes the Labor
Union games from the Fair Value games, where a player who
maintains his affiliation to a party might not be rewarded, but
may rather see a reduction in his payoff as other players move
to join his party. This, of course, may incentivize him to shift
his affiliation as well, leading to a vicious cycle of moves. In
contrast, in Labor Union games, a player is guaranteed that
his payoff will not decrease if he maintains his affiliation to a
party. This suggests that in Labor Union games stability may
be easier to achieve. In what follows, we will see that this is
indeed the case.

We will first show that Labor Union games are perfect 2-
nice with respect to the total profit (or, equivalently, social
welfare); this will allow us to apply the machinery devel-
oped in Section 3. Abusing notation, let Δi(P) denote the
improvement in the payoff of player i if he performs a best
response move from P , and let Δ(P) = ∑

i∈N Δi(P).
Proposition 2. Any Labor Union game G is a perfect 2-nice
game with respect to the total profit function.
As in the case of Fair Value games, Proposition 2 allows us to
bound the price of anarchy of any Labor Union game, and the
time needed to converge to a state with “good” total profit;
again, Corollary 4 generalizes to basic α-Nash dynamic.
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Corollary 3. For every Labor Union game G and every α ≥
0 we have PoAα(G) ≤ 2 + α. In particular, PoA(G) ≤ 2.
Corollary 4. For every Labor Union game G and any ε > 0,
the basic Nash dynamic converges to a state SF with total
profit tp(SF ) ≥ OPT(G)

2 (1 − ε) in at most
⌈
n
2 ln 1

ε

⌉
steps,

from any initial state.
Let O(G) = (O1, . . . , Om) be a state that maximizes the

total profit in a game G, and let OPT(G) = tp(O(G)). As in
the case of Fair Value games, it is not hard to see that O(G)
is a Nash equilibrium, i.e., PoS(G) = 1. In fact, in Labor
Union games, no coalition of players can profitably deviate
from O(G) regardless of the order in which they deviate: by
the guaranteed payoff property, any such deviation would not
harm the non-deviators and thus would lead to a state whose
total profit exceeds that of O(G), a contradiction. This im-
plies the following result.
Proposition 3. In any Labor Union game G,O(G) is a strong
Nash equilibrium, i.e., the strong price of stability is 1.

Moreover, for Labor Union games under certain dynamics
and certain initial states one can guarantee convergence to α-
Nash equilibrium or even Nash equilibrium.
Proposition 4. Consider any Labor Union game G =
(N, v1, . . . , vm,M) such that vj(I) ≥ 1 for any j ∈ M
and any I ∈ 2N \ {∅}. For any such G, the α-Nash dy-
namic starting from any state in which all players are affili-
ated with some party converges to an α-Nash equilibrium in
O( n logW

log(1+α) ) steps, where W is the maximum payoff that any
player can achieve.

Proof. After each move in the α-Nash dynamic, a player im-
proves her payoff by a factor of 1 + α, and the guaranteed
payoff property ensures that payoffs of other players are un-
affected. So, if a player starts with a payoff of at least 1, she
will reach a payoff of W after O( logW

log(1+α) ) steps. Therefore,

in O( n logW
log(1+α) ) steps, we are guaranteed to reach an α-Nash

equilibrium.

Proposition 5. Suppose a Labor Union game G with n play-
ers starts at a state in which every player is unaffiliated. Then,
in exactly n steps of the Nash dynamic, the system will reach
a Nash equilibrium.

4.3 Shapley Games

In our third class of games, which we call Shapley games,
the players’ payoffs are determined in a way that is inspired
by the definition of the Shapley value [Shapley, 1953]. Like
in Fair Value games, a state of a Shapley game is fully de-
scribed by the partition of the players into parties. Given a
state S = (Q1, . . . , Qm) and a player i ∈ Qj , we define
player i’s payoff as

ui(S) =
∑

Q⊆Qj\{i}

|Q|!(|Qj | − |Q| − 1)!

|Qj |! (vj(Q∪{i})−vj(Q)).

Intuitively, the payment to each player can be viewed as his
average payment in the Labor Union model, where the av-
erage is taken over all possible orderings of the players in

the party. This immediately implies
∑

i∈Qj
ui(S) = vj(Qj).

Thus, Shapley games share features with both the Fair Value
games and the Labor Union games. Like Fair Value games,
the order in which the players join the party is unimportant.
Moreover, if all payoff functions are additive, i.e., we have
ui(S ∪ {j}) − ui(S) = ui({j}) for any i ∈ N and any
S ⊆ N \{i}, then the respective Shapley game coincides with
the Fair Value game that corresponds to (N, v1, . . . , vm,M).
On the other hand, similarly to the Labor Union games, the
entire profit of each party is distributed among its members.
We will first show that any Shapley game is an exact potential
game and hence admits a Nash equilibrium in pure strategies.

Theorem 3. Any Shapley game G = (N, v1, . . . , vm,M), is
an exact potential game with the potential function given by

Φ(S) =
∑

j∈M

∑

Q⊆Qj

(|Q| − 1)!(|Qj | − |Q|)!
|Qj |! vj(Q).

Just like in other profit-sharing games, the price of anarchy
in Shapley games is bounded by 2.

Theorem 4. In any Shapley game G = (N, v1, . . . , vm,M)
with |N | = n, we have PoA(G) ≤ 2− 1

n .

The following claim shows that the bound given in Theo-
rem 4 is almost tight.

Proposition 6. For any n ≥ 3, there exists a Shapley game
G = (N, v1, v2,M) with |N | = n and |M | = 2 such that
PoA(G) = 2− 2

n+1 and PoS(G) = 2− 4
n+1 .

5 Cut Games and Profit Sharing Games

We will now describe a family of succinctly representable
profit-sharing games that can be described in terms of undi-
rected weighted graphs. It turns out that while two well-
studied classes of games on such graphs do not induce profit-
sharing games, a “hybrid” approach does.

In the classic cut games [Schäffer and Yannakakis, 1991],
players are the vertices of a weighted graph G = (N,E).
The state of the game is a partition of players into two par-
ties, and the payoff of each player is the sum of the weights
of cut edges that are incident on him. A cut game naturally
corresponds to a coalitional game with the set of players N ,
where the value of a coalition S ⊆ N equals to the weight
of the cut induced by S and N \ S. However, this game is
not monotone, so it does not induce a profit-sharing game, as
defined in Section 4. In induced subgraph games [Deng and
Papadimitriou, 1994], the value of a coalition S equals to the
total weight of all edges that have both endpoints in S; while
these games are monotone, they are not concave.

Finally, consider a game where the value of a coalition
S ⊆ N equals the total weight of all edges incident on ver-
tices in S, i.e., both internal edges of S (as in induced sub-
graph games) and the edges leaving S (as in cut games). It is
not hard to see that this game is both monotone and concave,
and hence induces a profit-sharing game as described in Sec-
tion 4. We will now explain how to compute players’ payoffs
in the corresponding Fair Value games, Labor Union games
and Shapley games. Consider a state of the game with two
parties S and N \ S and a player i ∈ S. Let A (resp., B)
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denote the total weight of edges incident on i that connect i
to a predecessor (resp., successor) within S, and let C be the
total weight of the cut edges incident on i. Then i’s payoff
can be computed as follows:

Fair Value Games: The payoff of i is given by A+B
2 + C.

Intuitively, an edge between two players represents a
shared skill, and i’s unique skills within a coalition are
weighted more toward his payoff than his shared skills.

Labor Union Games: The payoff of i is given by B + C.
Intuitively, i’s payoff reflects the unique skills that i pos-
sessed when he joined the party. Players who share skills
with i, but join after i, will not get any payoff for those
shared skills.

Shapley Games: The payoff of i is given by A+B
2 + C, just

as in Fair Value games.

One can see that this interpretation easily extends to multiple
parties and hyperedges. We also note that many of the notions
that we have discussed are naturally meaningful in this variant
of the cut game: for instance, an optimal state for m = 2 is a
configuration in which the weighted cut size is maximized.

6 Conclusions and Future Work

We have studied the dynamics of coalition formation un-
der marginal contribution-based profit division schemes. We
have introduced three classes of non-cooperative games that
can be constructed from any concave cooperative game. We
have shown that all three profit distribution schemes consid-
ered in this paper have desirable properties: all three games
admit a Nash equilibrium, and even the worst Nash equilib-
rium is within a factor of 2 from the optimal configuration.
In addition, for Fair Value games and Labor Union games a
natural dynamic process quickly converges to a state with a
fairly high total profit. Thus, when rules for sharing the pay-
off are fixed in advance, we can expect a system composed
of bounded-rational selfish players to quickly converge to an
acceptable set of teams.

Of course, the picture given by our results is far from com-
plete; rather, our work should be seen as a first step towards
understanding the behavior of myopic selfish agents in coali-
tion formation settings. In particular, our results seem to sug-
gest that keeping track of the history of the game and dis-
tributing payoffs in a way that respects players “seniority”
leads to better stability properties; it would be interesting to
see if this observation is true in practice, and whether it gen-
eralizes to other settings, such as congestion games.
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