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Abstract

Lazy clause generation is a powerful approach to
reducing search in constraint programming. This
is achieved by recording sets of domain restrictions
that previously led to failure as new clausal prop-
agators. Symmetry breaking approaches are also
powerful methods for reducing search by recog-
nizing that parts of the search tree are symmetric
and do not need to be explored. In this paper we
show how we can successfully combine symme-
try breaking methods with lazy clause generation.
Further, we show that the more precise nogoods
generated by a lazy clause solver allow our com-
bined approach to exploit redundancies that cannot
be exploited via any previous symmetry breaking
method, be it static or dynamic.

1 Introduction

Lazy clause generation [Ohrimenko et al., 2009] is a hybrid
approach to constraint solving that combines features of finite
domain propagation and Boolean satisfiability. In particular,
finite domain propagation is instrumented to record the rea-
sons for each propagation step, thus allowing the creation of
nogoods that record the reasons for failure, and which can
be propagated efficiently using SAT technology. The result-
ing hybrid system combines the advantages of constraint pro-
gramming (high level modeling and programmable search)
with those of SAT solvers (reduced search by nogood cre-
ation and effective search using variable activities), and pro-
vides state of the art solutions to a number of combinatorial
optimization problems such as Resource Constrained Project
Scheduling Problems [Schutt et al., 2009].

Symmetry breaking methods aim at speeding up the exe-
cution by pruning parts of the search tree known to be sym-
metric to those already explored. Static symmetry breaking
methods achieve this by adding constraints to the original
problem, while dynamic symmetry breaking methods alter
the search. As we will see later, combining static symmetry
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breaking with lazy clause generation is straightforward and
quite successful. However, we are also interested in the com-
bination with dynamic symmetry breaking as it can some-
times be more effective. While this combination is more com-
plex, it allows us to exploit certain types of redundancies that
cannot be exploited by any other traditional symmetry break-
ing method alone.

The key to the success of our combination resides in the
fact that dynamic symmetry breaking can also be defined in
terms of nogoods. In particular, it can be thought of as util-
ising symmetric versions of nogoods derived at each search
node to prune off symmetric portions of the search space.
Thus, both lazy clause generation and dynamic symmetry
breaking use nogoods to prune the search space. The dif-
ferences arise in the kind of nogoods used and in the way
these nogoods are used. As we will see later, lazy clause
solvers [Ohrimenko et al., 2009] use what is called the first
unique implication point (1UIP) nogood (described in Sec-
tion 3), which has been empirically found to have stronger
pruning than the nogoods used by traditional dynamic sym-
metry breaking methods. As our theoretical exploration will
show, this difference in pruning strength carries over to dy-
namic symmetry breaking methods. Combining lazy clause
generation and dynamic symmetry breaking allows us to take
advantage not only of 1UIP nogoods (as lazy evaluation does)
but also of symmetric 1UIP nogoods. This leads to strictly
more pruning.

2 Finite Domain Propagation

Let ≡ denote syntactic identity and vars(O) denote the set
of variables of object O. We use ⇒ and ⇔ to denote logical
implication and logical equivalence, respectively.

A constraint problem P is a tuple (C,D), where C is a set
of constraints and D is a domain which maps each variable
x ∈ vars(C) to a finite set of integers D(x). The set C is
logically interpreted as the conjunction of its elements, while
D is interpreted as ∧x∈vars(C)x ∈ D(x). A variable x is said
to be Boolean if D(x) = {0, 1}, where 0 represents false and
1 represents true.

An equality literal of P ≡ (C,D) is of the form x = d,
where x ∈ vars(C) and d ∈ D(x). A valuation θ of P
over the set of variables V ⊆ vars(C) is a set of equality
literals of P with exactly one literal per variable in V . It
can be understood as a mapping of variables to values. The
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projection of valuation θ over a set of variables U ⊆ vars(θ)
is the valuation θU = {x = θ(x)|x ∈ U}.

A constraint c ∈ C can be seen as a set of valuations over
vars(c). Valuation θ satisfies c iff vars(c) ⊆ vars(θ) and
θvars(c) ∈ c. A solution of P is a valuation over vars(P ) that
satisfies each constraint in C.

An inequality literal of P ≡ (C,D) is of the form x ≤ d
or x ≥ d where x ∈ vars(C) and d ∈ D(x). A disequality
literal for x is of the form x �= d where d ∈ D(x). The equal-
ity, inequality and disequality literals of P , together with the
special literal false representing failure, are denoted the liter-
als of P . Literals represent the basic changes in domain that
occur during propagation. Note they are not independent of
each other, e.g. x ≤ d ∧ x ≥ d ⇔ x = d.

Each constraint c is implemented by a propagator, i.e.,
a function fc from domains to domains that ensures that
c ∧ D ⇔ c ∧ fc(D). We compute the new information ob-
tained by running fc on domain D as the set of literals that
are newly implied: new(fc, D) = {� |D �⇒ �∧fc(D) ⇒ �}.
We will assume that we remove from this set literals that are
redundant. Note that if the propagator detects failure we as-
sume new(fc, D) = {false}.
Example 1 Consider the effect of propagator fc of constraint
c ≡ ∑5

i=1 xi ≤ 12 on the domain D(x1) = {1}, D(x2) =
D(x3) = D(x4) = D(x5) = {2 .. 10}. Now D′ = fc(D)
has D′(x2) = D′(x3) = D′(x4) = D′(x5) = {2 .. 5}.
Hence, new(fc, D) includes x2 ≥ 2, x2 ≤ 5, x2 ≤ 6, x2 ≤
7, . . . (for x2). Since the second literal makes those following
redundant, we assume they are not part of the result. �

A constraint programming solver starts from an original
problem P ≡ (C,D) and applies propagation to reduce do-
main D to D′ as a fixpoint of all propagators for C. If D′
is equivalent to false, we say P is failed. If D′ fixes all vari-
ables, we have found a solution to P (under some reasonable
assumptions about propagators). Otherwise, the solver splits
P into n subproblems Pi ≡ (C ∧ ci, D

′), 1 ≤ i ≤ n where
C∧D′ ⇒ (c1∨c2∨ . . .∨cn) and where ci are literals (called
decision literals), and iteratively searches these. We can iden-
tify any subproblem P ′ appearing in the search tree for P by
the set of decision literals c1′ , . . . , cm′ taken to reach P ′; we
call this set choices(P ′).

3 Lazy Clause Generation

As mentioned before, in lazy clause generation each finite do-
main propagator is modified so that it explain all its changes
to domains in terms of the literals of the problem. An ex-
planation for literal � is S → � where S is a set of liter-
als. A correct explanation for � by fc propagating on a prob-
lem with initial domain D, is an explanation S → � where
c ∧ S ∧D ⇒ �. For example, the propagator for constraint
x �= y may infer literal y �= 3 given literal x = 3 resulting in
explanation {x = 3} → y �= 3 .

In a lazy clause generation solver each new literal inferred
by a propagator is recorded in a stack in the order of gener-
ation and with its explanation attached to it. The implication
graph is thus a stack of literals each with either an attached
explanation or marked as a decision literal. We define the de-
cision level for any literal as the number of decision literals
pushed in the stack before it.

Example 2 Consider a problem P ≡ (C,D) where C ≡
{∑5

i=1 xi ≤ 12, alldiff ({x1, x2, x3, x4, x5})} and D(xi) =
{1 .. 8}, 1 ≤ i ≤ 5. If the search chooses x1 = 1 we arrive at
subproblem P1 = (C ∪{x1 = 1}, D). Then, the alldiff con-
straint determines that x2 �= 1 from set of literals {x1 = 1}
(i.e., with explanation {x1 = 1} → x2 �= 1), and similarly
for x3, x4 and x5. This builds the second column of the impli-
cation graph in Figure 1. Then, the relation between literals
for x2 determine that x2 ≥ 2 from {x2 �= 1} and similarly for
the literal relationships of x3, x4, and x5, building the third
column. The sum constraint determines that the upper bound
of each of x2, x3, x4 and x5 is 5 from the lower bounds in
the third column, thus building the fourth column. The new
domain is D′(x1) = {1}, D′(xi) = {2 .. 5}, 2 ≤ i ≤ 5.
If the search now chooses x2 = 2, we arrive at subproblem
P2 = (C ∪ {x1 = 1, x2 = 2}, D′). Then, the alldiff con-
straint determines x3 �= 2, x4 �= 2, and x5 �= 2 (the 6th
column) from {x2 = 2}. The literal relationships determine
that x3 ≥ 3 from {x3 ≥ 2, x3 �= 2}, similarly for x4 and
x5. The sum constraint determines that x4 ≤ 3 from {x2 =
2, x3 ≥ 3, x5 ≥ 3}, similarly for x5 ≤ 3. Then, the literal
relationships determine x4 = 3 from {x4 ≥ 3, x4 ≤ 3}, sim-
ilarly for x5 = 3 and finally the alldiff constraint determines
unsatisfiability of x4 = 3 and x5 = 3. �

A nogood N is a set of literals. A correct nogood N from
problem P ≡ (C,D) is one where C ∧D ⇒ ¬ ∧�∈N �, that
is, in all solutions of P the conjunction of the literals in N
is false. Given an implication graph, we determine a correct
nogood that explains N → false by eliminating literals from
N until only one literal at the current decision level remains.
The result is the 1UIP (First Unique Implication Point) no-
good, which the search records as a clausal propagator and
backtracks to the decision level of the second latest literal in
the nogood, where it applies the newly derived nogood.
Example 3 Continuing from Example 2 using the implica-
tion graph in Figure 1, we start with the explanation of failure
{x4 = 3, x5 = 3} → false which gives us the initial nogood
{x4 = 3, x5 = 3}. Since both literals were determined at the
current decision level, we replace the last one x5 = 3 by the
antecedents in its explanation {x5 ≥ 3, x5 ≤ 3} → x5 = 3
to obtain {x5 ≥ 3, x5 ≤ 3, x4 = 3}. We keep removing the
last literal with the current decision level until only one literal
remains at the current decision level. The resulting 1UIP no-
good is {x2 ≥ 2, x3 ≥ 2, x4 ≥ 2, x5 ≥ 2, x2 = 2} which
can be simplified to {x3 ≥ 2, x4 ≥ 2, x5 ≥ 2, x2 = 2}, since
the last literal implies the first.

On backtracking to undo x2 = 2, the search arrives at
subproblem P1 and immediately determines that x2 �= 2 us-
ing the new nogood. Importantly, if the search ever reaches
a state where {x3 ≥ 2, x4 ≥ 2, x5 ≥ 2} holds, it will
make the same inference. Indeed, if it reaches a point where
{x2 = 2, x3 ≥ 2, x4 ≥ 2}, it will infer that x5 < 2. �

4 Symmetries and Nogoods

A symmetry of P ≡ (C,D) is a bijection ρ on the equal-
ity literals of P such that, for each valuation θ of P , ρ(θ) =
{ρ(�) | � ∈ θ} is a solution of P iff θ is a solution of P . Vari-
able symmetries, value symmetries and variable-value sym-
metries are all particular cases of symmetries.

517



x1 = 1

����
���

��

��

��

x2 �= 1 �� x2 ≥ 2

��

��

��

��

��

x2 ≤ 5 x2 = 2

����
���

��

��

x3 �= 1 �� x3 ≥ 2

��

��

		




x3 ≤ 5 x3 �= 2 �� x3 ≥ 3

����
���

���
��

��
��

��
�

x4 �= 1 �� x4 ≥ 2

��

��

		

��
x4 ≤ 5 x4 �= 2 �� x4 ≥ 3

����
���




x4 ≤ 3 �� x4 = 3



��
���

x5 �= 1 �� x5 ≥ 2

		

��

��

��x5 ≤ 5 x5 �= 2 �� x5 ≥ 3

		�����
��x5 ≤ 3 �� x5 = 3 �� false

Figure 1: Implication graph of propagation. Decision literals are double boxed.

Static Symmetry Breaking reduces the search by adding to
C constraints that remove symmetric solutions. In particular,
lexicographical constraints have been used to statically elim-
inate symmetries (see e.g.[Flener et al., 2002]) with excellent
results. This is good news since static symmetry breaking is
obviously compatible with lazy clause generation: we only
require the new symmetry breaking constraints to have ex-
plaining propagators, which are then used just like other prop-
agators. However, static symmetry breaking is not always the
best option and, therefore, we are also interested in dynamic
symmetry breaking.

Dynamic Symmetry Breaking techniques can be seen as
pruning symmetric portions of the search space by using sym-
metric nogoods. In particular, if the search on subproblem P ′
fails, then choices(P ′) is a correct nogood of P (referred to
as the choice nogood) and, therefore, any symmetric version
of choices(P ′) is also a correct nogood of P . Note that the
symmetric version of a nogood N with only equality literals
is easy to define: ρ(N) = {ρ(�) | � ∈ N}.
Example 4 In problem P of Example 2, the variables
{x1, x2, x3, x4, x5} are interchangeable (i.e., any two can be
swapped). Since the subproblem P ′ with choices(P ′) =
{x1 = 1, x2 = 2} fails, we know that {x1 = 1, x2 = 2}
is a correct nogood for P . Clearly, any symmetric version,
such as {x2 = 1, x1 = 2} or {x3 = 1, x5 = 2}, is also a
correct nogood. �

Such nogoods can be used to prune search in two
main ways. Symmetry breaking by dominance detection
(SBDD) [Focacci and Milano, 2001; Fahle et al., 2001]
keeps a store N of the non-subsumed choice nogoods de-
rived during search so far. For each subproblem P ′, it checks
whether there exists N ∈ N and symmetry ρ, such that
choices(P ′) ⇒ ρ(N). If such a pair exists it can im-
mediately fail subproblem P ′. Symmetry breaking during
search (SBDS) [Gent and Smith, 2000], which is predated
by the very similar [Backofen and Will, 1999], works as
follows. Whenever a subproblem P ′ with choices(P ′) =
{c1, c2, . . . , cn, cn+1} fails, SBDS backtracks to the parent
subproblem P ′′ in level n and, for each symmetry ρ, it locally
posts in P ′′ the conditional constraint (ρ(c1)∧. . .∧ρ(cn)) →
¬ρ(cn+1). Note that these constraints will only propagate
when reaching a subproblem P ′′′ such that C∪choices(P ′′′)
entails the left hand side of the constraint. This will never
happen if the symmetry is broken, i.e., if ∃ci s.t. ¬ρ(ci)

is entailed, and that is why SBDS ignores any symmetry ρ
which is known to be broken at P ′′. Still, SBDS can post
too many local constraints when the number of symmetries
is high. Thus, some incomplete methods ([Mears, 2010;
Gent and Smith, 2000]) only post constraints that are known
to immediately propagate.

We decided to integrate SBDS, rather than SBDD, with our
lazy clause generation because SBDS is much closer to the
lazy clause generation approach: they both compute and post
nogoods. The main differences being that SBDS only com-
putes decision nogoods and posts their symmetric versions.

5 Symmetries and Lazy Clause Generation

5.1 SBDS-choice

We can naively add SBDS to a lazy clause solver by sim-
ply using symmetric versions of the choice nogood at each
node to prune off symmetric branches. Hence, we just
re-implement standard SBDS in the lazy clause generation
solver, but still gain the advantage of reduced search through
the lazy clause generation nogoods.

5.2 SBDS-1UIP

Adapting SBDS to use 1UIP nogoods is simple: every time a
1UIP nogood {�1, . . . , �n} → �n+1 is inferred for subprob-
lem P ′, upon backtracking to parent P ′′ and for each symme-
try ρ, we post the symmetric nogood {ρ(�1), . . . , ρ(�n)} →
¬ρ(�n+1), ignoring those ρ that are known to be broken at
P ′′. We can check this last condition during the construc-
tion of the symmetric nogood, as we produce the literals
ρ(�1), . . . , ρ(�n) one at a time. If at any point, one of ρ(�i)
is false in P ′′, we can immediately abort and move on to the
next symmetry.

In contrast to SBDS-choice, in SBDS-1UIP we have to post
the symmetric nogoods as global rather than local constraints.
This is because in SBDS-choice, when you backtrack from
parent P ′′ to grandparent P ′′′, the choice nogood at P ′′′ sub-
sumes that at P ′′ and, therefore, SBDS-choice will always
post a set of symmetric nogoods that subsumes the symmet-
ric nogoods posted below that point. In contrast, there is no
guarantee that the 1UIP nogood at P ′′′ subsumes the one at
P ′′ (and in general it does not). This means that many no-
goods can be are added at each node. However, this is not
a big problem. Nogood propagation in LCG solvers is very
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Figure 2: A graph colouring problem where we can exploit
additional symmetries

fast since they use the same efficient handling of clauses used
in SAT solvers. In addition, activity counts are kept for each
nogood and inactive nogoods are periodically pruned just as
in SAT solvers.

Example 5 Consider the problem of Example 2. On back-
tracking to P1 we infer the nogood {x3 ≥ 2, x4 ≥ 2, x5 ≥
2} → x2 �= 2. With this we not only infer x2 �= 2 but also the
symmetric inferences x3 �= 2 (from {x2 ≥ 2, x4 ≥ 2, x5 ≥
2}), x4 �= 2 and x5 �= 2. At this point, a domain consis-
tent alldiff will determine failure and generate ∅ → x1 �= 1,
which does not subsume the previously generated nogood. �

We show that SBDS-1UIP exploits strictly more symme-
tries than SBDS-choice if the asserting literals in the nogoods
are the same, and propagation has the following property:

Definition 1 A set of propagators for problem P has
global symmetric monotonicity iff, for any explanation
{c1, . . . , cn} → � produced and any symmetry ρ of P , when-
ever ρ(c1), . . . , ρ(cn) are entailed, ρ(�) is also entailed. �

A sufficient condition for global symmetric monotonicity
is the following: all propagators are monotonic, and all sym-
metries are propagator symmetric (i.e., the symmetry maps
propagators to propagators). Global symmetric monotonic-
ity is therefore very common, as most propagators are mono-
tonic, and the vast majority of symmetries that are usually
exploited are propagator symmetric.

Theorem 1 Suppose global symmetric monotonicity holds,
and we derive choice nogood {c1, . . . , cn} → ¬cn+1, and
1UIP nogood {�1, . . . , �m} → ¬cn+1 from the same conflict.
If {ρ(c1), . . . , ρ(cn)} → ¬ρ(cn+1) propagates then so does
{ρ(�1), . . . , ρ(�m)} → ¬ρ(cn+1). �

The theorem shows that the symmetric 1UIP nogood sub-
sumes the symmetric choice nogood, since it will always
produce any implication that the symmetric choice nogood
can, but not vice versa. This means that SBDS-1UIP can ex-
ploit strictly more symmetry than SBDS-choice. This result
is valid for both complete SBDS, as well as for incomplete
SBDS methods which only post nogoods that will immedi-
ately produce an implication.

Example 6 Consider the graph colouring problem shown in
Figure 2, where we are trying to colour the nodes with at most
5 colours (all of which are interchangeable). After making

the decisions x1 = 1, x2 = 2, x3 = 3, x4 = 4, x5 = 5,
we have domains as shown in Figure 2. Suppose we label
x6 = 1 next. Then propagation gives x7 ∈ {2, 3}, x8 ∈
{2, 3}, x9 ∈ {2, 3}. Now, suppose we try x7 = 2. This forces
x8 = 3, x9 = 3, which conflicts. The 1UIP nogood from this
conflict is {x8 �= 1, x8 �= 4, x8 �= 5, x9 �= 1, x9 �= 4, x9 �=
5} → x7 �= 2. After propagating this nogood, we have x7 =
3, which after further propagation, once again conflicts. At
this point, we backtrack to before x6 is labelled and derive
the nogood {x7 �= 4, x7 �= 5, x8 �= 4, x8 �= 5, x9 �= 4, x9 �=
5} → x6 �= 1.

Now, let us examine what SBDS-1UIP can do at this point.
It is clear that if we apply the value symmetries: 1 is sym-
metric to 2 (� 1��� 2�), or � 1��� 3� to this
nogood; the LHS remains unchanged while the RHS changes.
Therefore, we can post these two symmetric nogoods and im-
mediately get the inferences x6 �= 2 and x6 �= 3. On the other
hand, SBDS-choice cannot do anything. The choice nogood
is {x1 = 1, x2 = 2, x3 = 3, x4 = 4, x5 = 5} → x6 �= 1, and
it is easy to see that no matter which value symmetry we use
on it, the LHS will have a set of literals incompatible with the
current set of decisions and, thus, cannot imply the RHS. �

The kind of redundancy we exploit here certainly arises
from symmetry. However, it is extremely difficult to ex-
ploit. Roughly speaking, we can say that we are exploiting the
symmetry that exists in the sub-component of a subproblem
which is the actual cause of failure. In this case, they are the
variables x6, x7, x8, x9, their current domains in the subprob-
lem, and the constraints linking them. Even conditional sym-
metry breaking constraints are powerless to exploit such sym-
metries, as the subproblem shown in Figure 2 does not have
the value symmetries � 1��� 2� or � 1��� 3�
due to the existence of x10. It is only because a lazy clause
solver gives us such precise information about which vari-
ables are involved in failures that we can exploit this kind of
redundancy. While the above example might seem contrived,
our experiments in Section 7 show that these kinds of redun-
dancies do occur in practice and can yield big speedups.

6 Symmetries on 1UIP nogoods

While SBDS-1UIP is much more powerful than SBDS-
choice, having to manipulate 1UIP nogoods has its problems:
unlike the choice nogoods which usually only involve equal-
ity literals on search variables, 1UIP nogoods can contain vir-
tually any literal in the problem, including disequality and in-
equality literals, and also literals with intermediate variables.

6.1 Disequality and Inequality Literals

One of the strengths of lazy clause generation is the use of
equality, disequality and inequality literals in explanations
and nogoods. This can make explanations shorter and is es-
sential for explaining bounds propagation. Thus, we need to
extend symmetries to work with all literals.

Extending symmetry ρ to handle disequalities is straight-
forward: if ρ(x = d) ≡ x′ = d′, then ρ(x �= d) ≡ x′ �= d′.
Extending ρ to handle inequalities is also straightforward for
a variable symmetry σ: if ρ(x = d) ≡ x′ = d, then
ρ(x ≤ d) ≡ x′ ≤ d and ρ(x ≥ d) ≡ x′ ≥ d. However, it
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is not clear how to extend value and variable-value symme-
tries. Thus, before we apply such symmetries we transform
nogoods by replacing any of their inequality literals by an
equivalent set (conjunction) of disequality literals (e.g. x ≤ 3
is replaced by x �= 4, x �= 5, x �= 6 assuming an initial do-
main [1..6]). Note that, while this transformation is theoreti-
cally correct, it may create very unwieldy nogoods.

6.2 Intermediate variables

An important problem for combining dynamic symmetry
breaking and lazy clause generation is the fact that interme-
diate variables may be introduced in the course of converting
a high level model to the low level variables and constraints
implemented by the solver. If the symmetry declaration was
made in the high level model, it may not specify how literals
on the intermediate variables map to each other. Thus, we
must extend symmetries to include such literals.

In some cases intermediate variables are idempotent un-
der the symmetries, i.e., for each symmetry ρ of P , we can
extend ρ to ρ′ where ρ′(�) = ρ(�) if vars(�) ⊆ vars(C) and
ρ′(�) = � otherwise. The extended ρ′ is a symmetry of P with
intermediate variables. We can imagine automating the proof
of idempotence of intermediate variables under symmetries.

Example 7 Consider a model for concert hall scheduling.
Every two values in {1 .. k} for the k identical concert halls
are symmetrical (can be swapped). The model includes the
constraint xi = k + 1 ∨ xj = k + 1 ∨ xi �= xj for all
concerts i and j which overlap in time. In a flattened form
we introduce new Boolean variables diff i,j ⇔ xi �= xj and
notoni ⇔ xi = k + 1 (indicating concert i is not sched-
uled) to represent disjuncts of this constraint. Since each in-
troduced notoni and diff i,j variable is idempotent under the
value symmetries, any symmetry ρ on the original variables
can be trivially extended. �

Sometimes we can manually extend our symmetry decla-
rations to take into account the intermediate variables. Other
times it is not easy to see how to extend symmetries to all
intermediate variables, and indeed quite often intermediate
variables are introduced far below the modelling level. In or-
der to handle these cases we modify learning as follows. We
extend the model to explicitly mark which literals are allowed
to appear in nogoods. We then modify the learning process
to always explain unmarked literals. There is a requirement
that all literals generated by search are allowed to appear in
nogoods. This ensures that the process always terminates and
always generates an asserting nogood.

In summary the SBDS-1UIP method is as follows:

• Identify any intermediate variables introduced by flat-
tening or by the solver

• Attempt to extend any symmetry declarations to include
these variables

• If the last step is not possible, make a declaration to the
solver that literals on these intermediate variables are not
allowed to be used in nogoods

• When a 1UIP nogood is derived by standard conflict
analysis, examine all symmetric versions of it and post
any that can immediately propagate

• Handle these extra nogoods in the same way as normal
nogoods, i.e. post as clausal propagators, periodically
prune inactive ones

7 Experiments

We now provide experimental evidence that symmetry break-
ing with 1UIP nogoods is superior to using only choice no-
goods and that exploiting the redundancies such as those in
Example 6 gives improved performance. The two problem
we examine are the Concert Hall Scheduling problem (which
has value symmetries as explained in Example 7 and variable
symmetries for identical concerts) and the Graph Colouring
problem (which has value symmetry on colors, and variable
symmetries for nodes with the same set of neighbours). We
take the benchmarks originally used by the authors of [Law et
al., 2007]. The benchmarks are available at http://www.
cmears.id.au/symmetry/symcache.tar.gz.

We implemented SBDS in CHUFFED, which is a state of
the art lazy clause solver. We run CHUFFED with three dif-
ferent versions of SBDS: choice, where we use symmet-
ric versions of choice nogoods, 1UIP, where we use sym-
metric versions of 1UIP nogoods, and crippled, where we
use symmetric versions of 1UIP nogoods, but only those no-
goods derived from symmetries where choice could also ex-
ploit the symmetry. We compare against CHUFFED with no
symmetry breaking (none) and with standard lexicographical
symmetry breaking constraints (static). Finally, we compare
against an implementation of SBDS in [Mears, 2010] called
Lightweight Dynamic Symmetry Breaking (LDSB), which is
implemented in Eclipse and is the fastest dynamic symmetry
breaking implementation on the two problems we examine,
beating GAP-SBDS and GAP-SBDD by significant margins.

All versions of CHUFFED were run on Xeon Pro 2.4GHz
processors. The results for LDSB were run on a Core i7 920
2.67 GHz processor. Times displayed are the average run
times for all instances of each size. Instances which timeout
(at 600s) are counted as 600 seconds.

The results are shown in Tables 1 and 2. Note that the
Eclipse solver reports nodes, the number of internal nodes,
but since the tree is binary and there are not many solutions
this is comparable with failure counts. Eclipse LDSB fails
to solve many instances before timeout, and choice fails to
solve a few instances. 1UIP, crippled and static all solve ev-
ery instance in the benchmarks. In fact, this set of instances,
which is of an appropriate size for normal CP solvers, is a
bit too easy for lazy clause solvers such as CHUFFED, as is
apparent from the run times.

Comparison between choice and 1UIP shows that SBDS-
1UIP is superior to SBDS-choice. Comparison between crip-
pled and 1UIP shows that the additional symmetries that
we can only exploit with SBDS-1UIP indeed gives us re-
duced search and additional speedup. Comparison with static
shows that dynamic symmetry breaking can be superior to
static symmetry breaking on appropriate problems. The com-
parison with LDSB shows that lazy clause with symmetry
breaking explores orders of magnitude less nodes.
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