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Abstract

Humans have developed jurisprudence as a mech-
anism to solve conflictive situations by using past
experiences. Following this principle, we propose
an approach to enhance a multi-agent system by
adding an authority which is able to generate new
regulations whenever conflicts arise. Regulations
are generated by learning from previous similar sit-
uations, using a machine learning technique (based
on Case-Based Reasoning) that solves new prob-
lems using previous experiences. This approach
requires: to be able to gather and evaluate expe-
riences; and to be described in such a way that sim-
ilar social situations require similar regulations. As
a scenario to evaluate our proposal, we use a sim-
plified version of a traffic scenario, where agents
are traveling cars. Our goals are to avoid collisions
between cars and to avoid heavy traffic. These situ-
ations, when happen, lead to the synthesis of new
regulations. At each simulation step, applicable
regulations are evaluated in terms of their effective-
ness and necessity. Overtime the system generates
a set of regulations that, if followed, improve sys-
tem performance (i.e. goal achievement).

1 Introduction

Both human and multi-agent societies have been proven to
better function with the inclusion of regulations. In any soci-
ety, where several individuals continuously interact, conflicts
raise naturally. For this reason, within juridical contexts, hu-
man societies deal with these conflictive situations by estab-
lishing laws that regulate individuals’ behavior. Moreover,
humans have developed Jurisprudence as the theory and phi-
losophy of law, which tries to obtain a deeper understand-
ing of general issues such as the nature of law, of legal rea-
soning, or of legal institutions 1. Within it, Normative Ju-
risprudence tries to answer questions such as ”What sorts of
acts should be punished?”. In the Anglo-American juridical
system, when a conflict arises it is usual to gather informa-
tion about similar cases used in the past and use their solu-
tions as a reference to solve the current situation. Moreover,

1Jurisprudence definition extracted from Black’s Law Dictio-
nary: http://www.blackslawdictionary.com

when humans solve a new problem, sometimes they gener-
ate regulations in order to avoid that problem in the future.
Like in human societies, it is possible to enhance the running
of a Multi-Agent System (MAS) society by defining specific
regulations that promote a desired overall system’s behavior.
However, key questions are: “What is the good set of regula-
tions that promote a certain global behavior of the society?”,
and “How and when to generate new regulations?”. Thus,
the aim of this paper is to define a computational mechanism
able to synthesize norms that succeed in the proper regulation
of multi-agent societies whenever new conflicts arise.

We approach this regulation generation problem by learn-
ing from the experience of MAS on-going activities. As a
learning technique to use, we propose a variation of classi-
cal Case-Based Reasoning (CBR) [Aamodt and Plaza, 1994].
Classical CBR is a supervised machine learning technique
that solves new problems –i.e., cases– by obtaining similar
ones from a knowledge base (which is a compound of solved
problems) and adapting their solutions under the supervision
of an expert. Nevertheless, our aim is to generate proper reg-
ulations without external knowledge. Thus, we propose an
unsupervised CBR with an initially empty case base that does
not require an expert to evaluate generated solutions.

In our approach, a regulatory authority is continuously ob-
serving the scenario where agents interact. Then, whenever
it perceives a new conflictive situation, it sends its descrip-
tion to our CBR system, which generates a new solution by
using previous similar cases. Afterwards, generated case so-
lutions are translated into norms that can be understood by
agents (top-down). When norms are applicable, agents decide
whether to apply or violate them. Additionally, the regulatory
authority continuously observes the outcome of norm appli-
cations and violations. This can be regarded as a feedback
(bottom-up) that evaluates norms in terms of their effective-
ness and necessity according to system goals.

2 Related work

Artificial Intelligence and Law have been related since a first
article from McCarty [McCarty, 1977]. Within the MAS area
Multi-Agent Reinforcement Leaning [Busoniu et al., 2008]
is quite widely used for individual agent learning. Never-
theless its usage is much more scarce for organizational cen-
tered approaches, where an exception is the work by Zhang
et al.[Zhang et al., 2009] devoted to improve system’s orga-
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nization. Our work uses CBR as an alternative learning tech-
nique, which is also based on system experience, but results
in clearer knowledge representations —i.e., cases.

On the other hand, research on norms in MAS is quite an
active area. Boella and van der Torre have done relevant con-
tributions [Boella and van der Torre, 2004] in norm character-
ization; Campos et al. [Campos et al., 2009] have proposed
norm adaptation methods to specific network scenarios; Ar-
tikis et al.[Artikis et al., 2009] have studied the definition of
dynamic social conventions (protocols); and Savarimuthu et
al. [Savarimuthu et al., 2008], Griffiths and Luck [Griffiths
and Luck, 2010], as well as Kota. et al. [Kota et al., 2008]
work on norm emergence. Within this area, norm generation
has been studied less frequently. Shoham and Tennenholtz
[Shoham and Tennenholtz, 1995] focus on norm synthesis by
considering a state transition system: they explore the state-
space enumeration and state it is NP-complete through a re-
duction to 3-SAT. Similarly, Hoek et al. [van der Hoek et al.,
2007] synthesize social laws as a model checking problem
–again NP-Complete– that requires a complete action-based
alternative transition system representation. Following this
work, Agotnes and Wooldridge [Agotnes and Wooldridge,
2010] extend the model by taking into account both the im-
plementation costs of social laws and multiple (possibly con-
flicting) design objectives with different priorities. In this
setting, the design of social laws becomes an optimization
problem. On the contrary, our aim is not to explore the com-
plete search space but just to consider encountered conflic-
tive states, which for most scenarios represent a small propor-
tion of the entire state space. Moreover, CBR has the advan-
tage that, although cases are meant to cover the entire search
space, they do not need to be exhaustive, since they can be
representatives of a set of similar problems requiring simi-
lar solutions. Furthermore, our approach generates norms at
run-time. This has the additional advantage of being able to
regulate situations that may not be foreseeable at design-time.

An intermediate approach is this of Christelis et al. [Chris-
telis and Rovatsos, 2009; Christelis et al., 2010], that synthe-
sizes generalized norms over general state specifications in
planning domains. These domains allow for a local search
around declarative specifications of states using AI planning
methods. From our point of view, CBR allows the application
to a wider range of domains, in particular to those where (i)
experiences can be continuously gathered and evaluated, and
where (ii) similar social situations require similar regulations
(i.e., the continuity solution assumption).

Regarding the traffic scenario, we highlight the MAS ap-
proach in [Dresner and Stone, 2008], where an intersection
agent assigns priorities to traveling cars according to pre-
designed policies. They follow a control approach that im-
plies a much tighter agent coordination than the one induced
in our regulative approach.

3 The traffic scenario

To evaluate our method, we use a simple traffic scenario
[Koeppen and López-Sánchez, 2010] which has been de-
veloped as a multi-agent based simulation model in Repast
[North et al., 2005]. This scenario represents an orthogonal
two-road intersection discretized in a square grid of 20 × 20

Figure 1: Orthogonal road junction: a) feeder and exit lines,
b) traveling cars and areas covered by monitor agents.

cells (see Fig.1). It is divided into five disjoint areas (see
Fig.1.b) covered by monitor agents. Cars are external agents
with basic driving skills that enter into the scenario from four
possible start points (dark red points in Fig.1.a), and travel
towards randomly chosen destinations (exit points, depicted
in light green in Fig.1.a). Time, measured in ticks, is discrete,
and cars have a constant speed of 1 cell per tick. Cars perform
a single action per tick: move forward, stop, turn left/right.

4 Norm generation

We enhance our traffic MAS with a regulatory (traffic) au-
thority that generates norms preventing conflictive situations.
Inspired in jurisprudence, the authority uses previous experi-
ences (i.e., cases) to avoid new conflicts to arise again in the
future. As depicted in Figure 2, the traffic authority is perma-
nently observing and gathering information from the scenario
through the monitor agents. When a new conflict arises the
authority sends to the CBR system information about its pre-
vious and current situation. Then, given the new problem ob-
tained from the traffic authority, the CBR looks into the case
base for the most similar solved problem and adapts its solu-
tion to solve the new one. Since the traffic authority initially
lacks experience, we require an unsupervised method, and
thus, we have adapted CBR to deal with an initially empty
case base. For new cases with no previous experience, the
system generates random solutions (see section 4.2) and eval-
uates their performance experimentally. Cases are described
from the point of view of monitor agents, which have a wider
view than car agents. Furthermore, car agents may not be
familiar with case syntax, so they are not able to interpret
case solutions. Hence, generated case solutions are sent to
the Norms manager, who translates them to norms (which
are similar to traffic rules) and establishes permanent links
between them and their associated case solutions. Then, gen-
erated norms are communicated to all cars, which use a rule
engine to interpret them. At each step cars use their rule en-
gine to know which norms apply to the current situation, al-
though they decide whether to follow or violate them. After-
wards, the traffic authority gathers information about norm
applications and violations so to evaluate norms and their as-
sociated case solutions in terms of a score (see section 4.4).

4.1 Cases and solutions

In classical CBR cases are described as problems with their
associated solutions (Case = 〈probl, sol〉). Since our ap-
proach is unsupervised, for each problem we need to evalu-
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Figure 2: Architecture of our system

ate a set of possible solutions {(soli, scorei)} so that each
soli has a scorei value in [0..1]. The problem is described
as probl = 〈problt−1, problt〉, where problt−1 (see Fig. 3.a)
is the situation previous to the conflict and problt (see Fig.
3.b) is the conflictive situation (for example the collision be-
tween cars 1 and 2 in Fig. 3.b). Both of them are square
grids of 6× 6 cells that correspond to the scope of a monitor
agent, where each cell contains n cars (being n >= 0, and if
n > 1 means that the cell contains a collision). For each car,
the case stores information about its heading (North, South,
East or West) and whether it is moving or not. The case so-
lution, sol (see Fig. 3.c), is also a square grid with the same
dimensions specifying stop obligations to be applied by cars
in problt−1.

4.2 Unsupervised CBR cycle

The CBR cycle is composed of 4 different phases: retrieve,
reuse, revise and retain.

Retrieve phase: Given a new problem the system searches
for cases in the case base that have a similar problem. The
similarity between two cases A and B is computed as the in-
verse of the distance between their case descriptions. It is
computed as the aggregation of distances of their attributes,
that in our scenario correspond to the cells of probl. Specifi-
cally, each cell in case A (cAi ∈ problA) is compared with the
corresponding cell in case B (cBi ∈ problB):

dist(problA, problB) =
nCells∑

i=1

dist(cAi , c
B
i )

Differences between two cells are considered to be 1 if
their occupancy state is different (notice that this similarity
function is commonly used for nominal attributes):

dist(cAi , c
B
i ) = 1 if state(cAi ) �= state(cBi ), where

state(cki ) = {empty, car(heading,moving), collision}
Since we may encounter symmetric cases, the retrieve

phase searches for rotated versions of the problem:

problαA = rotation(problA, α), α ∈ {0◦, 90◦, 180◦, 270◦}
Currently, our implementation of this retrieve phase just

returns a single case at most.

Figure 3: Case example: Problem description (a, b), being a)
problt−1, b) problt, and c) the set of generated solutions.

Reuse phase: If a case has been retrieved in the previ-
ous phase, this phase adapts its best solution to solve the new
problem, if the score of this solution is over a threshold (see
section 4.4). The adaptation process is done by rotating the
solution the same α degrees than the problem of the case that
was rotated in previous phase to match the new problem. Oth-
erwise, if the score of its best solution is under the threshold,
the solution is not adapted but an alternative one is generated,
assigning a stop obligation to another random car. Then, this
new solution is added to the retrieved case. If no similar case
was retrieved, a new case, composed by the new problem and
a randomly generated solution for it, is created.

Revise phase: In our unsupervised CBR, the revise phase
empirically evaluates norms and their associated solutions in
an iterative manner (see section 4.4).

Retain phase: This phase stores the resulting experience
in the case base. In our unsupervised CBR scenario this may
lead to two different possibilities: a) If a new case was gen-
erated, it is stored in the case base; b) If an existing case was
retrieved, the retain becomes an update of the current case
if a new solution was generated or the score of an existing
solution was updated.

4.3 From case solutions to norms

Once CBR has generated a case solution, it is sent to the
Norms manager, who translates it to a norm that car agents
can understand and apply. Norms are described as ”IF cond
THEN obl(action)”, where cond is the condition for the norm
to be applicable and obl(action) is the action that must be
performed. Notice that, unless norms only specify obliga-
tions (obl(action)), they can be also regarded as prohibitions
(prohib(¬ action)), and that permission(move) is granted by
default if no norms are applicable. A norm also has a score
that is initially set to 0 and represents its performance. Recall
that in our traffic scenario a case solution establishes which
car has to stop. The content of the 3 cells in front of this car
(which corresponds to its scope) is used as the norm condi-
tion. The consequence of the norm is the obligation for that
car to stop. Figure 4.c depicts the resulting norm from the
case example in Fig. 3: top part shows its graphical represen-
tation and bottom part its textual form actually used.

4.4 Norm evaluation

Norm evaluation is performed to compute the effectiveness
and the necessity of norms with respect to system goals. Our
aim is to accomplish the system goals with the minimum set
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Figure 4: Norm translation from case solution in Fig. 3

of norms, discarding ineffective or unnecessary norms from
our set. On the one hand, the effectiveness of a norm is com-
puted taking into account the result of its applications. Specif-
ically, after agents apply the norm it is checked whether a
conflict arises (ineffective norm) or not (effective norm). On
the other hand, the necessity of a norm is evaluated accord-
ing to the result of its violations. In particular, after agents
have violated a norm it is checked whether a conflict arises
(necessary norm) or not (unnecessary norm). Thus, the time
to detect unnecessary norms is inversely proportional to the
number of violations. In complex situations, where several
norms could be applied (and violated) before a conflict arises,
the system would not be not able to discern between norms,
and so it just would evaluate all of them equally. Neverthe-
less, since evaluation is performed in an iterative manner, the
method is quite robust to sporadic erroneous evaluations.

Norms are evaluated at each tick considering these four
dimensions: effective, ineffective, necessary, unnecessary.
Specifically, the value for each dimension is calculated by
multiplying the number of occurrences of that kind by a
constant factor, which should be regarded as the importance
given to that kind of situations. Therefore, norms are
evaluated using the following formula:

eval = effective− ineffective+ necessary − unnecessary
= KE×ApE−K¬E×Ap¬E+KN×V iolN−K¬N×V iol¬N

where Ks are domain-dependent constants that are es-
tablished by the designer taking into account conflicts and
the relative importance of each goal. They define the impor-
tance of effective applications (KE), ineffective applications
(K¬E), violations that lead to a conflict (KN ), and violations
that lead to a non-conflictive situation (K¬N ), ApE is the
number of norm effective applications, Ap¬E the number
of ineffective applications, V iolN denotes the number of
times a conflict arose after a norm violation, and V iol¬N the
number of times a violation did not lead to a conflict.

Our current scenario considers two different goals,
G = 〈Gcols, GflTraff 〉. First goal (Gcols) is to avoid car
collisions and second goal is to have fluid traffic (GflTraff ).
Optimizing Gcols implies that cars will be occasionally
required to reduce speed or to stop in order to avoid colli-
sions. This causes heavier traffic, having an adverse effect
on GflTraff . On the other hand, GflTraff prefers that
cars never stop, which is bad for Gcols. If both goals were
independent, they could be evaluated separately. However,
they are directly related and have conflicting interests,

so they have to be evaluated together in order to reach a
trade-off between them. Since ineffective norms may cause
collisions, the effectiveness of norms is directly related to the
optimization of Gcols. Unnecessary norms cause unneeded
stops and so heavier traffic, being prejudicial for GflTraff .
Hence, the optimization of GflTraff is performed by
avoiding unnecessary norms. We can therefore instantiate
the evaluation formula as:

eval = (KE × nCAppNoCol)− (K¬E × nCAppCol) +
(KN × nCV iolCol)− (K¬N × nCV iolNoCol)

where nCAppNoCol is the number of cars that ap-
plied the norm and did not collide, nCAppCol is the number
of cars that applied the norm and collided, nCV iolCol is
the number of cars that violated the norm and collided, and
nCV iolNoCol is the number of cars that violated the norm
and did not collide. K¬N is here related to GflTraff because
unnecessary norms cause heavier traffic.

Once eval is computed, it is added to the history of evalu-
ations of the norm, which comes down to be a window with
size = szwin. Finally, the score of the norm is computed by:

score = posEvals
|negEvals|+posEvals

where posEvals is computed by adding all the values
eval >= 0 of the evaluation history, and negEvals is com-
puted by adding all the negative evaluation values (eval < 0)
of the norm. Notice that with this method, the norm is evalu-
ated in an iterative manner. In case the score value becomes
under a certain threshold, the norm is deactivated and re-
moved from the set of norms. Thus, it will not be applied any
longer, unless it is generated again in another conflictive situ-
ation. In fact, in order to avoid premature norm deactivations,
the system only deactivates norms that have been evaluated a
minimum number of times (minEvals).

5 Experiments

We have empirically evaluated our approach in a simulation
of the traffic scenario described in section 3. Due to the intrin-
sic randomness of the simulation, each experiment has been
repeated 100 different times. Each simulation lasts 10000
ticks, and every 2 ticks, 3 new cars are added to the sce-
nario. Thus, during simulations, the number of traveling
cars can vary from 23 to 27. When norms are applicable,
car agents have a probability P (V iolate) = 0.3 of violat-
ing them. Norms are deactivated when their score is under a
threshold = 0.3 and they have been evaluated a minimum of
10 times (minEvals = 10). Goals of our scenario (Gcols and
GflTraff ) are dependent and conflicting. Hence, we have de-
signed two different experiments to study to what extent they
can be simultaneously accomplished.

Since their consequences are more dramatic, we consider
avoiding collisions to be more important than having fluid
traffic. Thus, first experiment just considers Gcols to test if
the system is able to accomplish it when no other factors are
taken into account. For this aim, in this experiment constants
for norm efficiency are KE = 1 and K¬E = 5 and con-
stants for norm necessity are KN = K¬N = 0 (see section
4.4). Thus, the highest punishment is associated to collisions
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(K¬E). Second experiment considers both goals, although
collisions are still considered to be of higher importance.
Specifically, in this experiment constants for norm efficiency
are KE = 1 and K¬E = 5 and constants for norm necessity
are KN = 1 and K¬N = 2. Figure 5 depicts the results of
both first (dark/blue thin series) and second (light/green thick
series) experiments. All series correspond to the average of
100 simulations. For each tick, top series represent the av-
erage number of active norms, middle-high series show the
average number of car stops, and bottom series represent the
average number of collisions averaged again within a time
window of last 50 ticks. Since we evaluate norms, we just
consider those collisions caused when norms are applied (in-
stead of also including collisions coming from norm viola-
tions). The average of collisions is inversely proportional to
the accomplishment of Gcols. Similarly, the performance of
GflTraff is inversely proportional to the number of car stops.
Therefore, these goals can be regarded as the minimization of
the number of collisions and car stops respectively.

In experiment 1 the number of stops is always larger than
in experiment 2. This is due to the fact that in this experi-
ment any norm that can eventually avoid any collision is in-
cluded regardless the fact that it may be causing unneeded
stops. However, this is taken into account in experiment 2,
since the number of stops must also be minimized. On the
other hand, in experiment 1 the simulation rapidly converges
to a stable set of 10 norms that prevent collisions. Thus, no
more collisions happen from tick 550 on although this is at
the expense of never optimizing the traffic flow. Experiment 2
has conflicting goals, so the system is continuously activating
and deactivating norms to find a trade-off between the perfor-
mance of Gcols and GflTraff . Hence, the system does not
converge to a stable set of norms. However, resulting norms
partially fulfil both goals. Some examples of norms generated
in experiments 1 and 2 are the following:
1) IF (car(p(left), h(east))) THEN obl(Stop)
2) IF (car(p(right), h(west))) THEN obl(Stop)
3) IF (car(p(front), h(north))) THEN obl(Stop)
4) IF () THEN obl(Stop)

Where p() is the position of a car and h() is its head-
ing. Norms 1 and 2 correspond to the left-hand side priority
(see Fig. 4) and right-hand side priority, respectively. In all
performed simulations, preventing the other from appearing.
Nevertheless, if both of them are generated, they can lead to
deadlocks between two cars approaching from orthogonal di-
rections. Although norm violators will break these deadlocks,
these situations will penalize fluid traffic. GflTraff is not
considered in experiment 1 but is certainly relevant for exper-
iment 2. Thus, when performing experiment 2, the score of
both norms gradually decreases until the system deactivates
one of them. From then on, the score of the active norm
increases gradually, since it is both effective and necessary.
This allows to accomplish both goals (Gcols and GflTraff )
regardless of the order in which norms 1) and 2) are gener-
ated. Notice also that we evaluate norms individually, but
since all active norms are tested simultaneously in the sce-
nario, their combination is also evaluated.

Norm 3 can be regarded as a security distance norm. It is
typically generated and applied in road areas out of the in-

Figure 5: Results for experiments 1 and 2

tersection (i.e., areas 1, 2, 4 and 5 in Fig. 1.b). This norm
requires the car agent to stop if there is a car heading north
in front of him. Since it is preventive, sometimes cars violate
it and collide, while sometimes cars violate it and do not col-
lide. It is always active in experiment 1 since it helps to min-
imize collisions (accomplishment of Gcols). Nevertheless, it
may seem unnecessary from the point of view of GflTraff .
In experiment 2 this norm, that goes against one of the goals,
is continuously being activated and deactivated because the
system is trying to find a trade-off between the optimization
of Gcols and GflTraff . As a consequence, collisions are not
completely eradicated, but the number of car stops is reduced
with respect to experiment 1. Norm 4 establishes an uncondi-
tional stop obligation. It is generated occasionally and rapidly
evaluated as unnecessary and deactivated.

6 Conclusions

This paper proposes a method to generate new regulations
for multi-agent systems. Specifically, regulations are gener-
ated by a regulation authority using machine learning, when
a conflictive situation arises. Learning is based on previ-
ous experiences, and corresponds to an unsupervised varia-
tion of Case Based Reasoning (CBR). Cases are expressed in
terms of the information observable (accessible) by the regu-
latory authority, which may differ from the one observable by
agents. Hence, generated solutions are translated into norms
that are interpretable by agents. Generated norms are evalu-
ated in an iterative manner in terms of their efficiency and ne-
cessity according to system goals. The proposed evaluation
uses both norm applications and violations. We thus claim
that this innovative approach can be highly relevant for nor-
mative MASs, since, to the best of our knowledge, no general
norm generation methods have been established yet.

It is worth mentioning that our aim is to end up with the
minimum set of regulations that accomplish system goals.
On the one hand, we only generate regulations when a con-
flictive situation is encountered, which is expected to be a
small proportion of the total number of situations a system
may face. Hence, this reduces the number of times the CBR
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is invoked and the number of generated regulations. On the
other hand, the evaluation method helps to discard ineffec-
tive and unnecessary norms, reducing the number of norm
applications that agents have to check. In addition, our ap-
proach supports the indirect evaluation of sets of norms when
they apply simultaneously. Although norms are evaluated in-
dividually, their evaluation depends on the state reached each
time they are applicable, and this state depends on all appli-
cable norms. Thus, if the application of a set of norms leads
to a non-conflictive situation, the score of each norm would
increase, while if their application leads to a conflictive situ-
ation, norms score would decrease.

The paper empirically evaluates our approach in a simpli-
fied traffic scenario, where car collisions represent the con-
flictive situations and norms, that can be regarded as traffic
rules, establish under which circumstances a car must stop.
Presented experiments illustrate how our approach is capable
of generating regulations taking into account a single or mul-
tiple conflictive goals. Furthermore, in the second experiment
we have shown that when the system generates norms that do
not work well together it is capable of discarding some of
them. Other scenarios requiring agent coordination –e.g. P2P
networks, Robosoccer, etc.– may well benefit from our ap-
proach by avoiding conflictive situations —such as network
saturation or teammate blocking in previous examples. As
future work, we may consider the application of other learn-
ing techniques such as Reinforcement Learning. Currently
we are working on defining alternative relationships between
system goals and metrics for effectiveness and necessity, mea-
suring both of them for each goal.
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