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Abstract

In this paper we propose a mechanism that encour-
ages agents, participating in an open MAS, to fol-
low a desirable behaviour, by introducing modifi-
cations in the environment. This mechanism is de-
ployed by using an infrastructure based on institu-
tional agents called incentivators. Each external
agent is assigned to an incentivator that is able to
discover its preferences, and to learn the suitable
modifications in the environment, in order to im-
prove the global utility of a system in response to
inadequate design or changes in the population of
participating agents. The mechanism is evaluated
in a p2p scenario.

1 Introduction

Open MultiAgent Systems (OMAS) are systems designed
with a general purpose in mind but with an unknown pop-
ulation of autonomous agents at design time. The agents that
populate such systems may be heterogeneous (e.g., they may
have different unknown preferences and behaviours) and their
number may vary at runtime. Based on their open nature, the
general problem when designing OMAS consists in assuring
that agents will behave according to the system’s objectives
and preferences.

The research community has tackled this problem by defin-
ing organisational models that structure and regulate the
agents’ action space. Some approaches (e.g. Electronic In-
stitutions [Esteva et al., 2001]), define the actions that agents
can take in each state of the system and rely on a certain in-
frastructure that assures that agents cannot violate the defined
rules. In those proposals, the implemented rules – defined at
design time – are fixed. They can be seen as heuristics that
help to meet the system’s global objectives. This approach
has two disadvantages. First, the agents may still have a cer-
tain degree of freedom and this may still imply a more or less
efficient completion of the systems overall objective. Sec-
ond, the fixed nature of predefined rules may imply less flex-
ibility in certain unforeseen situations – especially in highly
dynamic and complex systems.

∗This work was supported by the projects AT (CONSOLIDER
CSD2007-0022, INGENIO 2010) and OVAMAH (TIN2009-13839-
C03-02).

Other approaches (e.g., OMNI [V.Dignum et al., 2004])
define the valid actions in terms of norms, but agents are able
to violate such norms [V.Dignum et al., 2004]. In order to
avoid violations those approaches rely on penalties/rewards
and implement violation detection mechanisms. However,
the current population of the system may not be responsive
to the defined penalties and rewards and, thus, the norms may
not be effective. In this sense, approaches like the one pro-
posed in [Cardoso and Oliveira, 2009] aim at adapting nor-
mative systems. However, such adaptations are applied to the
whole population, that is, the penalties/rewards learnt are ap-
plied to all agents equally. Therefore, some agents may still
not be responsive to the penalties/rewards.

In our opinion, in (norm based) OMAS it is hard to spec-
ify a good set of norms at design time. It may not be clear
whether the proposed punishments/incentives have the de-
sired influence on the agents nor whether the specified norms
may actually effect the global utility in a positive way. Ad-
dressing this problem, we propose to endow OMAS with a
mechanism that tries to induce agents at each moment to act
in a way that is appropriate from the point of view of the
global utility of the system. Our approach is inspired by the
theory ”Economic Analysis of Law”, proposed by R.A. Pos-
ner in [R.A.Posner, 1977]. In this work the author analyses
normative systems from an economic point of view. He fo-
cuses on the effects of norms in terms of outcomes on both,
the behaviour of individuals and the society as a whole. As-
suming that individuals are rational, norms are actually in-
centives that may induce agents to act in a certain way and
this, in turn, may have a certain effect on the society. Follow-
ing these ideas, we propose an adaptive incentive mechanism
that: i) identifies the desirable actions the agents should per-
form in each state, ii) estimates the agents’ preferences, and
iii) induces agents to act in the desired way by modifying the
consequences of their actions.

The paper is organized as follows, Section 2 provides basic
definitions and assumptions. Our approach is presented in
Section 3. Section 4 describes the experimental validation.
Section 5 puts forward some related work. Finally, Section 6
points out some conclusion and future work.

2 Definitions and assumptions

Adapting the model presented in [Centeno et al., 2009], we
consider an agent participating in an OMAS to be a ratio-
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nal utility maximizer defined as a tuple 〈S , g, U , t, s0〉;
where S is the set of internal states of the agent (s0 is the
initial state); g : X ′ × S → S is the agent’s state transition
function that assigns a new internal state to the current state
and a partial observation of an environmental state x′ ∈ X ′;
U : S → R is the utility function that assigns a value to each
possible internal state; and t is the agent’s decision function
such that t : S → A follows the principle of maximising
the expected utility. That is, t(s) = argmaxa∈Aeu(a, s) =
argmaxa∈A

∑
s′∈S U(s′) · Ps(s

′|s, a), where A is the set of
possible actions; eu(a, s) is the expected utility of perform-
ing the action a in the state s; U(s′) is the utility of the state
s′ estimated by the agent; and Ps(s

′|s, a) is the agents’ esti-
mate, at state s, of the probability that state s′ will occur when
a is executed in state s.

Agents act within an OMAS that defines their environment.
We use X to denote the environmental state space. UO : X →
R is the utility function of the system that assigns a value to
each state. UO encodes the design objectives of the system.
From the point of view of the designer of the OMAS, the
problem consists of how to assure the maximization of the
system’s utility assuming that agents will try to optimise their
own individual utilities. In our approach we propose to use
an incentive mechanism for this task [Centeno et al., 2009].

Our notion of “incentive” is slightly different to the usual
consideration of incentives to be something positive. In our
work, we consider that incentives are any kind of modifica-
tions to the environment that have the aim to make a desirable
action aj more attractive than other alternatives {as, av, ...}
and such that a rational agent would decide to take aj . Thus,
an incentive is a modification introduced in the environ-
ment which can be interpreted in a different way by differ-
ent agents. In this sense, the notion of positive and negative
depend on the preferences of each agent. The rationale be-
hind this is that changing the consequences of actions may
produce variations in the expected utility of agents and, thus,
may change their behaviour.

In addition to the rationality of agents, we make the fol-
lowing assumptions:

• Assumption 1: the action space in the system is finite.
• Assumption 2: the environment of a system can be dis-

cretized by a finite set of attributes: X = {X1, . . . , Xn}.
An environmental state xi ∈ X can be modelled as a set
of tuples xi,j = 〈attribute, value〉 assigning a value to
each attribute. The incentive mechanism has permission
to modify the values of at least some of those attributes.

• Assumption 3: the OMAS has a multi-attribute util-
ity function ([R.L.Keeney and H.Raiffa, 1993]) defined
over some attributes of the environment. The attributes
are additively independent. That is, the utility function

can be expressed as: UO(xi) =
n∑

i=1

wi · ui,j where ui,j

is the utility of the attribute xi,j in the state xi and wi is
the weight of such an attribute. Their preferences do not
have to be aligned with the preferences of the system.

• Assumption 4: agents are sensitive to at least one of
the environmental attributes incentivators are authorized

to modify. That is, given such an attribute, they prefer
certain values over others.

3 Incentive mechanism

The proposed incentive mechanism accomplishes two basic
tasks: i) selecting the actions to be promoted in order to im-
prove the global utility of the system; and ii) performing the
required changes in the environment in order to make the de-
sired actions more attractive for the agents.

Whereas in standard normative approaches both tasks are
solved at design time (by specifying norms), we propose to
solve them at runtime. We use learning algorithms that allow
to adapt the incentive mechanism to the current agent popu-
lation as well as to possible changes in the environment.

We propose to deploy the incentive mechanism as an in-
frastructure composed of a set of institutional agents called
incentivators. Each agent is assigned to an incentivator that
aims to discover its preferences and tries to learn how to stim-
ulate the agent by modifying the consequences of its actions.
That is, there is a 1-1 relation between external agents and
incentivators. This means, incentives are provided on an in-
dividual basis and may be very different for different agents.
Furthermore, incentivators can communicate with each other
allowing them to coordinate their actions.

3.1 Discovering agents’ preferences

The action selection mechanism of rational agents is based
on an ordering over actions, in terms of expected utility. In
order to induce such agents to perform a certain action, an
incentive mechanism could either modify the consequences
of that action in such a way that the resulting state is more
attractive, or it could modify the consequences of the rest of
the actions in order to make them less attractive. If the agent’s
preferences are known, this becomes a relatively easy task.
However, in open systems, agents’ preferences are unknown
and, thus, have to be discovered.

One approach to preference elicitation is to enquire agents.
Based on the responses, the utility functions can be estimated
[C.Boutilier et al., 2005]. However, this approach has obvi-
ous disadvantages, e.g. agents could lie. Alternatively, we
propose to use a non-intrusive approach where the incenti-
vators discover their agents’ preferences by observing their
behaviour in response to given incentives. The characteristics
of this process are: i) it is a learning process; ii) it is indepen-
dent, i. e., incentivators do not require coordination; and iii)
an incentivator receives an immediate local reward (agent’s
reaction). With these characteristics in mind, we have cho-
sen Q-learning with immediate rewards and ε-greedy action
selection [C.Watkins, 1989] as a mechanism to carry out this
task. For the sake of simplicity, we split the process into two
different but related learning process. On one hand, the in-
centivator has to discover the attributes that affect an agent’s
utility function, and, on the other hand, it has to identify the
values those attributes should take in order to make an agent
change its behaviour1.

1The focus is on how to persuade agents by learning which at-
tributes have some influence on their behaviour. That is, incentiva-
tors do not actually model agents’ utility functions.

140



Learning the attributes that influence agents’ behaviour

In the scope of Q-learning, the action space Zi of the incen-
tivator for agent agi is composed of the attributes the incen-
tivator is authorised to modify in the system. More formally:
Zi ⊆ {X1, . . . , Xn}; where Xj are attributes belonging to
the environmental state of the system. Thus, when the incenti-
vator takes the action zi,j this means that the attribute Xj will
be modified. After that, it receives a reward that rates that ac-
tion, and the action-value function estimation is updated with
the typical update function of the Q-learning algorithm:

Qt+1(zi,j) = Qt(zi,j) + α · [Rt(zi,j)−Qt(zi,j)] (1)

where α is the learning rate and Rt(zi,j) the reward. As we
said before, the idea is to discover an agent’s preferences by
observing how it reacts to the selected modifications. In this
sense we rate positively an action if the agent performs the
action the incentivator intended, and negatively if not. This is
captured with the following reward function:

Rt(zi,j) =

{
+1 if agi performed the action
-1 i.o.c. (2)

Besides, in order to explore new attributes, a random selec-
tion is made with probability ε, and the highest q-value at-
tribute (greedy action) is exploited (chosen in the next step)
with probability (1− ε).

Learning the values of attributes

The next step in the learning process is to learn the most ef-
fective value of the selected attribute. The characteristics of
this problem are the same as in the attribute learning pro-
cess. Again, we use Q-learning with immediate rewards and
ε-greedy action selection. In this case, the action space Yi,j

of the incentivator for agent agi depends on the attribute Xj

selected previously by the attribute learning algorithm. It is
composed of the different values that Xj may take. For-

mally: Yi,j = {value ∈
[
valuemin

Xj
, valuemax

Xj

]
}; where

value stands for the set of different values the attribute Xj

may take2. As update and reward functions we use the same
formulae as before (equations 1 and 2).

Combining both learning phases, in each step an incen-
tivator proposes a modification – a new value for a pair
x∗
i =〈attribute, value〉. Over time, x∗

i eventually converges
towards a pair that influences the behaviour of agent agi.

3.2 Identifying desirable actions

As we have introduced previously, the incentive mechanism
has to decide which actions should be incentivized in order
to improve the system’s utility. In scenarios where the out-
come of the action performed by an agent does not depend
on the actions taken by others, these actions could be deter-
mined locally. However, in many common situations the out-
come of an action depends on the joint action of all participat-
ing agents. In order to account for this fact, all incentivators
should work as a team so as to coordinate the actions to be
promoted. The main problem in order to carry out such a task

2This approach requires the set of values to be discrete. In case
it is continuous, it should be discretized previously.

is that incentivators have just a local view of the system – the
result of the action performed by “their agents”.

Therefore, this process should have the following capabili-
ties: i) learning a joint action in a cooperative way; ii) dealing
with the lack of information about the actions taken by other
members of the team; and iii) dealing with immediate local
rewards. With this in mind, incentivators are endowed with a
reinforcement multiagent cooperative learning algorithm that
updates the action-value function estimation with the typical
Q-learning function (equation 1). As reward function we use
the global utility, that is calculated by aggregating the local
rewards through a gossip-based algorithm.

Incentivator’s action space

The first issue that needs to be addressed, is determining the
action set of an incentivator in this learning task. It is com-
posed of the set of actions its agent (agi) can take in the cur-
rent situation, combined with the attribute modification se-
lected by the attribute learning algorithm described earlier.
Formally: Vi ⊆ {∅, βi,1, . . . , βi,n}; where ∅ is the skip ac-
tion; and βi,j = 〈ai,j , x∗

i,j〉, where ai,j stands for an action
agent agi can perform in the current situation; and x∗

i,j is the
attribute modification selected as result of the learning pro-
cess explained in 3.1. When an incentivator takes the action
βi,j , this means that the action ai,j should be made more at-
tractive by modifying its consequences through a change of
the 〈attribute,value〉 pair x∗

i,j . The action ∅ means that none
of the actions will be promoted (e.g. none of the parameters
of the environment will be changed).

Calculating the reward

After taking an action (vi,j ∈ Vi), the incentivator i re-
ceives a reward that rates such an action, and the action-value
function estimation is updated by using the corresponding
formula (equation 1). This reward is calculated as follows:
Rt(vi,j) = Ūi(x); where Ūi(x) is the incentivator’s estima-
tion of the global utility in the environmental state x reached
after the last step. Since an incentivator has only a local view
of the system, it can calculate Ūi(x) only based on its local
perception of the environment3. In order to take into account
the actions taken by other incentivators, it should transform
its local estimation into an estimation of the global utility.
Based on the assumption of additive independence of the at-
tributes in the system’s utility function (Assumption 3), the
global utility can be estimated by aggregating the local utility
estimations of all incentivators. In order to perform this task,
each incentivator is endowed with the gossip-based aggrega-
tion algorithm presented in [M.Jelasity et al., 2005].

a) active thread
do once each δ time steps
j ← getIncentivator()
send Ūi(x) to j
Ūj(x)← receive(j)
Ūi(x)← update(Ūi(x), Ūj(x))

b) passive thread
loop

Ūj(x)← receive(∗)
send Ūi(x) to sender(Ūj(x))
Ūi(x)← update(Ūi(x), Ūj(x))

end loop

Table 1: Gossip-based algorithm executed by an incentivator

The idea is that each incentivator holds a local value, and
3We assume that incentivators know the system’s utility function.
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by exchanging messages with its neighbours the local values
are aggregated by using some aggregation function. Two dif-
ferent threads are executed (see table 1). The active thread
periodically initiates an information exchange with a random
incentivator j by sending a message containing the local util-
ity estimation Ūi(x) and waits for a response with the util-
ity estimation Ūj(x) from incentivator j. On the other hand,
the passive thread waits for messages sent by other incenti-
vators and replies with the local utility estimate. The update
method updates the local utility estimation by aggregating the
current value and the received value. In our particular use
case (see Section 4), we have chosen the average. Therefore,
update(Ūi(x), Ūj(x)) returns (Ūi(x)+ Ūj(x))/2. This func-
tion decreases the variance over the set of all local estimates
of the global utility.

3.3 Interaction between agents and incentivators

Two different types of interactions could be performed be-
tween an incentivator and its agent. On one hand, in order
to enable agents to reason about incentives, the incentivator
informs its agents about the consequences of the desirable
actions. Before an agent selects a new action, it will query
the incentivator asking for the possible new consequences of
the actions the agent considers4.

On the other hand, each incentivator observes the reaction
of “its” agents to the proposed incentives. This information
provides feedback for the preference learning algorithm de-
scribed earlier. It should be noted that it is possible that an
agent may perform an action because of its own interests (and
not because of the proposed incentive). We do not have any
mean to distinguish such situations. We assume that the ex-
ploration/exploitation process will detect such situations and
converge to an estimation of the agent’s preferences.

4 Case study: a P2P system

We have chosen a peer-to-peer (p2p) file sharing scenario for
evaluating our approach. Such scenarios are clear examples
of open systems where the objectives of individuals may not
coincide with the objectives of the system.

In such systems normally only few peers (seeders) have
the whole information; and the rest of peers (leechers) down-
load pieces by using a particular protocol. We focus on peers
sharing a file with the BitTorrent protocol [B.Cohen, 2008].
Following this protocol, a file is split in pieces of 256KB
each and every piece is split in 16 sub-pieces called blocks.
Peers exchange blocks and each block can be downloaded
from different peers. For the sake of simplicity we leave out
the phases in which peers and data are identified and peers
get a list of neighbours to communicate with. We just fo-
cus on the phase carried out to get each block. In this phase,
each peer sends a bitfield message to its neighbours asking
for their file status. After that, the peer has to decide which
neighbours will be asked for the next block to download. A
request message is sent to the selected peers. When a peer
receives a request message it has to decide whether the re-
quested block will be uploaded or not. Once a peer accepts

4We suppose rational agents will always use this “service” since
it is in their own interest.

the request, it sends a piece message containing the requested
block. Immediately, the receiver of the piece sends a cancel
message to the other neighbours it asked for the same block.
When the download is finished, a have message is sent to the
agent’s neighbours in order to update their file status.

4.1 P2P system model

Regarding the most common problems in p2p systems (e.g.
non-cooperation of peers, flooding of the network, etc.
[D.Hales, 2004]), the objectives of the system could be spec-
ified as follows: i) peers should download/upload as many
files/blocks as possible in order to increase the number of
available files; ii) the usage of the network should be as low as
possible; and iii) the time spent on downloading files should
be as short as possible in order to avoid an overload of the net-
work. These objectives are captured by the following multi-
attribute utility function: UO(x)= Ufiles ·w0 + Ublocks(x) ·w1

+ UCn
(x) · w2 + UCt

(x) · w3. Ufiles(x), is the utility of
the number of already downloaded files. Ublocks(x) rep-
resents the utility of the number of downloading/uploading
blocks in the state x (the greater the number of download-
ing/uploading blocks, the greater is the utility). UCn(x) is
the utility of the usage of the network in state x. Following
the work presented in [J.Campos et al., 2009], this parame-
ter is defined as network cost and represents the sum of the
network usage of each message (cmi

) sent in the network.

It is calculated as follows: Cn=
#msgs∑
i=0

cmi
, such that, cmi

=

mlength · Lat(morg,mdst); where mlength is the length of a
message, and Lat(morg,mdst) is the latency between the ori-
gin and destination5. The lower the network cost, the greater
is the utility. Finally, UCt

(xj) is the utility of the time spent
on downloading a file (time cost). The shorter the time cost,
the greater is the utility. The partial utilities Ux are calculated,
in case of maximization, as the ratio between the actual value
of the parameter x divided by its maximum possible value in
the current state, (1 minus the ratio in case of minimization).
w0, w1, w2, w3 allow us to weight the attributes.

4.2 Peer agent model

Peers are modelled as rational agents. We focus on two de-
cisions peers have to take: i) to decide to how many neigh-
bours they will send a request asking for the next block to
download; and ii) to decide how many requests should be ac-
cepted (i.e., how many piece messages are sent). Accord-
ingly, the action space of a peer is: A = {sendPiece(n),
sendRequest(n), skip}, where n is the number of neighbours
it sends a piece/request message.

We assume that peers have to pay a regular fee in order to
connect to the network by using a certain bandwidth. Besides,
a peer has a file it is sharing and whose status can be partially
or completely downloaded. We assume that a peer knows the
latency with all its neighbours; and its file status is updated
when have messages are received.

The attributes that may have some influence on a peer’s
preferences are bandwidth, fee, number of download-

5Latency is assumed to be constant and symmetric.
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files to share files=1; size=15 blocks latencies randomly in [10, 400] ms
bandwidths randomly in {640, 1024, 2048, 4096} Mb/s agent’s fee randomly in [10, 50] with steps=5

messages length piece=128Bytes incentivators messages length=1Byte
request,cancel=1Byte time steps equivalence 1 timeStep = 10ms

messages ttl ttl=6 time steps system utility function w0=0.5 w1=0.2
number of peers (agents) 50 w2=0.125 w3=0.175
learning alg. parameters α=0.9 ε=0.1 q-values initialisation 1 (maximum value)

neighbours per peer [2, 4] percentage of seeder ≤ 35%

Table 2: Experimental setup

ing/uploading blocks and time spent on downloading a file.
They are captured by using the following multi-attribute util-
ity function: U(x) = Ubw(x) ·w4 + Ufee(x) ·w5 + Udown(x) ·
w6 + Uup(x) · w7 + Ut(x) · w8; where Ubw(x) is the utility
of the bandwidth rate - the bandwidth regarding to the avail-
able bandwidth; Ufee(x) represents the utility of the fee that a
peer is paying; Udown(x) stands for the utility of the number
of downloading blocks; Uup(x) is the utility of the number
of uploading blocks to other peers; Ut(x) is the utility of the
time spent on downloading a file; and w4, w5, w6, w7, w8 are
the weights assigned to each attribute.

4.3 Experimental setup

We have carried out experiments that compare two different
types of regulation mechanisms: a standard normative sys-
tem, and the proposed incentive mechanism. The aim of both
mechanisms is to improve the system’s global utility. In ad-
dition, both mechanisms are compared to the case where no
regulation takes place. The system has been instantiated with
the parameters shown in table 2.

The normative system is based on a set of norms coupled
with penalties that are applied when norms are violated. In
particular, three norms have been designed at design time,
that is, before knowing the population of the system: N1:
”It is prohibited to use more bandwidth than 85%”; N2: ”A
peer is obliged to upload a block when at least 25% of the
bandwidth is available”; and N3: ”It is prohibited to request a
block to more than the 85% of neighbours”. The set of norms
is designed according to the global objective of the system.
Norm violations are penalised with an increase of the fee in 5
units. Such violations are detected with a 100% efficiency.

Regarding the incentive mechanism, it is deployed by tak-
ing advantages of the own nature of p2p systems. That is,
incentivators are located at network service providers. Thus,
the communication among them will be fast. Incentivators
are authorized to modify the bandwidths and the connection
fees of peers. So, the action space of agent agi’s incentiva-
tor is Zi = {feeagi , bwagi} and Yi,fee = {valuefeeagi

∈
[valuemin

feeagi
, valuemax

feeagi
]} in case the attribute selected is

the fee; or Yi,bw = {valuebwagi
∈ [valuemin

bwagi
, valuemax

bwagi
]}

in case it is bandwidth. The actions that can be incentivized
are sendPiece(n), sendRequest(n) and skip, where n can be
instantiated by a number of neighbours.

4.4 Experimental results

Using the parameters described above, we have conducted
two experiments. In the first one, agents are sensitive to the

fee (they prefer lower fees and, thus, the penalties for norm
violations are effective). In the second experiment, agents
are rather insensitive to changes in the fee and, thus, the ef-
fectiveness of the normative system is not assured. In both
experiments the system is populated with non-collaborative
agents. That is, they are interested in downloading blocks,
but not in uploading blocks.

Experiment 1: Non-collaborative agents, sensitive to
connection fee

In this experiment, the fact that agents are none-collaborative
but sensitive to changes in the fee they are paying for con-
necting to the network is captured by the following weights in
their utility function: w4=0.2, w5=0.399, w6=0.3, w7=0.001
and w8=0.1.

Figure 1(a) plots the average utility obtained by all peers
participating in the system. As we can see, agents obtain the
highest utility when the system is executed without any reg-
ulation mechanisms. This seems obvious, because nothing
restricts the freedom of agents to act in the way they want to.
The second best performance is presented when the incentive
mechanism is used. The reason is that agents are regulated
by giving incentives, that is, they are incentivized to perform
in a certain manner by paying a lower fee, in this particular
case. The normative system works quite ”bad” regarding the
agents utility. That happens because norms restrict agents’
behaviour, so, their utility is lower because of the punish-
ments. Regarding the system, figure 1(b) plots the evolution
of the utility for each configuration. It shows clearly that the
system’s utility is low if no regulation takes place. This was
expected because the analysed population of peers does not
behave according to the system’s preferences. On the other
hand, the normative and incentive mechanisms work simi-
larly well. The incentive mechanism is a bit “slower” at the
beginning due to the learning algorithm, that is, incentivators
have to discover that the connection fee is the attribute that
has the highest influence on the peers. This is also shown in
figure 1(c), which compares the mechanisms regarding to the
number of peers that are able to download the whole file and
the time spent on it. By using the normative, as well as the
incentive mechanism, 49 out of 50 are able to download the
whole file. However, the time spent is higher in the case of
the incentive mechanism, due to the learning process, as it has
been pointed out previously.

Concluding, in this case the “design-time” norms are ef-
fective and both, the normative and the incentive mechanism
obtain similar results. The normative mechanism performs
slightly better which is basically due to the required learning
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Figure 1: Experimental results: experiment 1

process in the incentive mechanism.

Experiment 2: Non-collaborative agents, insensitive to
the connection fee

In this experiment we have specifically chosen a peer popula-
tion that is not sensitive to changes in the fee they are paying,
e.g., they do not care about increasing fees. This is reflected
in the agents’ utility function (w4=0.2, w5=0.001, w6=0.399,
w7=0.001 and w8=0.399; in particular w5=0.001). This case
describes a scenario where the designed norms (all based on
an increase in the fee as a punishment) will not be very ef-
fective for the given population of agents. This result can
be clearly observed in Figure 2. Figure 2(a) plots the aver-
age utility obtained by all peers. The results are clearly bet-
ter when the incentive mechanism is employed. Implicitly,
this mechanisms is able to identify that instead of the fee, the
bandwidth has an influence on peers’ utility. It uses changes
in the available bandwidth to make the upload of blocks to
other peers attractive. Figure 2(b) plots the utility of the sys-
tem when it is regulated by the different mechanisms. As
it was expected, the system improves its performance when
it is regulated by the incentive mechanism because it is able
to influence agents’ behaviour regarding the sending of their
blocks. Finally, in figure 2(c) we can see the number of peers
that are able to download the whole file. In the case of the
normative and no mechanisms, none of the peers are able to
download the files, only the initial seeders have the whole file,
that is why the time spent on downloading the files is zero.
With the incentive mechanism 48 out of 50 peers download
the whole file, spending 7640ms.

It is important to note that the overhead introduced as a
consequence of the gossip algorithm is taken into consider-
ation in the network cost attribute calculated in the system
utility function. That means, the incentive mechanism is ben-
eficial even if the overhead is taken into account. The exper-
iment makes clear that a normative system does not fulfil its
goal if the agents are not sensitive to the applied punishments.
In contrast, the proposed incentive mechanism is able to adapt
to such situations.

5 Related work

Many approaches to regulate open MAS rely on the concept
of norm. As mentioned before, in some approaches (e.g., [Es-
teva et al., 2001]), norms define the set of allowed actions

in each possible state of a system and mechanisms are em-
ployed to assure that agents only perform those actions. We
think our approach is compatible with such approaches. Our
work can be used for inducing a particular action, among all
possible valid actions, optimising in that way the system’s ef-
ficiency. Other approaches, like [V.Dignum et al., 2004], pro-
pose to use norms with penalties/rewards and allow agents to
violate a norm. In these approaches norms are usually de-
fined at designed time, what implies that some assumptions
are made with regard to the parameters that have an influence
on agents’ preferences. In our work, we do not assume a pri-
ori knowledge about agents’ preferences; we try to learn such
preferences for each agent and, thus, provide a basis for an
individualised incentivation/punishment.

In a way, our work is related to mechanism design as it
aims at influencing the behaviour of rational agents in a de-
sired direction. However, instead of directly defining the in-
teraction rules of the system, we try to achieve desired be-
haviour of agents by modifying their environment at runtime.
Furthermore, we do not assume that the agents’ pay-off func-
tions are known. Instead, we intend to learn which of the
environment attributes are relevant for an agent’s pay-off, so
as to dynamically adjust incentives for it at runtime.

Recently, some papers have been published with a simi-
lar focus as ours [Z.Rabinovich et al., 2010; L.Dufton and
K.Larson, 2009]. All of them address the problem of how to
influence agents’ behaviour in order to induce some desirable
behaviour. They focus on formal approaches based on envi-
ronment design techniques, incentive based approaches and
behaviour cultivation. Similar to our case, the authors show
through experimental evaluations that their approaches effec-
tively induce desirable behaviour.

6 Conclusion

In this paper we have put forward an incentive mechanism
that is able to induce desirable behaviour by modifying the
consequences of actions in open MAS. The mechanism tries
to discover which attributes have some influence on agents’
preferences and learns how agents can be incentivized. It
is deployed by using an infrastructure based on institutional
agents called incentivators. The incentivators use the Q-
learning algorithm to discover agents’ preferences by ob-
serving how they react to modifications in the environment.
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(c) Downloaded files and time

Figure 2: Experimental results: experiment 2

Moreover, they learn – in a cooperative way, using Q-learning
and a gossip-based reward calculation algorithm – which joint
actions should be incentivized in order to increase the util-
ity of the system. Finally, the proposed mechanism has been
tested in a p2p file sharing scenario, showing that it is a valid
alternative to standard normative systems. In particular it out-
performs regulation mechanisms based on fixed norms if the
design assumptions of such norms are not fulfilled.

As future work, we plan to explore other learning tech-
niques that may be more suitable in scenarios where agents
preferences may vary over time. In principle, Q-learning can
deal with such situations, but it may be too slow to obtain the
desired adaptation of the system. Furthermore, the mecha-
nism is currently able to perform the modification of just one
attribute at the time. In this sense, we will explore the possi-
bility of modifying a set of attributes jointly.
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