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Abstract

Cooperation among automated agents is becom-
ing increasingly important in various artificial in-
telligence applications. Coalitional (i.e., coopera-
tive) game theory supplies conceptual and mathe-
matical tools useful in the analysis of such interac-
tions, and in particular in the achievement of sta-
ble outcomes among self-interested agents. Here,
we study the minimal external subsidy required to
stabilize the core of a coalitional game. Follow-
ing the Cost of Stability (CoS) model introduced by
Bachrach et al. [2009a], we give tight bounds on the
required subsidy under various restrictions on the
social structure of the game. We then compare the
extended core induced by subsidies with the least
core of the game, proving tight bounds on the ra-
tio between the minimal subsidy and the minimal
demand relaxation that each lead to stability.

1 Introduction

Transferable utility (TU) coalitional games are commonly
used to model interactions where groups of agents differ in
the profits that they can guarantee to themselves. Given that
a particular coalition is formed (and specifically, the grand
coalition of all agents), a key question that arises is how to
allocate payments.

Various solution concepts have been suggested in recent
decades, specifying desired allocations according to crite-
ria of stability and fairness. Due to the increasing ubiquity
of automated agents, and in pursuit of cooperative behavior
among self-interested entities, such solutions are being stud-
ied and applied in multiple areas of AI research (recent papers
include [Conitzer and Sandholm, 2006; Dang et al., 2006;
Malizia et al., 2007]).

As a motivating example, consider three companies, A, B,
and C, interested in a cooperative advertising campaign. Ex-
pected profit increases as more companies cooperate (e.g.,
due to exposure in multiple media). A joint effort by all three
companies will result in a total profit of $12 Million (the value
of the coalition {A,B,C}). Alternatively, the campaign can
be carried out by just A and B (with profit of $10M), or each
company can choose to advertise alone (with profit of $4M).

If companies are to cooperate, they must decide how to share
the resulting profits.

The core is one of the earliest and most attractive solu-
tion concepts, and it directly addresses the issue of stabil-
ity. The core contains all payment allocations (called im-
putations) that are stable, in the sense that no subgroup of
agents could gain more by “breaking away” from the grand
coalition; that is, the payment allocated to the agents of every
coalition is at least that coalition’s value.

Unfortunately, in many TU games (including our example
above) the core is empty, and the game is inherently unsta-
ble, as there is always a sub-coalition that is better off apart.
Several relaxations of the core have been proposed in order to
maintain stability in games with empty cores. One prominent
approach is to assume that departing from the grand coalition
incurs some cost to the deviating agents, i.e., that coalitions
will be satisfied with a payoff that is slightly lower than their
value. The least core aims to capture the minimal relaxation
in coalitions’ demands that will enable a stable imputation.

An alternative assumption is that certain coalitions are un-
likely to form due to social reasons or other practical limi-
tations (e.g., it may be difficult for a large coalition to coor-
dinate its deviation). Such restrictions can take many forms,
and generally make the game more stable, as fewer coalitions
are likely to deviate from a proposed allocation. If companies
A and B cannot cooperate without C, then the core in our
previous example becomes non-empty (by allocating $4M to
each of the companies).

Whereas the two previous relaxations depend on the envi-
ronment or on the behavior of the agents themselves, a differ-
ent approach is to stabilize the game with an external mone-
tary intervention. By subsidizing particular outcomes of the
game, for example the formation of the grand coalition, an
external authority can induce stability. While the injection of
sufficiently large subsidies can always guarantee a non-empty
core (e.g., if every agent gets more than the highest value in
the game), one would naturally like to minimize the inter-
vention. The minimal subsidy that stabilizes the coalitional
game is known as its Cost of Stability (CoS), and the set of
now-stable imputations is called the extended core [Bachrach
et al., 2009a]. In our advertising example, a subsidy of $2M
allows us to allocate $5M to A, $5M to B, and $4M to C,
thereby achieving full cooperation with a stable allocation.

The value of the least core (i.e., the minimal demand relax-
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ation) and the cost of stability can both serve as measures of
the (in)stability of a given game. This paper answers certain
natural questions regarding the conceptual and quantitative
relationship between these measures. We prove tight bounds
on the ratio between the minimal subsidy (the CoS) and the
minimal demand relaxation that each stabilizes the game. In
addition, we measure the amount by which several natural
restrictions on coalitions reduce the cost of stability.

Related work Subsidies have been proposed by several re-
searchers, using different models and names. The reader is
referred to the papers mentioned below for additional useful
references and motivating examples.

Our work follows the model suggested by Bachrach et
al. [2009a], which studied bounds and computational as-
pects of the CoS, focusing on the family of weighted vot-
ing games. That initial work has been extended by several
other researchers [Resnick et al., 2009; Meir et al., 2010;
Aziz et al., 2010], who addressed the computation of the
CoS in various families of TU games, including Network
Flow games, Graph games, Connectivity games, Anonymous
games, and others.

A model for subsidies was independently suggested by Be-
jan and Gómez [2009], who focused (as we do) on the rela-
tionship between subsidies and other solution concepts. We
adopt some of their notation, which is useful in our case as
well. However, in their work the additional payment required
to stabilize a game is gathered from the participating agents
by means of a specific taxation system, rather than injected
into the game by an external authority. We do not assume any
form of taxation.

Particular attention has been devoted in Economics to sub-
sidies in expense sharing games, where agents share the cost
of a project, rather than its profits (see, for example, [Immor-
lica et al., 2005; Devanur et al., 2005]). Despite some small
differences between the models, restricted cooperation can be
similarly defined and studied in expense games, although we
are unaware of such work.

Restrictions on the cooperation structure have also been
studied extensively, where the specific restriction may de-
pend on the particular application (see [Myerson, 1977;
Faigle, 1989; Algaba et al., 2001; Pulido and Sanchez-
Soriano, 2006]). While the interaction with many solution
concepts (including the core) has been explicitly addressed,
we are unaware of previous work that aims to quantify the
affect of such restrictions on stability.

Paper structure Section 2 provides some notation, and
gives the formal definition of the Cost of Stability. In Sec-
tion 3 we compute worst-case bounds on the CoS of TU
games with restricted interactions. Our main results are in
Section 4, where we study the relationship between the ex-
tended core and the least core. We prove tight bounds on
the ratio between the minimal subsidy and the minimal re-
laxation that are each sufficient to stabilize the game, thereby
improving on the results of Bachrach et al. [2009a]. In the fi-
nal section, we discuss the relationship to some other solution
concepts, and propose future directions for research.

2 Preliminaries

We briefly present the definitions required for our model. A
transferable utility (TU) coalitional game is defined by speci-
fying the collective utility that can be achieved by every coali-
tion of agents. Formally, G = 〈N, v〉, where N is a finite set
of agents N = {1, . . . , n}, and v is a function v : 2N → R.
For a singleton i ∈ N , we write v(i) instead of v({i}). The
function v is called the characteristic function of the game.
We assume by convention that v(∅) = 0. Also, we restrict
our attention in this paper to positive, monotone games un-
less explicitly stated otherwise. That is v(S) ≥ 0 for all S,
and v(S) ≥ v(S′) for all S′ ⊂ S.

A TU game is called simple if v(S) always equals either 0
or 1. Coalitions with v(S) = 1 are called winning coalitions.
A TU game is superadditive if for all S, T ∈ 2N s.t. S ∩T =
∅, v(S ∪ T ) ≥ v(S) + v(T ).

A payoff vector x = (x1, . . . , xn) (also called a preimputa-
tion) divides the gains of the grand coalition among its mem-
bers, where

∑
i∈N xi = v(N). We call xi the payoff of agent

i, and denote the payoff of a coalition S as x(S) =
∑

i∈S xi.
We denote the set of all preimputations in G by X(G).

A preimputation x ∈ X(G) is individually rational if no
agent i can gain more than xi by itself, i.e., if xi ≥ v(i) for
all i ∈ N . Individually rational preimputations are called
imputations. Similarly, a coalition S ∈ 2N blocks x ∈ X(G),
if x(S) < v(S). The core of G, denoted C(G), consists of all
imputations that are not blocked by any coalition.

The least core Consider a game G with an empty core, and
a value ε > 0. We define the weak ε-core of G as WCε(G) =
{x ∈ X(G) : ∀S ∈ 2N , x(S) ≥ v(S) − ε|S|}. Clearly for a
large enough ε, WCε(G) in not empty. We denote by εW(G)
the smallest ε s.t. WCε(G) �= ∅. The εW-core of G is referred
to as the weak least core, and denoted by WLC(G).

The strong ε-core is defined as SCε(G) = {x ∈ X(G) :
∀S ∈ 2N , x(S) ≥ v(S) − ε}, and we define εS(G) and the
strong least core (SLC) accordingly.

The cost of stability Let Δ ≥ 0 be a payment that an ex-
ternal authority is willing to pay the grand coalition, in case
such is formed. This induces a new game G(Δ) = 〈N, vΔ〉,
s.t. vΔ(N) = v(N) + Δ. The value of all other coalitions
remains unchanged. Clearly if Δ is large enough, then G(Δ)
has a non-empty core (e.g., if Δ = n · v(N)). The Cost of
Stability is defined as

CoS(G) = min{Δ ≥ 0 s.t. C(G(Δ)) �= ∅}.
The game induced by the minimal extra payment is de-

noted by G = G(CoS(G)) (which has a non-empty core).
A preimputation in G(Δ) is called a superimputation of G.

A superimputation x′ is an extension of the preimputation x
(denoted x′ ≥ x), if x′

i ≥ xi for all i ∈ N . The extended core
consists of all preimputations that can be extended to stable
payoff vectors with minimal subsidy. Formally, EC(G) =
{x ∈ X(G) s.t. ∃x′ ≥ x,x′ ∈ C(G)}.

In general, we define for any x ∈ X(G) its cost of stability,
as the smallest payment required to extend x to a stable payoff
vector, i.e.,

CoS(x, G) = min{Δ ≥ 0 s.t. ∃x′ ≥ x,x′ ∈ C(G(Δ))}.
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Clearly CoS(x, G)≥CoS(G), with equality iff x∈EC(G).
The extended core in our initial example contains p =
(5, 5, 2), which can be extended to the (minimal) stable su-
perimputation (5, 5, 4). In contrast, p′ = (3, 4, 5) /∈ EC(G),
as CoS(p′, G) = 3 > 2 = CoS(G).

2.1 Balanced collections and linear programs

The CoS can also be formulated in a closed form, using the
Bondareva-Shapley characterization of the core. We use a
variant of the theorem that will be used later in Section 4.
Definition 1. Let D be a collection of coalitions, and denote
by δS ∈ R+ the coefficient of coalition S. We say that D is a
balanced collection if there are {δS}S∈D, such that for every
agent i,

∑
S∈D:i∈S δS = 1.

A balanced collection D is called minimal, if there is no
D′ � D s.t. D′ is balanced.

Theorem 1 (Bondareva-Shapley Theorem). The core of
G is non-empty iff all [minimal]1 balanced collections hold∑

S∈D δSv(S) ≤ v(N).

By a simple continuity argument, it follows that in G there
is at least one [minimal] collection, for which the above holds
with an equality. Such collections are called solutions of G.
It is easy to verify that for any game G with empty core,

CoS(G) = max
balanced D

∑
S∈D

δSv(S)− v(N). (1)

Another way to define the game G is by a linear program,
where

∑
i∈N xi should be minimized, and every constraint

corresponds to a coalition (see [Bachrach et al., 2009a]). The
solutions of the dual linear program (whose variables corre-
spond to coefficients of coalitions), coincide with the solu-
tions of G. See [Gilles, 2010] for a detailed discussion on
balanced collections, and a proof of Theorem 1.

The relative CoS It is sometimes convenient to treat the
external payment as a relative fraction of v(N) (as we do in
Section 3). We therefore define the Relative Cost of Stability
as

RCoS(G) = min

{
v(N) + Δ

v(N)
≥ 0 s.t. C(G(Δ)) �= ∅

}
.

Note that the transformation is straightforward, as
RCoS(G) = v(N)+CoS(G)

v(N) . Trivial bounds on the RCoS
are 1 ≤ RCoS(G) ≤ n, and these are tight.

3 Games with Restricted Coalitions

Suppose that there is some given subset of coalitions T ⊆
2N that can deviate (we assume T contains all singletons).
Given a game G = 〈N, v〉 and a restriction T , we define the
restricted game G|T = 〈N, v|T 〉, where v|T (S) = v(S) if
S ∈ T , and 0 otherwise. We emphasize that the restrictions
are given exogenously to the game, and do not depend on the
value function or the structure of the game.

Clearly, the more we restrict allowed coalitions, the fewer
the constraints on allowed imputations, and therefore the core

1There are versions with/without the minimality requirement.

can only expand. This means that such restrictions can only
decrease the CoS of the game. We now consider how some
natural restrictions affect the (relative) CoS of the game.

1. Only coalitions of size at most k are allowed, i.e., T =
{S ∈ 2N : |S| ≤ k}.

2. N is divided according to some fixed partition P =
{C1, C2, . . . , Ck}, and T = {S ∈ 2N : S ⊆ Cj}.

3. Relations between agents are described by a (non-
directed) communication graph (N,E). A coalition S
is allowed only if the subgraph (S,E|S) is connected.

The third restriction was proposed by Myerson [1977], moti-
vated by the approach that members of a coalition in a society
are not allowed to communicate through non-members. Note
that the second restriction is a special case of the third, where
the graph is a block graph.
Example 1. Consider a simple game G with 5 agents, where
every coalition of size at least 3 wins, and the coalition of
the first two agents also wins. Without restrictions, the RCoS
of G is 1 2

3 (we have to pay 1
3 to each agent). We can now

observe how each of the restrictions affects the RCoS. Let T1
where only coalitions of size 2 are allowed, then C(G|T1) �= ∅
by paying 1

2 to each of the first two agents. Now, suppose
that in T2 we partition the agents to C1 = {1, . . . , 4} and
C2 = {5}. The core is still empty, but RCoS(G|T2) = 1 1

3 .
Finally, assume that T3 is a communication graph. If T3 is a
cycle, then the RCoS remains unchanged. If T3 is a line, then
C(G|T3

) �= ∅ (we can pay 1 to the middle node).
Without further assumptions on the game, restricting the

coalitions does not give a better bound on the CoS (in the
worst case): consider a simple game G = 〈N, v〉 where all
nonempty coalitions win; then RCoS(G|T ) = n even if only
singletons are allowed in T . We therefore consider only su-
peradditive games, as in Example 1 (i.e., the original value
function v is superadditive). Superadditivity is known to in-
duce more stability. For example, it has been shown that
if a game is superadditive and its set of coalitions T is re-
stricted to an acyclic communication graph, then its core is
non-empty [Demange, 2004] (i.e., it has RCoS of 1). Further,
the following is known.
Theorem 2 ([Bachrach et al., 2009a]). Let G be a superad-
ditive TU game (even without restrictions); then CoS(G) ≤
(
√
n− 1) v(N). Equivalently,

RCoS(G) ≤
√
n, (2)

and this bound is tight (up to a small additive constant).
Proposition 3. For any superadditive TU game G:

1. If T ={S∈2N: |S|≤k}, then RCoS(G|T )≤min{k,
√
n}.

Also, for k=2 a stable superimputation with cost 2 can
be found using a greedy algorithm.

2. If T is restricted to subsets of a partition P , then
RCoS(G|T ) ≤ maxC∈P

√
|C|.

3. If T is restricted to a communication graph which has a
single cycle, then RCoS(G|T ) ≤ 2.

Moreover, all bounds are tight (up to a small additive con-
stant in 1. and 2.).

Proof. We prove each case separately.
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Bounded coalition size, k = 2. We construct a superimpu-
tation p using the following algorithm.

Let S1={a1, a2} be the most expensive coalition in T .
Set p(a1) = v(S1).
for t = 2, 3, . . . , n do

find the most expensive coalition in T containing xt,
i.e., St = {at, b}

Set p(at) = v(St).
Set at+1 ← b.

end for

First, observe that p is a stable superimputation. Let S =
{a, b} be any coalition. If S was selected in some iteration,
then either a or b gets the value of S and would therefore not
participate. If S was not selected, then there is some St with
v(St) ≥ v(S), and St contains one of a, b. Thus one of them
is paid v(St) and would not participate in S.

It is left to prove that p(N) ≤ 2v(N). Clearly p(N) =∑
i∈N p(i) =

∑n
t=1 v(St). Think of {St}nt=1 as nodes in a

graph, where an edge connects two coalitions if they inter-
sect. Since St is only connected to St−1 and St+1 (when they
exist) we get a bipartite graph (L,R), where L contains all
coalitions St with odd t, and R with even t. Coalitions inside
L and R are pairwise disjoint. From superadditivity we have
that p(N) holds

n∑
t=1

v(St) =
∑
A

v(St)+
∑
B

v(St) ≤ v

(⋃
A

St

)
+v

(⋃
B

St

)
,

i.e., at most 2v(N).
While the greedy algorithm supplies us with a stable super-

imputation whose value is at most 2v(N), it is possible to do
better (see next paragraph).

Bounded coalition size, k > 2. If k ≥
√
n then by Theo-

rem 2 we are done. Assume therefore k <
√
n. Consider a

balanced collection D which is a solution of G.

Lemma 4 ([Bachrach et al., 2009b]). If G is superadditive,
then there is a solution D in which any two sets S, S′ ∈ D
with nonzero coefficients intersect.

Thus take any coalition S ∈ D of size at most k with a
nonzero coefficient δS . There must be such a set, otherwise
all coefficients are 0 (which means we can find a better solu-
tion to the dual program).

p(N) =
∑
j∈N

pj =
∑
S∈D

δSv(S) (by duality)

≤
∑
i∈S

∑
S:i∈S

δSv(S) ≤ v(N)
∑
i∈S

∑
S:i∈S

δS (Lemma 4)

= v(N)
∑
i∈S

1 = v(N)|S| ≤ kv(N).

For tightness, let q = k − 1 and nq = k2 − 1 = q2 + q + 1.
Take a game Gq = 〈Nq, vq〉 s.t. |Nq| = nq , and CoS(Gq) >√
nq − 1 (such a game exists by the tightness example in

Theorem 2). We now embed Gq in a game G = 〈N, v〉,
where N = Nq ∪ {k2, . . . , n}. Set v(N) = vq(Nq),

v(S) = vq(S) if S ⊆ Nq , and v(S) = 0 otherwise. We
thus have CoS(G) = CoS(Gq) >

√
nq − 1 > k − 1.

Using Lemma 4, it can be shown that when k = 2,
CoS(G|T ) ≤ 1.5 (which is tight).

Partitions Take any C ∈ P , and the linear constraints in-
duced by its subcoalitions. From Theorem 2 we can satisfy
these constraints by paying at most p(C) ≤

√
|C|v(C). We

set the payoffs of each set C independently in the same man-
ner. As there are no further constraints, p is stable. Also

p(N) =
∑
C∈P

p(C) ≤
∑
C∈P

√
|C|v(C) ≤ max

C∈P

√
|C|v(N),

where the last inequality is due to superadditivity of v.

A single cycle We construct a stable superimputation p′, by
paying v(N) to an arbitrary node in the circle, and solve the
remaining game as a tree (using Demange’s algorithm [De-
mange, 2004]). While this solution is quite simple, for the
worst case it is asymptotically tight. We generalize the exam-
ple given earlier as follows:

Consider a simple anonymous game where a coalition wins
iff its size is at least �(n+ 1)/2�, and a communication graph
with n nodes connected in a circle. Since the game is sym-
metric, we have pi = pj = p, and for smallest winning coali-
tions S, v(N) = v(S) ≤ p(S) = |S|p = �(n+ 1)/2� p.
that is, p(N) = np, which equals either (2− 2

n+2 )v(N) (for
odd n), or (2− 1

n+1 )v(N) (for even n). �
The lower bound example not only has coalitions of size

k, but can also be embedded in a communication graph of
degree k. We conjecture that this always holds, i.e., that
RCoS(G|T ) ≤ d(T ), where d is the degree of the commu-
nication graph of T .

4 CoS and the Least Core

In this section we study the quantitive relation between the
CoS and the Least core in coalitional games (not necessarily
restricted ones). We use the following lemma (for a proof,
see [Gilles, 2010]).
Lemma 5. Any minimal balanced collection has a size of at
most n, and a unique set of balancing coefficients.

As an immediate corollary we get the following result,
which has been independently shown by Malizia et al. [2007]
using the geometric properties of the core.
Corollary 6. If the core of G is empty, then there is a set of
coalitions of size at most n that are sufficient to determine the
emptiness of the core.

The strong least core It trivially holds (see [Bachrach et
al., 2009b]) that

εS(G) ≤ CoS(G) ≤ n · εS(G). (3)

While the upper bound is tight (consider a game where
v(S) = 1 for all S �= ∅), it can be improved when the game
is superadditive, as we will see next.

For the results in this section, we use the following con-
struction. Given a game with an empty core G and ε =
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εS(G), define a new game Gε = 〈N, vε〉, where vε(S) =
v(S) − ε for all S � N , and vε(N) = v(N). Clearly
C(Gε) = SCε(G) = SLC(G).
Theorem 7. For any superadditive game G,
CoS(G) ≤

√
n · εS(G), and this bound is tight.

Note that we can derive the
√
n bound that appears in The-

orem 2, since εS(G) ≤ v(N).
We make use of the following lemma. The proof is omit-

ted, but it uses techniques similar to those in [Bachrach et al.,
2009b].
Lemma 8. Let 〈D, {δS}S∈D〉 be a balanced collection, then∑

S∈D δS ≤
√
n.

Proof of Theorem 7. From Lemma 4, there is a balanced col-
lection 〈D, {δS}S∈D〉 in which any two sets S and S′ with
δS �= 0 and δS′ �= 0 intersect, and v(N) + CoS(G) =∑

S∈D δSv(S).
Since D is balanced, it must hold by Theorem 1 that∑

S∈D

δS(v(S)− ε) =
∑
S∈D

δSvε(S) ≤ v(N),

and by combining the last equation and (1),

CoS(G) =
∑
S∈D

δSv(S)− v(N) ≤ ε
∑
S∈D

δS . (4)

From (4) and the lemma,

CoS(G) ≤
∑
S∈D

δSε ≤
√
nε =

√
nεS(G).

The tightness follows from the tightness of Theo-
rem 2. That is, there is a game G in which CoS(G) ≥
(
√
n−O(1)) v(N) ≥ (

√
n−O(1)) εS(G). �

Our main result is showing that the lower bound can be im-
proved in the general case. We begin with a simple example.
Consider the case of n = 2, and suppose there is an empty
core. This simply means that v(1) + v(2) > v(1, 2). If we
define z = v(1, 2) − (v(1) + v(2)), then we can easily see
that CoS(G) = z = 2εW(G) = 2εS(G). With more agents,
this ratio is generalized as follows.
Theorem 9. Let G be a game with an empty core. CoS(G) ≥
n

n−1εS(G), and this bound is tight.

Proof. For tightness, it is sufficient to consider a simple game
where all coalitions of size at least n− 1 win.

Let G be a game with an empty core. Consider the strong
least core of G, i.e., SLC(G). Let ε = εS(G).

Recall the game Gε. Similarly to the argument used in
Section 2.1, there is a solution of Gε (a minimal balanced
collection) 〈K, {δS}S∈K〉 s.t.∑

S∈K

δSvε(S) = v(N). (5)

W.l.o.g. N /∈ K. Assume otherwise; then either K = {N}
or {N} = K ′ � K in contradiction to the minimality of K.
However, if K = {N} is the only balanced collection with
equality, then G can be stabilized with ε′ = 0 < ε, which is a
contradiction to the minimality of ε = εS(G).

For all i ∈ N , 1 =
∑

S∈K:i∈S δS . Summing over i ∈ N ,

n =
∑
i∈N

∑
S∈K:i∈S

δS =
∑
S∈K

∑
i∈S

δS =
∑
S∈K

|S|δS ≤(n− 1)
∑
S∈K

δS ,

thus
∑
S∈K

δS ≥ n

n− 1
. (6)

By definition, vε(S) = v(S)− ε, thus

v(N) =
∑
S∈K

δSvε(S) =
∑
S∈K

δS(v(S)− ε)

=
∑
S∈K

δSv(S)− ε
∑
S∈K

δS ≤
∑
S∈K

δSv(S)− ε
n

n− 1
.

By Equations (1) and (6),

CoS(G) ≥
∑
S∈K

δSv(S)− v(N) ≥ ε
n

n− 1
. �

Theorem 9 establishes a quantitative relationship between
the CoS and the strong least core. However, the relationship
could be deeper.
Conjecture 10. For any game G, SLC(G) ⊆ EC(G).

In other words, we conjecture that preimputations in the
least core are the easiest to stabilize: for any x ∈ SLC(G),
CoS(x, G) = CoS(G).

For small games, the conjecture indeed holds.
Proposition 11. If n ≤ 3, then SLC(G) ⊆ EC(G).

We have already seen that when n = 2, SLC(G),WLC(G)
coincide, and are contained in EC(G). For n = 3 there is only
a small number of minimal balanced collections, and we can
simply go over all the possibilities. We again omit the full
proof due to space constraints.

The weak least core In the weak ε-core, every agent in ev-
ery coalition agrees to lower her demand by ε. Instead, we
can increase the payoff of each agent by the same amount
(see [Bejan and Gómez, 2009]); thus CoS(G) = n · εW(G).

Clearly, this means that WLC(G) ⊆ EC(G), as any preim-
putation z ∈ WLC(G) can be extended to a stable superim-
putation by adding ε to every coordinate.

Moreover, this tight relation allows us to conclude the fol-
lowing bounds from Theorems 7 and 9.
Corollary 12. (n− 1)εW(G) ≥ εS(G).
Corollary 13. For any superadditive game,
εS(G) ≥

√
n · εW(G).

5 Discussion

We showed that various restrictions on the interaction of
agents can significantly reduce the cost of stability in (super-
additive) TU games. While we focused on profit games, we
note that similar results hold when we impose restrictions on
expense sharing games (as in [Meir et al., 2010]).

We established a tight lower bound for the CoS, in terms of
the minimal relaxation that defines the least core. The upper
bound is also improved, but only under conditions of super-
additivity. Indeed, superadditive games have many attractive
properties related to stability and to its computational aspects
(see [Conitzer and Sandholm, 2006; Bachrach et al., 2009a;
Demange, 2004]).
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The nucleolus One difficulty with solution concepts such
as the core and its variations is that even when they exist,
they usually do not specify a unique imputation.

A unique solution that is highly motivated by the notion of
stability is the nucleolus and its variations. Informally, the nu-
cleolus is the preimputation that minimizes the dissatisfaction
of all coalitions, sorted according to a certain lexicographic
order (see, for example, [Bejan and Gómez, 2009] for defini-
tions). Like any other preimputation, we can always stabilize
the nucleolus by extending it with sufficient subsidies to a sta-
ble superimputation. Aziz et al. [2010] offered an alternative
way to achieve a stable nucleolus: first extend the core, then
compute the nucleolus in the extended game. For the per-
capita nucleolus, both solutions coincide, i.e., the per-capita
nucleolus of the extended game G is an extension of the per-
capita nucleolus of G. This arises simply by adding εW(G)
to every coordinate of the per-capita nucleolus, which is con-
tained in the WLC.

It is an open problem whether the (standard) nucleolus
N(G) has similar properties. Indeed, since it is contained in
the SLC, we have that CoS(N(G), G) = CoS(G) in every
game for which Conjecture 10 holds. We further conjecture
that N(G) is a minimal extension of N(G), which is not en-
tailed by the previous conjecture.

Future directions While our results indicate that there is a
tight connection between the extended core and other solution
concepts, there are many open questions for future research.
Beyond the conjectures that we explicitly stated, it would be
interesting to explore these relationships in specific families
of TU games, such as those that were mentioned in the intro-
duction.

While in the general case (non-superadditive) restricted co-
operation cannot guarantee improved stability, it may dramat-
ically reduce required subsidies in certain limited families of
TU games. Such combinations are worth studying. In addi-
tion, the analysis in this paper can be extended to the CoS
of coalition structures (as in Bachrach et al. [2009a]) and to
expense games (as in Meir et al. [2010]).

Finally, the relation between the CoS and similar solution
concepts in non-TU games (such as the strong price of anar-
chy) should be studied.
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