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Abstract

ADOPT and BnB-ADOPT are two optimal DCOP search
algorithms that are similar except for their search strate-
gies: the former uses best-first search and the latter uses
depth-first branch-and-bound search. In this paper, we
present a new algorithm, called ADOPT(k), that general-
izes them. Its behavior depends on the k parameter. It be-
haves like ADOPT when k = 1, like BnB-ADOPT when
k = oo and like a hybrid of ADOPT and BnB-ADOPT
when 1 < k < oo. We prove that ADOPT(k) is a
correct and complete algorithm and experimentally show
that ADOPT(k) outperforms ADOPT and BnB-ADOPT
on several benchmarks across several metrics.

1 Introduction

Distributed Constraint Optimization Problems
(DCOPs) [Modi et al., 2005; Petcu and Faltings, 2005]
are well-suited for modeling multi-agent coordination
problems where interactions are primarily between subsets
of agents, such as meeting scheduling [Maheswaran et al.,
2004], sensor network [Farinelli et al., 2008] and coalition
structure generation [Ueda ef al., 2010] problems. DCOPs
involve a finite number of agents, variables and binary
cost functions. The cost of an assignment of a subset of
variables is the evaluation of all cost functions on that
assignment. The goal is to find a complete assignment with
minimal cost. Researchers have proposed several distributed
search algorithms to solve DCOPs optimally. They include
ADOPT [Modi et al., 2005], which uses best-first search,
and BnB-ADOPT [Yeoh et al., 2010], which uses depth-first
branch-and-bound search.

We present a new algorithm, called ADOPT(k), that gener-
alizes ADOPT and BnB-ADOPT. Its behavior depends on the
k parameter. It behaves like ADOPT when k& = 1, like BnB-
ADOPT when k£ = oo and like a hybrid of ADOPT and BnB-
ADOPT when 1 < k < oo. The main difference between
ADOPT(k) and its predecessors is the condition by which an
agent changes its value. While an agent in ADOPT changes
its value when another value is more promising by at least 1
unit, an agent in ADOPT(k) changes its value when another
value is more promising by at least £ units. When k = oo,
like agents in BnB-ADOPT, an agent in ADOPT (k) changes
its value when the optimal solution for that value is provably
no better than the best solution found so far. We prove that
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ADOPT(k) is correct and complete and experimentally show
that ADOPT(k) outperforms ADOPT and BnB-ADOPT on
several benchmarks across several metrics.

2 Preliminaries

In this section, we formally define DCOPs and summarize
ADOPT and BnB-ADOPT.

2.1 DCOP

A DCOP is defined by (X,D,F, A«), where X
{z1,...,x,} is a set of variables; D = {D1,...,D,}isa
set of finite domains, where D; is the domain of variable x;;
F is a set of binary cost functions, where each cost function
F;; : D;xD; — NU{0, oo} specifies the cost of each combi-
nation of values of variables z; and z;; A = {a1,...,a,}isa
set of agents and o : X — A maps each variable to one agent.
We assume that each agent has only one variable mapped to
it, and we thus use the terms variable and agent interchange-
ably. The cost of an assignment of a subset of variables is the
evaluation of all cost functions on that assignment. Agents
communicate through messages, which are never lost and de-
livered in the order that they were sent.

A constraint graph visualizes a DCOP instance, where
nodes in the graph correspond to variables and edges con-
nect pairs of variables appearing in the same cost function.
A depth-first search (DFS) pseudo-tree arrangement has the
same nodes and edges as the constraint graph and satisfies
that (i) there is a subset of edges, called tree edges, that form
a rooted tree and (ii) two variables in a cost function ap-
pear in the same branch of that tree. The other edges are
called backedges. Tree edges connect parent-child nodes,
while backedges connect a node with its pseudo-parents and
its pseudo-children. DFS pseudo-trees can be constructed us-
ing distributed DFS algorithms [Hamadi et al., 1998].

2.2 ADOPT

ADOPT [Modi et al., 2005] is a distributed search algorithm
that solves DCOPs optimally. ADOPT first constructs a DFS
pseudo-tree, after which each agent knows its parent, pseudo-
parents, children and pseudo-children. Each agent x; main-
tains: its current value d;; its current context X;, which is
its assumption on the current value of its ancestors; the lower
and upper bounds LB; and UB;, which are bounds on the opti-
mal cost OPT; given that its ancestors take on their respective



values in X;; the lower and upper bounds LB, (d) and UB;(d)
for all values d € D;, which are bounds on the optimal costs
OPT;(d) given that z; takes on the value d and its ancestors
take on their respective values in X;; the lower and upper
bounds 1b$(d) and ub(d) for all values d € D; and children
Z., which are its assumption on the bounds LB, and UB, of
its children z. with context X; U («;, d); and the thresholds
TH; and th{(d) for all values d € D; and children z., which
are used to speed up the solution reconstruction process. The
optimal costs are calculated using:

OPT;(d) = 6;(d)+ Z OPT. (1) OPT; = (?elg OPT;(d) (2)
z.€C; ‘

for all values d € D;, where C; is the set of children of agent
x; and §;(d) is the sum of the costs of all cost functions be-
tween x; and its ancestors given that x; takes on the value d
and the ancestors take on their respective values in X;.

ADOPT agents use four types of messages: VALUE,
COST, THRESHOLD and TERMINATE. At the start, each
agent x; initializes its current context X; to (), lower and up-
per bounds b (d) and ub$(d) to user-provided heuristic val-
ues h$(d) and oo, respectively. For all values d € D; and
all children x., x; calculates the remaining lower and upper
bounds and takes on its best value using:

Si(d)= Y Fi(d.d;) (3)
(zj,d;)E€X;
LB(d)=6i(d)+ 3 W(d) (1) LB = min{LB(d)} (5)
z.€C; ‘
UB:(d) = 8:(d)+ 3 ubi(d) (6) UB; = min{UBi(a)} (7

z.€C;
d: = arg in (LB} (5)

x; sends a VALUE message containing its value d; to its chil-
dren and pseudo-children. It also sends a COST message con-
taining its context X; and its bounds LB; and UB; to its par-
ent. Upon receipt of a VALUE message, if its current context
X, is compatible with the value in the VALUE message, it
updates its context to reflect the new value of its ancestor and
reinitializes its lower and upper bounds [b$(d) and ub$(d).
Contexts are compatible iff they agree on common agent-
value pairs. Upon receipt of a COST message from child x.,
if its current context X; is compatible with the context in the
message, then it updates its lower and upper bounds 1b$(d)
and ub¢ (d) to the lower and upper bounds in the message, re-
spectively. Otherwise, the COST message is discarded. After
processing either message, it recalculates the remaining lower
and upper bounds and takes on its best value using the above
equations and sends VALUE and COST messages. This pro-
cess repeats until the root agent z,. reaches the termination
condition LB, = UB,., which means that it has found the op-
timal cost. It then sends a TERMINATE message to each of
its children and terminate. Upon receipt of a TERMINATE
message, each agent does the same.

Due to memory limitations, each agent z; can only store
lower and upper bounds for one context. Thus, it reinitial-
izes its bounds each time the context changes. If its context
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changes back to a previous one, it has to update its bounds
from scratch. ADOPT optimizes this process by having the
parent of z; send x; the lower bound computed earlier as
threshold TH; in a THRESHOLD message. This optimiza-
tion changes the condition for which an agent changes its
value. Each agent x; now changes its value d; only when
LB;(d;) > TH;.

2.3 BnB-ADOPT

BnB-ADOPT [Yeoh et al., 2010] shares most of the data
structures and messages of ADOPT. The main difference is
their search strategies. ADOPT employs a best-first search
strategy while BnB-ADOPT employs a depth-first branch-
and-bound search strategy. This difference in search strate-
gies is reflected by how the agents change their values. While
each agent x; in ADOPT eagerly takes on the value that mini-
mizes its lower bound LB;(d), each agent z; in BnB-ADOPT
changes its value only when it is able to determine that the op-
timal solution for that value is provably no better than the best
solution found so far for its current context. In other words,
when LB(d;) > UB; for its current value d;.

The role of thresholds in the two algorithms is also differ-
ent. As described earlier, each agent in ADOPT uses thresh-
olds to store the lower bound previously computed for its
current context such that it can reconstruct the partial solu-
tion more efficiently. On the other hand, each agent in BnB-
ADOPT uses thresholds to store the cost of the best solution
found so far for all contexts and uses them to change its val-
ues more efficiently. Therefore, each agent x; now changes
its value d; only when LB;(d;) > min{TH;, UB;}.

BnB-ADOPT also has several optimizations that can be ap-
plied to ADOPT: (1) Agents in BnB-ADOPT processes mes-
sages differently compared to agents in ADOPT. Each agent
in ADOPT updates its lower and upper bounds and takes
on a new value, if necessary, after each message that it re-
ceives. On the other hand, each agent in BnB-ADOPT does
so only after it processes all its messages. (2) BnB-ADOPT
includes thresholds in VALUE messages such that THRESH-
OLD messages are no longer required. (3) BnB-ADOPT in-
cludes a time stamp for each value in contexts such that their
recency can be compared.'

Researchers recently observed that some of the messages
in BnB-ADOPT are redundant and thus introduced BnB-
ADOPT™, an extension of BnB-ADOPT without most of the
redundant messages [Gutierrez and Meseguer, 2010b]. BnB-
ADOPT™ is shown to outperform BnB-ADOPT in a vari-
ety of metrics, especially in the number of messages sent.
Researchers have also applied the same message reduction
techniques to extend ADOPT to ADOPT™ [Gutierrez and
Meseguer, 2010al. However, it is not as competitive since
ADOPT has fewer redundant messages than BnB-ADOPT.

3 ADOPT(k)

Each agent in ADOPT always changes its value to the most
promising value. This strategy requires the agent to repeat-
edly reconstruct partial solutions that it previously found,

The first two optimizations were in the implementation of
ADOPT [Yin, 2008] but not in the publication [Modi er al., 2005].



which can be computationally inefficient. On the other hand,
each agent in BnB-ADOPT changes its value only when the
optimal solution for that value is provably no better than the
best solution found so far, which can be computationally in-
efficient if the agent takes on bad values before good values.
Therefore, we believe that there should be a good trade off be-
tween the two extremes, where an agent keeps its value longer
than it otherwise would as an ADOPT agent and shorter than
it otherwise would as a BnB-ADOPT agent.

With this idea in mind, we developed ADOPT(k), which
generalizes ADOPT and BnB-ADOPT. It behaves like
ADOPT when £ = 1, like BnB-ADOPT when k 00
and like a hybrid of ADOPT and BnB-ADOPT when 1 <
k < oo. ADOPT(k) uses mostly identical data structures
and messages as ADOPT and BnB-ADOPT. Each agent z; in
ADOPT(k) maintains two thresholds, TH;4 and TH? , which
are the thresholds in ADOPT and BnB-ADOPT, respectively.
They are initialized and updated in the same way as in
ADOPT and BnB-ADOPT, respectively.

The main difference between ADOPT (k) and its predeces-
sors is the condition by which an agent changes its value.
Each agent x; in ADOPT(k) changes its value d; when
LB;(d;) > TH + (k — 1) or LB;(d;) > min{TH? UB;}. If
k = 1, then the first condition degenerates to LB, (d;) > TH}',
which is the condition for agents in ADOPT. The agents use
the second condition, which remains unchanged, to determine
if the optimal solution for their current value is provably no
better than the best solution found so far. If & = oo, then
the first condition is always false and the second condition,
which remains unchanged, is the condition for agents in BnB-
ADOPT. If 1 < k < oo, then each agent in ADOPT(k) keeps
its current value until the lower bound of that value is at least
k units larger than the lower bound of the most promising
value, at which point it takes on the most promising value.

3.1 Pseudocode

Figures 1 and 2 show the pseudocode of ADOPT(k), where
x; is a generic agent, C} is its set of children, PC; is its set of
pseudo-children and SCP; is the set of agents that are either
ancestors of x; or parent and pseudo-parents of either x; or
its descendants. The pseudocode uses the predicate Compat-
ible(X,X") to determine if two contexts X and X’ are com-
patible and the procedure PriorityMerge(X,X’) to replace
the values of agents in context X’ with more recent values,
if available, of the same agents in context X (see [Yeoh et
al., 2010] for more details). The pseudocode is similar to
ADOPT’s pseudocode with the following changes:

e The pseudocode includes the optimizations described in
Section 2.3 that was presented for BnB-ADOPT but can

be applied to ADOPT (Lines 03, 08-12, 35-36 and 40-41).

In ADOPT, the MaintainThresholdInvariant(), Main-
tainChildThresholdInvariant() and MaintainAlloca-
tionInvariant() procedures are called after each message
is processed. Here, they are called in the Backtrack() pro-
cedure (Lines 28 and 38-39). The invariants are maintained
only after all incoming messages are processed.

In addition to TH{‘, each agent maintains TH”. Tt is ini-
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procedure Start()
X; = {(xp, Valnit(z,),0) | z, € SCP;};
ID; :=0;
forall z. € C; and d € D; InitChild(z., d);
InitSelf();
Backtrack();
loop forever
if (message queue is not empty)
while (message queue is not empty)
pop msg off message queue;
When Received(msg);
Backtrack();

procedure InitChild(z ., d)
165 (d) := hi(d);
ubf (d) := oo;
thy (d) := 1b; (d);
procedure InitSelf()
d; := argminge p, {9:(d) + checi w5 (d)};
ID; :=1ID; + 1;
THZ-A ‘= mingep, {6:(d) + checi b5 (d)}:
TH? = 00;
procedure Backtrack()
foralld € D;
LB;(d) := 6;(d) + checi 15 (d);
UB;(d) := 6;(d) + checi ubs (d);
LBi = mindeDi {LBi(d)};
UB,; = mindeDi {UB,; (d)},
MaintainThresholdInvariant();
it (TH?* = UB;)

d; := argminge p, {UB;(d)}
else if (LB; (d;) > TH* + (k — 1))

d; »= argmingep, LB, (ay=LB; {UBi(d)}
elseif (LB;(d;) > min{THZ, UB;})

d; := argmingep, |18, (a)=18; {UBi(d)}
if (a new d; has been chosen)

ID; := ID; + 1;
MaintainCurrentValueThresholdInvariant();
MaintainChildThresholdInvariant();
MaintainAllocationInvariant();

Send(VALUE, x;, d;, ID;, thS (d;), min(THZ , UB;) — 8;(d;)

’
_ qul €04 1o #ae 1§ (di)) toeach z. € Cj;
Send(VALUE, z;, d;, ID;, 0o, oo) to each z. € PC;;
it (TH* = UB;)
if (z; is root or termination message received)
Send(TERMINATE) to each z. € C;;
terminate execution;
Send(COST, z;, X;, LB;, UB;) to parent;

procedure When Received(TERMINATE)
record termination message received;

procedure When Received(VALUE, ,, dyy, ID,,, TH ), THY )
X/ = Xi;
PriorityMerge((z,,, dp, IDp), X:);
if ({Compatible(X ', X))

forall z. € C;andd € D;

if (z, € SCP,)
InitChild(z ., d);

InitSelf();
if (x, is parent)

TH} := TH;

THP :=THE;
procedure When Received(COST, z., X., LB., UB.)
X' =Xy
PriorityMerge(X ., X;);
if ({Compatible(X’, X))

forallz. € C; andd € D;

if (!Compatible({(z, dp,ID,) € X' | z,, € SCP.}.X;))
InitChild(z ., d);

if (Compatible(X ., X))

16 (d) := max{lb§(d), LB.} for the unique (a’, d, ID) € X, witha' = a;

ub§ (d) := min{ub$(d), UB,.} for the unique (a’, d, ID) € X, witha' = a;
if (!Compatible(X’, X;))

InitSelf();

Figure 1: Pseudocode of ADOPT(k) (1)



procedure MaintainChildThresholdInvariant()
forallz, € C;andd € D;

while(th$ (d) < 1b5(d))

thi(d) := thi(d) + €

forallc € C; andd € D;

while(th$ (d) > ubf(d))

thi(d) := th;(d) — e

procedure MaintainThresholdInvariant()
if (TH? < LB;)

THY = LB;;
if (TH > UB;)

THA = UB;;
procedure MaintainCurrentValueThresholdInvariant()
TH (d;) := TH;
if (TH (d;) < LB;(d;))

THA (d;) = LB;(d;);
if (TH;" (d;) > UBi(d.)

THA (d;) = UB;(d;);
procedure MaintainAllocationInvariant()
while(THZ (d;) > 8;(d;) + Seocc, thi(di))

the (dy) := the' (d;) + e forany = € C; with ubS (dy) > th (ds):
while(TH{ (di) < 8i(di) + 3, co, thi(ds)

the (dy) := the' (d;) — e forany z s € C; with 1bS (d;) < the (ds):

Figure 2: Pseudocode of ADOPT(k) (2)

tialized, propagated and used in the same way as in BnB-
ADOPT (Lines 21, 33-34, 40 and 59).

The condition by which each agent x; changes its value
is now LB;(d;) > TH® + (k — 1) or LB;(d;) >
min{THf9 , UB;} (Lines 31 and 33). Thus, the agent keeps
its value until the lower bound of that value is & units larger
than the lower bound of the most promising value or the
optimal solution for that value is provably no better than
the best solution found so far.

In ADOPT, the MaintainAllocationInvariant() procedure
ensures that the invariant TH = va cc; TH? always
hold. This procedure assumes that THY > LB;(d;) for
the current value d; of agent x;, which is always true since
the agent would change its value otherwise. However, this
assumption is no longer true in ADOPT(k). Therefore, the
pseudocode includes a new threshold TH:'(d;), which is
set to TH' and updated such that it satisfies the invari-
ant LB;(d;) < TH#(d;) < UB;(d;) in the MaintainCur-
rentValueThresholdInvariant() procedure (Lines 84-89).
This new threshold then replaces THZ! in the MaintainAl-
locationInvariant() procedure (Lines 91 and 93).

3.2 Correctness and Completeness

The proofs for the following lemmata and theorem closely
follow those in [Modi et al., 2005; Yeoh et al., 2010]. We
thus only provide proof sketches.

Lemma 1 For all agents x; and all values d € D;, LB; <
OPT; < UB; and LB;(d) < OPT;(d) < UB;(d) at all times.

Proof sketch: We prove the lemma by induction on the depth of
the agent in the pseudo-tree. It is clear that for each leaf agent x;,
LB;i(d) = OPT;(d) = UB;(d) for all values d € D; (Lines 24-25
and Eq. 1). Furthermore,
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LB; = min {LB;(d)} (Line 26)
= min {OPT;(d)} (see above)
— OPT; (Eq. 2)
UB: = min {UB:(d)} (Line 27)
= min {OPT;(d)} (see above)
= OPT; (Eq. 2)

So, the lemma holds for each leaf agent. Assume that it holds for all
agents at depth ¢ in the pseudo-tree. For all agents x; at depth ¢ — 1,

LBi(d) = 6,(d) + Y LB. (Lines 24 and 68)

z.€C;
< d;(d) + Z OPT. (induction ass.)
z.€C;
= OPT; (Eq. D
UBi(d) = 6:(d)+ > UB. (Line 25 and 69)
z.€C;
> 6i(d) + Z OPT, (induction ass.)
z.€C;

for all values d € D;. The proof for LB; < OPT; < UB; is similar
to the proof for the base case. Thus, the lemma holds. B

Lemma 2 For all agents x;, if the current context of x; is
fixed, then LB; = TH? = UB; will eventually occur.

Proof sketch: We prove the lemma by induction on the depth of
the agent in the pseudo-tree. The lemma holds for leaf agents z;
since LB; = UB; (see proof for the base case of Lemma 1) and
LB; < TH# < UB; (lines 79-83). Assume that the lemma holds for
all agents at depth ¢ in the pseudo-tree. For all agents x; at depth
q—1,

LB; = min {6:(d) + Tze:c 165 (d)} (Lines 24 and 26)
= min {3i(d) + yze; LB.} (Line 68)
= gglgt{éi(d) + xzeg UB.} (induction ass.)
= min {8:(d) + 26; ubf (d)} (Line 69)
= UB; o (Line 25 and 27)

Additionally, LB; < TH{‘ < UB; (Lines 79-83). Therefore, LB; =
THY = UB;. m

Lemma 3 For all agents x;, TH:(d) = TH:* on termination.

Proof sketch: Each agent z; terminates when TH;4 = UB; (Line 42).
After TH{ (d;) is set to TH{* for the current value d; of z; (Line 85)
in the last execution of the MaintainCurrentValueThresholdInvari-
ant() procedure,

TH = UB; (Line 42)
= UB;(d;) (Lines 29-30)
> LB;(d;) (Lemma 1)



Thus, LB;(d;) < TH{* = UB; and TH{*(d;) is not set to a different
value later (Lines 86-89). Then, THf‘(d) = TH? on termination. W

Theorem 1 For all agents x;, TH;4 = OPT; on termination.

Proof sketch: We prove the theorem by induction on the depth of the
agent in the pseudo-tree. The theorem holds for the root agent x;
since TH;4 = UB; on termination (Lines 42-45), TH;4 = LB; at all
times (Lines 20 and 28), and LB; < OPT; < UB; (Lemma 1). As-
sume that the theorem holds for all agents at depth ¢ in the pseudo-
tree. We now prove that the theorem holds for all agents at depth
g+ 1. Let x,, be an arbitrary agent at depth ¢ in the pseudo-tree and
dp, is its current value on termination. Then,

> ubj(dy) = UBy(dy) — 3,(dy)

z.€Cp

(Line 25)

= UBp — Jp(dp)
= TH;‘ — 6p(dy)
= THy (dy) — 6,(dy)

> thy(dy)

z.€Cp

(Lines 29-30)
(Lines 42-45)

(Lemma 3)
(Lines 91-94)

Thus, Ezcecp ubp(dp) = Ezcecp thy(dp). Furthermore, for all
agents x. € Cp, thy(d,) < uby(dp) (Lines 77-78). Combining
the inequalities, we get thS(dy,) = ubs(d,). Additionally, THZ =
thy(dp) (Lines 57-58) and UB. = uby(dp) (Line 69). Therefore,
TH? = UB,. Next,

> OPT. = OPT, — 5,(dy) (Eq. 1)
z.€Cp

= TH],‘;1 — p(dp) (induction ass.)
= TH; (dy) — 0,(dy) (Lemma 3)
= > thy(dy) (Lines 91-94)

z.€Cp
= Z THA (Lines 57-58)

z.€Cp
Thus, Zxcecp OPT. = Zxcecp THY = > w.cc, UBe (see

above). Furthermore, for all agents z. € C,, OPYLDc < UB.
(Lemma 1). Combining the inequalities, we get OPT. = UB..
Therefore, TH;4 =UB.=OPT.. n

4 Experimental Results

We compare ADOPT (k) to ADOPT* and BnB-ADOPT™.
ADOPT* (k) is an optimized version of ADOPT(k) with the
message reduction techniques used by ADOPT* and BnB-
ADOPT™. All the algorithms use the DP2 heuristic val-
ues [Ali et al., 2005]. We measure runtimes in (synchronous)
cycles [Modi et al., 2005] and non-concurrent constraint
checks (NCCCs) [Meisels et al., 20021, and we measure the
network load in the number of VALUE and COST messages
sent.> We do not report the number of TERMINATE mes-
sages sent because every algorithm sends the same number,
namely |X| — 1. Also, we report the trivial upper bound

*We differentiate them because the size of VALUE messages is
O(1) and the size of COST messages is O(|X]).
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UB as the sum of the maximums over cost functions. Ta-
ble 1 shows the results. Due to space constraints, we omit
ADOPTY in Tables 1(a) and 1(b) since BaB-ADOPT™ per-
forms better than ADOPT™ across all metrics.

Table 1(a) shows the results on random binary DCOP in-
stances with 10 variables of domain size 10. The costs are
randomly chosen over the range (1000, ...,2000). We im-
pose n(n — 1)/2 * p; cost functions, where n is the num-
ber of variables and p; is the network connectivity. We vary
p1 from 0.5 to 0.8 in 0.1 increments and average our results
over 50 instances for each value of p;. The table shows that
ADOPT™ (k) requires a large number of messages, cycles and
NCCCs when k is small. These numbers decrease as k in-
creases until a certain point where they increase again. For
the best value of k, ADOPT™ (k) performs significantly bet-
ter than BnB-ADOPT™ across all metrics.

Table 1(b) shows the results on sensor network instances
from a publicly available repository [Yin, 2008]. We use in-
stances from all four available topologies and average our re-
sults over 30 instances for each topology. We observe the
same trend as in Table 1(a) but only report the results for the
best value of k due to space constraints.

Lastly, Table 1(c) shows the results on sensor network
instances of 100 variables arranged into a chain following
the [Maheswaran et al., 2004] formulation. All the variables
have a domain size of 10. The cost of hard constraints is
1,000,000. The cost of soft constraints is randomly chosen
over the range (0, . .., 200). Additionally, we use discounted
heuristic values, which we obtain by dividing the DP2 heuris-
tic values by two, to simulate problems where well informed
heuristics are not available due to privacy reasons. We av-
erage our results over 30 instances. The table shows that
ADOPT™ terminates earlier than BnB-ADOPT™ but sends
more messages. When k = 1, the results for ADOPT (k)
and ADOPT™ are almoust the same. Agents in ADOPT* (k)
sends more VALUE messages because they need to send
VALUE messages when THf changes even if TH;‘ remains
unchanged. These additional messages then trigger the need
for more constraint checks. Agents in ADOPT* do not need
to send VALUE messages in such a case. We observe that as k
increases, the runtime of ADOPT T (k) increases but the num-
ber of messages sent decreases. Therefore, ADOPT (k) pro-
vides a good mechanism for balancing the tradeoff between
runtime and network load.

5 Conclusions

We introduced ADOPT(k), which generalizes ADOPT and
BnB-ADOPT. The behavior of ADOPT(k) depends on the
parameter k. It behaves like ADOPT when k£ = 1, like
BnB-ADOPT when & = oo and like a hybrid of the two
algorithms when 1 < k < oo. Our experimental results
show that ADOPT(k) can outperform ADOPT and BnB-
ADOPT in terms of runtime and network load on random
DCOP instances and sensor network instances. Addition-
ally, ADOPT(k) provides a good mechanism for balancing
the tradeoff between runtime and network load. It is future
work to better understand the characteristics of ADOPT(k)
such that the best value of k can be chosen automatically.



P1 Trivial UB | Algorithm Total Msgs VALUE COST Cycles NCCCs
0.5 45,766 | BnB-ADOPTT 262,812 131,785 131,009 23,646 5,353,423
ADOPT ™ (k = 1,000) 413,711 225,788 187,905 34,402 8,491,909
ADOPT ™ (k = 4,000) 197,342 109,111 88,212 17,100 3,969,104
ADOPT™ (k = 6,000) 197,486 109,193 88,275 17,117 3,972,960
0.6 53,722 | BnB-ADOPTT 1,017,939 500,514 517,407 99,969 26,191,249
ADOPT ™ (k = 1,000) 1,864,165 1,019,709 844,438 160,365 45,101,673
ADOPT ™ (k = 4,500) 701,374 387,658 313,697 62,977 16,454,689
ADOPT™ (k = 6,000) 701,529 387,742 313,768 62,994 16,459,453
0.7 63,654 | BnB-ADOPTT 3,716,766 | 1,825,332 | 1,891,416 387,744 | 116,050,941
ADOPT™ (k = 1,000) 6,846,289 | 3,809,015 | 3,037,255 591,271 187,172,366
ADOPT™ (k = 6,000) 2,558,658 | 1,427,249 | 1,131,391 241,102 71,495,744
ADOPT™ (k = 10,000) 2,559,603 1,427,739 | 1,131,845 241,169 71,503,823
0.8 71,624 | BnB-ADOPTT 9,493,156 | 4,684,177 | 4,808,961 1,032,767 | 324,271,538
ADOPT ™ (k = 5,000) 10,911,176 | 6,123,650 | 4,787,507 1,056,531 339,276,384
ADOPT ™ (k = 10,000) 6,395,945 | 3,614,771 | 2,781,156 619,431 | 192,355,298
ADOPT™ (k = 20,000) 6,484,296 | 3,663,938 | 2,820,339 628,362 | 195,216,439
(a) Random Binary DCOP Instances (10 variables)
Trivial UB | Algorithm Total Msgs VALUE COST Cycles NCCCs
A | 15,234,868,488 | BnB-ADOPTT 5,090,410 2,708,370 2,381,903 228,784 43,595,024
ADOPT™ (k = 30,000,000) 2,005,732 1,230,851 774,745 88,556 24,068,428
B 15,355,044,866 BnB-ADOPT T 23,911,475 12,979,404 10,931,932 1,024,435 249,771,051
ADOPT ™ (k = 30,000,000) 9,869,280 6,054,524 3,814,618 459,540 | 166,542,715
C 3,997,096,838 | BnB-ADOPTT 311,738 165,302 146,346 17,571 3,386,651
ADOPTT (k = 15,000,000) 178,301 104,141 74,070 10,815 2,625,136
D | 15,595397,524 | BnB-ADOPTT 10,722,499 5,714,611 5,007,746 575,613 156,019,351
ADOPT™ (k = 30,000,000) 3,812,541 2,231,332 1,581,066 196,424 66,347,439

(b) Sensor Network Instances (70, 70, 50 and 70 variables)

Trivial UB | Algorithm Total Msgs | VALUE COST | Cycles | NCCCs
98,000,000 | ADOPTT 25,731 12,769 | 12,764 259 10,840
BnB-ADOPT ™ 3,764 1,239 2,326 827 38,704
ADOPT™ (k = 1) 25915 12,953 12,764 259 12,381
ADOPT™ (k = 30) 22,092 13,403 8,490 449 20,591
ADOPT ™ (k = 50) 10,502 5,351 4,963 550 25,196
ADOPT T (k = 100) 6,290 3,061 3,031 550 25,196
ADOPT™ (k = 1,000) 5,050 2,439 2,413 827 38,441

(c) Sensor Network Instances (100 variables)

Table 1: The number of messages, cycles and NCCCs of ADOPT*, BnB-ADOPT™ and ADOPT ™ (k) on several benchmarks.
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