
Rigging Tournament Brackets for Weaker Players

Isabelle Stanton and Virginia Vassilevska Williams

Computer Science Department
University of California, Berkeley

isabelle,virgi@eecs.berkeley.edu

Abstract

Consider the following problem in game ma-
nipulation. A tournament designer who has
full knowledge of the match outcomes between
any possible pair of players would like to cre-
ate a bracket for a balanced single-elimination
tournament so that their favorite player will
win. Although this problem has been studied
in the areas of voting and tournament manip-
ulation, it is still unknown whether it can be
solved in polynomial time. We focus on identi-
fying several general cases for which the tour-
nament can always be rigged efficiently so that
the given player wins. We give constructive
proofs that, under some natural assumptions,
if a player is ranked among the top K players,
then one can efficiently rig the tournament for
the given player, even when K is as large as
19% of the players.

1 Introduction

As a natural way to select a leader, competition is at the
heart of life. It is intriguing, both for its participants, and
its spectators. Society is riddled with organized compe-
titions called tournaments with well-defined rules to se-
lect a winner from a pool of candidate players. Sports
tournaments such as the FIFA World Cup and Wimble-
don are immensely popular and generate huge amounts
of revenue. Elections are another important type of tour-
naments: a leading party is selected according to some
rules using votes from the population.

Two of the most common tournament formats em-
ployed in both sports and voting are round-robin and
single-elimination. In the former, every pair of play-
ers are matched up, and a player’s score is how many
matches they won. If some player has beaten everyone
else, then they are the clear (Condorcet) winner. Other-
wise, the winner is not well-defined. However, given the
outcomes of a round-robin tournament, there are various
methods of producing rankings of the players. The most
common definition of the optimal ranking is that it mini-
mizes the number of wins of a lower-ranked player over

a higher-ranked player [Slater, 1961]. Although find-
ing such a ranking for a round-robin tournament is NP-
hard [Alon, 2006], sorting the players according to their
number of wins is a good approximation to the optimum
ranking [Coppersmith et al., 2006].

Single-elimination (SE) tournaments are played as fol-
lows. First, a permutation of the players, called the
bracket or schedule is given. According to the bracket,
the first two players are matched up, then the second pair
of players etc. The winners of the matches move on to
the next round. The bracket for this round is obtained by
pairing up the remaining players according to the origi-
nal bracket. If the number of players is a power of 2, the
tournament is balanced. Otherwise, it is unbalanced and
some players advance to the next round without playing a
match. In practice, these byes are usually granted in the
first round. Although the winner of an SE tournament
is always well-defined, the chance of a particular player
winning the tournament can vary immensely depending
on the bracket. Arguably, this gives the tournament orga-
nizer a lot of power. The study of how much control an
organizer has over the outcome of a tournament is called
agenda control [Bartholdi et al., 1992].

The most studied agenda control problem for balanced
SE tournaments is to find a bracket which maximizes the
probability that a given player will win the tournament.
The tournament organizer is given the probability that i
will beat j for every pair of players i, j. A major focus
is to maximize the winning probability of the strongest
player under some assumptions1 (e.g., [Appleton, 1995;
Horen and Riezman, 1985; Vu and Shoham, 2010b;
2010a]). Without assumptions on the probabilities, the
agenda control problem for an arbitrary given player is
NP-hard [Lang et al., 2007; Hazon et al., 2008], even
when the probabilities are in {0, 1, 1/2} [Vu et al., 2010].
Moreover, the maximum probability that a given player
wins cannot be approximated within any constant fac-
tor unless P=NP [Vu et al., 2010]. When the probabil-
ities are all either 0 or 1, the agenda control problem,
then called the tournament fixing problem (TFP), is not

1A common assumption is monotonicity: the probability of
beating a weaker player is at least as high as that of beating a
stronger one.

357

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence

well understood. One of the interesting open problems in
computational social choice is whether a tournament fix-
ing bracket can be efficiently found. Several variants of
the problem are NP-hard – when some pairs of players
cannot be matched [Vassilevska Williams, 2010], when
some players must appear in given rounds [Vu et al.,
2010], or when the most “interesting” tournament is to
be computed [Lang et al., 2007].

Besides its natural connection to tournament manipu-
lation, TFP studies the relationship between round-robin
and single-elimination tournaments. The decision ver-
sion of TFP asks, given the results of a round-robin tour-
nament and a player A, is A also the winner of some SE
tournament, given the same match outcomes? In the area
of voting, suppose all votes are in, can we simulate a win
for a particular candidate, using single-elimination rules
(binary cup)? In this work, we investigate the following
question: if we consider a round-robin tournament and a
ranking produced from it by sorting the players accord-
ing to their number of wins, how many of the top players
can actually win some SE tournament, given the same
match outcomes? What conditions on the round-robin
tournament suffice so that one can efficiently rig the SE
tournament outcome for many of the top players?

Prior work has shown several intuitive results. For
instance, if A is any player with the maximum num-
ber of wins in a round-robin tournament, then one can
efficiently construct a winning (balanced) SE bracket
for A [Vassilevska Williams, 2010]. We extend and
strengthen many of the prior results.
Contributions. Let Π be an ordering of the players in
nonincreasing order of their number of wins in the given
round-robin tournament. We consider conditions under
which, for large K, the SE tournament can be fixed ef-
ficiently for any of the first K players in Π. We are in-
terested in natural and not too restrictive conditions un-
der which a constant fraction of the players can be made
to win. If the first player p1 in Π beats everyone else,
then p1 wins all SE tournaments. We show that if any
player can beat p1, then we can also fix the tournament
for the second player p2. We show that for large enough
tournaments, if there is a matching onto the top K − 1
players {p1, . . . , pK−1} in Π from the rest of the players,
then we can efficiently find a bracket for which pK wins,
where K is as large as 19% of the players.
Graph representation. The outcome of a round-robin
tournament has a natural graph representation as a tour-
nament graph: a directed graph in which for every pair
of nodes a, b, there is an edge either from a to b, or from
b to a. The nodes of a tournament graph represent the
players in a round-robin tournament, and an edge (a, b)
represents a win of a over b.
Notation and Definitions. Unless noted otherwise, all
graphs in the paper are tournament graphs over n ver-
tices, where n is a power of 2, and all SE tournaments
are balanced. In Table 1, we define the notation that
will be used in the rest of this paper. For the definitions,
let A ∈ V be any node, let X,Y ⊆ V be such that

Notation

Nout(A) = {v|(A, v) ∈ E}, Nout
X (A) = Nout(A) ∩X

N in(A) = {v|(v,A) ∈ E}, N in
X (A) = N in(A) ∩X

out(A) = |Nout(A)|, outX(A) = |Nout
X (A)|

in(A) = |N in(A)|, inX(A) = |N in
X (A)|

Hin(A) = {v|v ∈ N in(A), out(v) > out(A)}
Hout(A) = {v|v ∈ Nout(A), out(v) > out(A)}

H(A) = Hin(A) ∪Hout(A)
E(X,Y) = {(u, v)|(u, v) ∈ E, u ∈ X, v ∈ Y }

Table 1: A summary of the notation used in this paper.

X ∩ Y = ∅.
Consider a tournament graph G = (V,E). We say

that A ∈ V is a king over another node x ∈ V if
either (A, x) ∈ E or there exists y ∈ V such that
(A, y), (y, x) ∈ E. A king in G is a node A which is
a king over all x ∈ V \ {A}. We say that set S covers
a set T if for every t ∈ T there is some s ∈ S so that
(s, t) ∈ E. Thus Nout(A) covers the graph if and only
if A is a king.

If one can efficiently construct a winning SE tourna-
ment bracket for a player A, we say that A is an SE win-
ner. We use the ranking Π formed by sorting the players
in nondecreasing order of their outdegree.

We will construct SE tournaments as a series of match-
ings where each successive one will be over the winners
of the previous one. A matching is defined as a set of
pairs of vertices where each vertex appears in at most
one pair. In our setting, these pairs are directed, so a
matching from X to Y will consist only of edges that are
directed from X to Y . If an edge is directed from x to
y, then we refer to x as a source. Further, given a match-
ing M from the sets X to Y , we will use the notation
X \M to refer to the vertices in X that are not contained
in the matching. A perfect matching from X to Y is one
where every vertex of X is matched with a vertex of Y
and |X| = |Y |. A perfect matching in a set S is a perfect
matching from some S′ ⊆ S to S \ S′.

2 Motivation and Counterexamples

We will now discuss the motivation for our assumptions
on the graph. We will look at some necessary and suffi-
cient conditions for the top K players to win an SE tour-
nament. We begin with an example.

Consider the transitive tournament graph G with nodes
v1, . . . , vn, where vi beats all nodes vj for j > i.
Then v1 is the winner of all SE tournaments on G.
Now, take any perfect matching from {v1, . . . , vn/2} to
{vn/2+1, . . . , vn} and reverse these edges to create a
back-matching. This gives each node from the weaker
half of G a win against some node from the stronger half.
The new outdegree ranking only swaps vn/2 and vn/2+1,
however now the top n/2 − 1 players are SE winners:
each of these nodes still beats at least n/2 other play-
ers, and the back-edges of the matching also make each
one also a king. Prior work showed that this condition is

358

p1 p2 pr pr+1

m1 m2 mr

S

W
V \ {W ∪ S}

Figure 1: pi only loses to mi and pj for
j < i. No matter how the other edges of
the tournament graph are placed, since the pi
beat everyone else and the mi lose to every-
one else, all SE tournament winners are in S.

A

a1

a2

a3

b1

b2

k1

k2

Figure 2: Example in which the
two highest outdegree nodes, k1
and k2, have a matching into
them but A cannot win an SE
tournament.

A

h1 h2 h3 hk

b1 b2 b3 bkc

. . .

. . .

Figure 3: Example where there is
a matching from Nout(A) onto the
k highest degree nodes but A can’t
win an SE tournament.

sufficient for these players to be an SE tournament win-
ner [Vassilevska Williams, 2010]. Thus, adding a back-
matching to a transitive tournament can dramatically in-
crease the set of winners. Our goal is to understand the
impact of such back-edge matchings in general tourna-
ments. As a warm-up, we consider the nodes of second
and third highest outdegree. By case analysis, one can
show the following theorem.

Theorem 1. Let G be a tournament graph and let A be
the node of second highest outdegree. Then A is an SE
winner if and only if there is no Condorcet winner in G.
If there is a matching onto the top 2 nodes, then the third
highest outdegree node is also an SE winner.

This simple result leads to a larger question. What
are the necessary and sufficient conditions for the kth

ranked node to win an SE tournament? A natural conjec-
ture is that if there is a perfect matching from V \ H(A)
to H(A), then A should be able to win.

In Figure 1 we give an example of a tournament and
a subset S consisting of the top r + 1 outdegree nodes
such that there is a matching of size r from a subset W =
{m1, . . . ,mr} of V \ S into S, but no matching of size
r + 1 from V \ S into S. Figure 1 only shows some
of the graph edges. The edges within V \ (W ∪ S) are
arbitrary, all nodes of S beat all nodes of V \ (W ∪ S),
and all nodes of W lose to all nodes of V \ (W ∪S). We
can show that any node A /∈ S cannot be an SE winner.
p1 only loses to m1 and m1 loses to everyone else so p1
must be matched with m1 in the first round if it is to ever
be eliminated. Similarly, for any i ≤ r, each pi must be
matched with mi in the first round. Since all of the nodes
that could possibly beat pr+1 lose in the first round, no
one is left to beat pr+1 and A cannot win. Therefore, the
only possible SE winners are contained in S. We have
shown that for any r there exists a graph in which there
is no matching onto the top r outdegree nodes and the
(r+ 1)st outdegree node is not an SE winner. From this,
we can conclude that the existence of a perfect matching
from V \ H(A) into H(A) is, in a sense, necessary, in
order for a node A to be an SE winner.

Now suppose that there is a perfect matching in G
from V \ H(A) onto H(A). Can we conclude that the

bracket can be fixed for A? This turns out not to be true.
Consider Figure 2. Here H(A) consists only of k1 and
k2. These nodes are only beaten by b1 and b2 respec-
tively, who lose to every other player except A, so bi
and ki must be matched in round 1. The ai are symmet-
ric, so without loss of generality we can match A to a1
in round 1. The two remaining nodes, a2 and a3, must
also be matched. After round 1 the nodes that survive
are A, a3, b1, b2. However, A needs to have outdegree
at least 2 to survive the next two rounds. As it only has
outdegree 1, A cannot win an SE tournament.

A similar problem can arise when the matching comes
from Nout(A) instead of N in(A). Figure 3 gives an ex-
ample of a graph construction for any n ≥ 8 for which
the node ranked n/2 cannot win any SE tournament even
though there is a matching onto H(A) = ∪k

i=1hi. Each
hi only loses to bi and ∪j>ihj . Each bi only beats
∪j>ibj , except for b1 who also beats c. The problem
arises with who to match A to in the first round so that
it can win the match. By induction, one can argue that
every hi for i > 1 must be matched to bi in round 1. A
must be matched to some node in Nout(A), but only b1
remains unmatched. This leaves h1 and c who must be
matched as well. However, in round 2, all nodes that beat
h1 have been eliminated and it is now a Condorcet win-
ner in the induced subgraph. Therefore, it must be the
winner of any SE tournament.

A common issue in the above counterexamples is that
H(A) is too large while out(A) is too small. Another
commonality is that H(A) = Hin(A). Hence a better
condition to look for is a matching from V \ Hin(A)
onto Hin(A), and not necessarily onto H(A).

Finally, a natural question is, how reasonable is the
assumption of the existence of a matching from lower
ranked players to higher ranked players? Consider the
Braverman-Mossel model [2008] for generating tourna-
ment graphs. In this model, one assumes an underlying
ranking v1 · · · vn of the players according to skill. The
tournament is generated by adding an edge (vi, vj) with
probability p if j < i and 1 − p if j > i for p < 1

2 .
This model can be viewed as a transitive tournament with
each edge reversed with probability p. A classic result

359

of [Erdős and Rényi, 1964] is that a bipartite graph with
n nodes on each side with 2n lnn edges selected uni-
formly at random contains a perfect matching with high
probability. If a graph is generated by the Braverman-
Mossel model with p > 4 lnn

n , then we expect there to
be n lnn back edges from vn/2 · · · vn to v1 · · · vn/2−1.
Therefore, in almost all such tournaments, a backedge
matching exists.

3 Main Results

We are now ready to introduce our main result. As the
proof is quite technical, we will first provide an intuitive
sketch, some of the necessary Lemmas, and a more de-
tailed account of the key part of our proof. Please refer
to [Stanton and Vassilevska Williams, 2011] for the full
version of this Section.

We present two main results. The first generalizes the
idea of a king, and shows that if a node A is a king except
for some subset and A beats many nodes that beat a king
of that subset, then A is an SE winner.
Lemma 1 (Kings Except for a T subset). Let A be a
node in a tournament G and let T be a subset of N in(A)
of size |T | = 2k for some k. Suppose that A is a king
in G \ T and |Nout(A)| ≥ |N in(A)|. Let t be a king
in T with outdegree in T at least 	|T |/2
. Suppose that
|N in(t) ∩Nout(A)| ≥ |T |. Then A is an SE winner.

The key observation in proving Lemma 1 is that t can
win an SE tournament over just the subgraph consisting
of T in log |T | rounds. At the same time, there are at least
|T | nodes in Nout(A) that beat t. In the worst case, these
cannot eliminate any other nodes in N in(A) so they must
be matched against each other for log |T | rounds as well.
However, given the size, we are guaranteed that at least 1
will survive to eliminate t. At this point, A will be a king
of high outdegree over the induced subgraph. The tech-
nical details of the proof proceed by induction on the size
of T . Lemma 1 is used in the proof of our main theorem
below. We highlight its use in the intuitive sketch.

We now address the main question of this paper - what
can we show when a matching from V \ Hin(A) to
Hin(A) exists?
Theorem 2 (Not a King but Matching into Hin(A)).
There exists a constant n0 such that for all n ≥ n0 the
following holds. Let G = (V,E) be a tournament graph
on n nodes, A ∈ V . Suppose there is a matching M from
V \ Hin(A) onto Hin(A) of size K. If K ≤ (n− 6)/7,
then A is an SE winner.

The key restriction in this Theorem concerns the num-
ber of higher ranked players who beat a player, not the
actual rank of that player. However, we are able to ap-
ply the fact that a player of rank k has outdegree at least
(n − k − 1)/2 to obtain a nice corollary for large tour-
nament graphs: Any one of the top 19% of the nodes are
SE winners, provided there is a matching onto the nodes
of higher outdegree.
Corollary 1. There exists a constant n0 so that for all
tournaments G on n > n0 nodes the following holds.

Let A be among the top (6n + 7)/31 ≥ .19n highest
outdegree nodes. If there is a matching from V \Hin(A)
onto Hin(A), then A is an SE winner.

3.1 Intuition

We now give an intuitive sketch about how one might go
about proving Theorem 2. The overall strategy of our
proof is to set up the first round of the SE tournament,
so that all of the high outdegree nodes that beat A are
eliminated, and in the remaining tournament, A is a king
over almost the entire graph, so that Lemma 1 can be
applied.

At first glance, one might try to build the first round
by using the existing matching, M , from V \ Hin(A) to
Hin(A) and then finding some maximal matching M ′
from Nout(A) \ M to N in(A) \ M . The matching
M ′ will guarantee that as many elements as possible of
Nout(A) will survive to compete in the second round.
To complete round 1, the potentially remaining nodes in
Nout(A) \ (M ∪M ′) should be matched amongst them-
selves, and the same for N in(A)\ (M ∪M ′) in a match-
ing called M ′′.
A is initially a king in G over any node with no larger

outdegree than it (i.e. V \ Hin(A)). However, if we do
not create the matching M ′′ above carefully A may no
longer be a king over the sources of M . Even worse,
some source of M may lose all of the nodes that can
potentially beat, and might become a Condorcet winner
in the graph induced by the winners of round 1. This is
demonstrated in Figure 4. In this example, we would like
to fix the bracket for P2, the second strongest player. P3

can beat P1, but only Pn−1 and Pn beat P3. If we use
any matching of Nout(P2) that does not match Pn with
Pn−1, P3 will be a Condorcet winner in round 2, and P2

cannot win.
The failure of this example motivates our approach.

We begin our construction of round 1 as before. We use
the perfect matching M from V \ Hin(A) to Hin(A)
and M ′, a maximal matching M ′ from Nout(A) \M to
N in(A) \ M . At this point, we want to guarantee that
as many of the sources of M as possible are still covered
by winners of round 1. We start by finding the set T
of sources of M that are not currently beaten by some
source in M ′, or by A. Because these nodes are all of
lower outdegree than A, we can argue that there is some
subset S which is a subset of Nout(A) \ (M ∪M ′) that
covers T . We use a greedy approach (Algorithm 1) to
match up the nodes of S in round 1 so that the winners of
this matching cover as many nodes of T as possible. We
are able to show (in Lemma 2) that the set U of nodes
of T that are not covered by the first round winners from
S is very small: it has size at most O(

√|T |). This will
allow us to show that we can eliminate U in later rounds.

We design the next rounds using Lemma 1. To do this,
we use the largest outdegree node t in T and find a set
P , the size of which is a power of 2, that contains both
t and U . The final requirements of Lemma 1 are that A
beats at least as many first round winners outside P as it

360

P4, . . . , Pn−2

P1
P2

P3
Pn−1

Pn

Nout(P2)

Figure 4: An exam-
ple where an arbitrary
matching of Nout(P2)
is likely to fail.

S1

S2S3SJ−1

SJ

B1

B2B3
BJ−1

BJ

S ′

B′

Figure 5: The construction of
the sets Si and Bi in Theo-
rem 3.

loses to (which we show using Theorem 3) and that the
number of nodes from Nout(A) that beat t and survive
round 1 is at least |P |. To fulfill this last requirement, we
add an extra iteration (for q = 1) in Algorithm 1 which
constructs the first round matching of S so that enough
nodes that beat t survive round 1.

Summary. We create the first round of the tournament
by using M , a maximal matching M ′ from the remaining
nodes of Nout(A) to the remaining nodes of N in(A),
and a greedily selected perfect matching M ′′ on S. Many
sources of M ′′ beat t, and almost all of T is covered by
the sources of M ′′. This does not fully specify the first
round matching. A few nodes may remain unmatched,
specifically N in(A)\ (M ∪M ′), Nout(A)\ (M ∪M ′∪
M ′′) and A itself. The final details are included in the
proof sketch at the end of this section. The goal of the
first round matching is to ensure that the requirements
of Lemma 1 are met and the remaining rounds of the
tournament can be completed so that A wins.

3.2 Technical details.

With the above overview of the proof technique, we now
introduce the necessary lemmas. As an SE tournament
is a series of log n matchings, these lemmas are about
the existence of matchings with desirable properties. The
first is a very general result that can be specfically applied
to lower-bound how large a matching can be found from
Nout(A) to N in(A) \ Hin(A).

Theorem 3 (Large Matching). Let h ∈ Z, possibly neg-
ative. Let S and B be disjoint sets such that ∀X ⊂ B,
|E(S,X)| ≥ (|X|

2

)−h|X|. Then there exists a matching
between S and B of size at least |B|−2h−1

2 .

Proof. Recall that M is a maximal matching from a set
S to a set B if and only if there are no augmenting paths
from the unmatched elements of S to the unmatched el-
ement of B. Our proof will proceed by using the large
number of edges from S to any subset X of B to lower-
bound the size of the matching.

Let M be a maximal matching from S to B. We refer
to the sources of M as S′ and the sinks as B′. We itera-

Algorithm 1 Greedy Matching
1: Input: G = (V,E) a tournament and S, T ⊂ V ,

t ∈ V ; Output: Matching M
2: Let A1 = N in

S (t), U1 = T , i = 1, L0 = ∅, M = ∅.
3: for q = 1, 2 do
4: while |Ai| ≥ 2 do
5: Let xi, yi ∈ Ai have larger outdegree to Ui than

all the other elements in Ai; xi beats yi.
6: M ← M ∪ {(xi, yi)}
7: Li ← Li−1 ∪ {yi}
8: Ui+1 ← Ui \Nout(xi)
9: Ai+1 = ∪v∈Ui+1

N in
Ai
(v) \ Li

10: i ← i+ 1
11: end while
12: Ai = ∪v∈Ui

N in
S (Ui)

13: end for

tively build up a family of sets Sj and Bj that consist of
augmenting paths from the unmatched nodes in B.

Let S1 be the subset of S′ which contains all nodes
with edges to B \ B′. Let B1 be the nodes matched to
S1 by M . Now, we inductively define Sj as the nodes
in S′ \ ∪j−1

i=1Si that have edges to Bj−1, where Bj−1 are
the nodes matched to Sj−1 by M .

This process can be repeated up to some index J + 1
such that there are no more nodes in S′ \ ∪J

i=1Si with
edges to BJ . Let S̄ = ∪i≤JSi and B̄ = (B \ B′) ∪
(∪i≤JBi).

First, note that there are no edges from S \ S′ to B̄
since M is maximal. If there were, we would have an
augmenting path. Therefore, all edges into B̄ come from
S̄. The number of edges from S̄ into B̄ is at most |B̄||S̄|
(the number of edges in a complete bipartite graph) and
at least |B̄|(|B̄| − 1− 2h)/2 by the Theorem statement.
Thus, we can conclude that

|M | = |B \ B̄|+ |S̄| ≥

(|B| − |B̄|) + (|B̄| − 1− 2h)

2
≥ (|B| − 1− 2h)

2
.

Theorem 3 is used in the proof of Theorem 2 to argue
about a lower bound on the size of Nout(A) after the first
round. An example application of this theorem is to set S
to Nout(A) and B to N in(A)\(M∪Hin(A)). Here, the
conditions of the Theorem are met: we can show that for
every subset X , E(S,X) ≥ (|X|

2

)
+ |X| because every

vertex in B beats A and is of lower outdegree than A.
The other very important part of our proof is Algo-

rithm 1. As mentioned earlier, it is a greedy way of cre-
ating a matching in a set S such that the sources cover
many elements in a set T . It iteratively finds the source
in S that covers the most uncovered elements of T and
matches it with a vertex that it beats. The first iteration
of the loop deals with an element t that is a king over T .
This loop only considers the subset of S that beats t and
guarantees that at least half of the nodes that beat t in S

361

are preserved as sources. At any time in the algorithm,
Ui is the set of the nodes that are currently not covered by
the sources of the matching M , Ai is the set of sources
that beat any element in Ui, and Li is the set of nodes
that lose in M and are excluded from Ai.

We want to lower-bound the size of the generated
cover. The main idea of the proof is that we initially
have many edges from S to T , and specifically at least(|X|+1

2

)
to each X ⊆ T . If we consider the first pair

(x1, y1) added to M , then we can say x1 covers k el-
ements of T . Therefore, we now need to cover only a
subset of size |T | − k which has at least

(|T |−k
2

)
edges

into it. However, this may include edges from y1. When
we remove y1, we may lose up to |T | edges. The key
observation is that for the pair (x2, y2), y2’s outdegree is
upper-bounded by x1 so we are able to bound the number
of edges lost by the matching as the number of vertices
currently covered plus |T |. We then show that there will
always be enough edges and sources to increase the size
of the matching until at most 2

√|T | + 1 nodes remain
uncovered.
Lemma 2. Let G = (V,E) be a tournament graph. Let
S ⊆ V and T ⊆ V be disjoint sets such that for all
X ⊆ T , the number of edges from S to X is at least(|X|+1

2

)
. Let t ∈ V be given. Algorithm 1 generates a

matching, M , in S such that at least |T | − 1 − 2
√|T |

nodes in T are beaten by at least one source in M and at
least (inS(t)− 2)/2 of the sources also beat t.

Proof. We need to define some additional concepts for
the proof. The first is the set of covered nodes at iteration
i, Ci, where C1 = ∅. Ci is exactly T \ Ui (so |T | =
|Ci| + |Ui|). Let di = |Ci+1| − |Ci| be the number of
new nodes covered by iteration i. Our goal is to lower-
bound the size of |Ci| when the algorithm quits.

Consider the first execution of the WHILE loop. Let i0
be the iteration at which the loop exits. This loop greed-
ily covered T but only used vertices that also beat t. We
will lower-bound the number of edges that remain from
all unmatched sources in S (the set Ai0) to Ui0 . At this
point, |Ci0 | =

∑i0
j=1 dj . The number of edges from Li0

to Ui0 is at most |T | − |Ci0 |+
∑i0−1

j=1 dj ≤ |T | since we
picked the nodes so that outUi

(yi) ≤ outUi−1
(xi−1) =

di−1, and outUi0
(y1) ≤ |Ui0 |. Thus we can obtain a

lower bound on the number of edges between Ai0 and
Ui0 : |E(Ai0 , Ui0)| ≥

(|Ui0 |+1
2

)− |T |.
Let j > i0 be any round in the second WHILE loop.

As above, |Cj | = |Ci0 | +
∑j

k=i0+1 dk and the number
of edges from Lj to Uj is at most

|Uj |+|T |+
j−1∑

k=i0+1

dk = 2|T |−|Cj |+|Cj |−|Ci0 | ≤ 2|T |.

We can lower-bound the number of usable edges from
Aj to Uj as

|E(Aj , Uj)| ≥
(|Uj |+ 1

2

)
− 2|T | ≥

(|T |2 + |Cj |2 − (2|T |+ 1)|Cj | − 3|T |)/2.
The second WHILE loop exits when |Aj | ≤ 1. There-
fore, when the algorithm finishes, |Aj | ≤ 1 and
|E(Aj , Uj)| ≤ |Uj | = |T | − |Cj |. We have:

(|T |2 + |Cj |2 − (2|T |+ 1)|Cj | − 3|T |)/2 ≤ |T | − |Cj |,
This can be simplified as follows.

|Cj |2 − (2|T | − 1)|Cj | − 5|T |+ |T |2 ≤ 0.

|Cj | ≥ |T |−1/2−
√

|T |2 − |T |+ 1/4 + 5|T | − |T |2 =

|T | − 1/2−
√
4|T |+ 1/4 ≥ |T | − 1− 2

√
|T |.

That is, the number of covered nodes is at least |T |−1−
2
√|T |. After round i0 we have at least i0 sources in M

covering t and at least inS(t)− 2i0 − 1 nodes of N in
S (t)

that were not used in creating the rest of the matching
because they did not cover any element of Ui0 . Match
these among themselves to obtain at least i0+	(inS(t)−
1 − 2i0)/2
 ≥ (inS(t) − 2)/2 sources of the matching
that are inneighbors of t. Complete the matching M from
S to S by matching the rest of the nodes of S arbitrarily.

The bounds on the greedy matching algorithm are only
positive if |T | > 5. We don’t want our bounds in Theo-
rem 2 to depend on the size of the matching into Hin(A).
In the full version, we fix this problem with a technical
lemma that allows one to artifically boost the size of T to
guarantee that the above process will always work.

Now we give a more technical proof of Theorem 2.
Although the proof has most of the key details, it does
not contain all of them. In particular, it assumes that that
the indegree of node A coming from the sources of M is
large enough. This assumption is lifted in the full version
of the paper.

Proof sketch of Theorem 2: This proof proceeds by con-
structing the first round matching in stages. First, we will
use M , the matching given by the theorem statement, and
construct M ′, a maximal matching. Next, we show how
to match A and construct the covering of the sources of
M using Algorithm 1. Finally, we argue that the con-
structed first round matching satisfies the requirements
of Lemma 1.

For simplicity, let A = Nout(A) and B = N in(A).
We divide the sources of M onto Hin(A) into two sets,
AT and BT , where AT are the sources of M in A while
BT are the sources in B. We can also divide Hin(A) into
two sets, H1 and H2, where H1 are the nodes matched
to AT and H2 are matched to BT by M . In order to later
argue about the size of matchings, let |AT | = |H1| = h
and |BT | = |H2| = k. This means that K, the size of M
is exactly k + h.

Let Brest = B \ (BT ∪ Hin(A)) be the nodes who
beat A and are not part of M . Take M ′ to be any max-
imal matching from A \ AT to Brest. We want to argue
about the size of M ′ by using Theorem 3. First, note that
|Brest| = |B| − k −K. Now, since we removed AT , of

362

size h, we can only say that every node b in Brest has at
least outB(b)+1−h inneighbors from A\AT . Therefore,
by Theorem 3, |M ′| ≥ (|B| −K − k− 2h+2− 1)/2 =
(|B| − 2K − h+ 1)/2. We will use this fact later when
arguing about the outdegree of A after the first round.

Finally, note that Brest consists only of lower ranked
nodes than A, so every node in Brest has some source of
M ′ or AT as an inneighbor.

(Matching A to some node.) Consider the currently
unmatched portion of A. Call this Arest = A\(AT ∪M ′).
If there is some a′ ∈ Arest, then match A to a′. If Arest is
empty, then we can argue that |M ′| > 1 since |A\AT | =
|A| − h ≥ (n − K)/3 − h ≥ (n − 4K)/3 > 1. Since
M ′ > 1, we can dislodge any edge (a′, b′) from M ′ and
match A to a′. After removing a′, the lower bound for
|M ′| goes down by 1: |M ′| ≥ (|B| − 2K − h− 1)/2.

(Creating a matching of Arest \ {a′}).) We now use
Algorithm 1 to cover BT . Let S = Arest \ {a′} and T
be the subset of BT consisting of the nodes that do not
have inneighbors among the sources of M ′ and AT . For
simplicity in this proof we assume that |T | and hence
|BT | is large enough.

Every subset X of the nodes of T has at least
(|X|

2

)
+

2|X| − |X| = (|X|
2

)
+ |X| inneighbors in S since each

node in X can have lost at most one inneighbor, a′. Let
t ∈ BT be the node with highest outdegree in BT . Run
Algorithm 1 on S, T, t. This outputs a matching M ′′ on
the nodes of S that covers all of T except for a subset,
U , of size at most 1 + 2

√|T |. There are also at least
inS(t)/2− 1 sources of M ′′ that beat t. This completes
the first round matching. Let G′ be the graph induced by
the surviving nodes.

(Handling U .) We will construct P , a subset of T ,
such that P contains U , and t is a king over P who beats
at least half of P . We selected t so that it is a king in
T . Therefore, there is a subset of at most |U | nodes in
its outneighborhood in T that cover U . We can add these
nodes together with enough other nodes of Nout

T (t) to P
so that |P | is a power of 2 and t is a king in P that beats
at least half of P . This is possible since U is very small
compared to T .

We can assume that the size of P is 2c where 2c is the
closest power of 2 greater than 3 + 4

√|T |, as we may
need as many as |U | ≤ 1 + 2

√|T | extra nodes added to
P to guarantee that t is a king over P . We can further
conclude that |P | ≤ 5 + 8

√|T | since we can at most
double 3 + 4

√|T | to make |P | be a power of 2.
From Algorithm 1 we know that at least inS(t)/2 −

1 ≥ (|BT | − 1)/4 − 1 inneighbors of t from S are
in G′. Since we assumed that BT is large enough, we
have (|BT | − 1)/4 − 1 ≥ 5 + 8

√|T |. Hence there ex-
ists a subset of the surviving nodes of N in

S (t) of size at
least |P |. The requirements of Lemma 1 are satisfied if
outG′(A) ≥ inG′(A). We prove this below and thus
show that A is an SE winner.

(Showing that outG′(A) ≥ inG′(A).) The number of
nodes of Nout(A) that survive the first round is at least

	(|A| + |M ′| + |AT | − 1)/2
. The number of nodes of
N in(A) that survive is at most �(|B|− |AT |− |M ′|)/2�.
It suffices to show that |A| + |M ′| + |AT | − 1 ≥ |B| −
|AT |−|M ′|. Recall that |M ′| ≥ (|B|−2K−h−1)/2 so
we must only show that |A|+|B|−2K−h+2h−2 ≥ |B|,
or that |A| − 2K + h− 2 ≥ 0. Since |A| ≥ (n−K)/3
it suffices to show that (n−K) ≥ 6K + 6, or that K ≤
(n− 6)/7, which is true by assumption.

4 Conclusions

In this paper, we have shown that the existence of back-
matchings can allow for an SE tournament to be ma-
nipulated in favor of any of the top 19% of players.
The Braverman-Mossel model for tournament generation
shows that back-matchings exist even when the noise
in each match is very low (O(logn

n)). The question of
the computational difficulty of manipulating SE tourna-
ments in favor of a specific player remains open, but our
result shows that many common examples can be effi-
ciently manipulated in polynomial time using any algo-
rithm for maximum matching. The fastest algorithms
for matching run in Õ(m

√
n) time ([Micali and Vazi-

rani, 1980] reimplementing [Edmonds, 1965]) and in
Õ(n2.376) time [Mucha and Sankowski, 2004]. Possi-
ble future work includes finding even more general con-
ditions under which a winning bracket can be found for
a player, as well as trying to reduce the dependence our
method has on the number of players.

Acknowledgments

The authors are grateful for the detailed comments from
the anonymous reviewers. The first author was supported
by the NDSEG and NSF Fellowships. The second author
was supported by the National Science Foundation under
Grant #0937060 to the Computing Research Associa-
tion for the CIFellows Project. Any opinions, findings,
and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily
reflect the views of the National Science Foundation or
the Computing Research Association.

References

[Alon, 2006] N. Alon. Ranking tournaments. SIAM J.
Discret. Math., 20(1):137–142, 2006.

[Appleton, 1995] D. R. Appleton. May the best man
win? The Statistician, 44(4):529–538, 1995.

[Bartholdi et al., 1992] J. Bartholdi, C. Tovey, and
M. Trick. How hard is it to control an election?
Mathematical and Computer Modeling, 16(8/9):27–
40, 1992.

[Braverman and Mossel, 2008] M. Braverman and
E. Mossel. Noisy sorting without resampling. In
Proc. SODA, pages 268–276, 2008.

[Chen and Hwang, 1988] Robert Chen and F. K.
Hwang. Stronger players win more balanced

363

knockout tournaments. Graphs and Combinatorics,
4(1):95–99, 1988.

[Chevaleyre et al., 2007] Y. Chevaleyre, U. Endriss,
J. Lang, and N. Maudet. A short introduction to
computational social choice. SOFSEM, 4362:51–69,
2007.

[Coppersmith et al., 2006] D. Coppersmith, L. Fleis-
cher, and A. Rudra. Ordering by weighted number of
wins gives a good ranking for weighted tournaments.
In Proc. SODA, pages 776–782, 2006.

[Edmonds, 1965] J. Edmonds. Paths, trees, and flowers.
Canad. J. Math., 17:449–467, 1965.

[Erdős and Rényi, 1964] P. Erdős and A. Rényi. On
random matrices. Publ. Math. Inst. Hung. Ac. Sci.,
8:455–561, 1964.

[Fischer et al., 2009] F. Fischer, A.D. Procaccia, and
A. Samorodnitsky. A new perspective on implementa-
tion by voting trees. In Proc. EC, pages 31–40, 2009.

[Hazon et al., 2008] N. Hazon, P.E. Dunne, S. Kraus,
and M. Wooldridge. How to rig elections and com-
petitions. In Proc. COMSOC, 2008.

[Horen and Riezman, 1985] J. Horen and R. Riezman.
Comparing draws for single elimination tournaments.
Operations Research, 33(2):249–262, 1985.

[Hwang, 1982] F. K. Hwang. New concepts in seeding
knockout tournaments. The American Mathematical
Monthly, 89(4):235–239, 1982.

[Lang et al., 2007] J. Lang, M. S. Pini, F. Rossi, K. B.
Venable, and T. Walsh. Winner determination in se-
quential majority voting. In Proc. IJCAI, pages 1372–
1377, 2007.

[Micali and Vazirani, 1980] S. Micali and V. Vazirani.
An O(

√|V | · |E|) algorithm for finding maximum
matching in general graphs. In Proc. FOCS, pages
17–27, 1980.

[Mucha and Sankowski, 2004] M. Mucha and
P. Sankowski. Maximum matchings via gaus-
sian elimination. In FOCS, pages 248–255, 2004.

[Russell and Walsh, 2009] T. Russell and T. Walsh. Ma-
nipulating tournaments in cup and round robin com-
petitions. In Proc. ADT, pages 26–37, 2009.

[Slater, 1961] P. Slater. Inconsistencies in a schedule
of paired comparisons. Biometrika, 48(3/4):303–312,
1961.

[Stanton and Vassilevska Williams, 2011] I. Stanton
and V. Vassilevska Williams. Rigging tournament
brackets for weaker players. UC Berkeley EECS
Tech. Report, May 2011.

[Vassilevska Williams, 2010] V. Vassilevska Williams.
Fixing a tournament. In Proc. AAAI, pages 895–900,
2010.

[Vu and Shoham, 2010a] T. Vu and Y. Shoham. Fair
seedings in knockout tournaments. ACM Transactions
on Intelligent Systems and Technology, 2010.

[Vu and Shoham, 2010b] T. Vu and Y. Shoham. Optimal
seeding in knockout tournaments. In Proc. AAMAS,
pages 1579–1580, 2010.

[Vu et al., 2010] T. Vu, N. Nazon, A. Altman, S. Kraus,
Y. Shoham, and M. Wooldridge. On the complexity
of schedule control problems for knock-out tourna-
ments. JAIR, 2010.

364

