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Abstract

This paper proposes the integration of the resolu-
tion rule for Max-SAT with unsatisfiability-based
Max-SAT solvers. First, we show that the resolu-
tion rule for Max-SAT can be safely applied as dic-
tated by the resolution proof associated with an un-
satisfiable core when such proof is read-once, that
is, each clause is used at most once in the reso-
lution process. Second, we study how this prop-
erty can be integrated in an unsatisfiability-based
solver. In particular, the resolution rule for Max-
SAT is applied to read-once proofs or to read-once
subparts of a general proof. Finally, we perform
an empirical investigation on structured instances
from recent Max-SAT evaluations. Preliminary re-
sults show that the use of read-once resolution sub-
stantially improves the performance of the solver.

1 Introduction

The Satisfiability problem in propositional logic (SAT) is the
task of deciding whether a given propositional formula has
a model. Max-SAT is an optimization variant of SAT and it
can be seen as a generalisation of the SAT problem. Given
a propositional formula in conjunctive normal form (CNF),
the objective of the Max-SAT problem is to find a variable
assignment that maximizes the number of satisfied clauses.

In weighted Max-SAT, each clause has an associated weight
and the goal becomes maximizing the sum of the weights of
the satisfied clauses. In many problems coming from real
world domains, a subset of the (hard) clauses must be satis-
fied, and the remaining (soft) clauses may be satisfied or not.

Algorithms for Max-SAT have been the subject of signifi-
cant improvements over the last years and several families of
algorithms have been developed including branch and bound
algorithms [Li et al., 2007; Larrosa et al., 2008], approaches
based on reformulating Max-SAT as a Weighted CSP [de
Givry et al., 2003], algorithms based on iteratively calling
a SAT solver [Berre and Parrain, 2010], compilation-based
algorithms [Pipatsrisawat et al., 2008], and algorithms based
on computing unsatisfiable cores with a SAT solver [Fu and
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Malik, 2006]. In particular, two families of algorithms have
been intensively investigated.

The first family of algorithms is based on a branch and
bound algorithm and they perform quite well on random
and crafted instances [Li et al., 2007; Larrosa et al., 2008;
Heras et al., 2008]. To reduce the search space, they com-
pute a lower bound formed by an underestimation component
and an inference component which applies inference rules
based on the resolution rule for Max-SAT [Bonet et al., 2007;
Larrosa et al., 2008] to transform the formula into an equiva-
lent but simpler one.

The second family identifies unsatisfiable sub-formulas by
performing successive calls to a SAT solver. Each call re-
turns a trace from which a resolution proof of its unsatisfia-
bility can be built [Zhang and Malik, 2003]. Each soft clause
in the trace is extended with relaxation variables and car-
dinality constraints are added for the subsequent SAT call.
These algorithms are highly competitive for industrial prob-
lems [Fu and Malik, 2006; Marques-Silva and Planes, 2008;
Manquinho et al., 2009; Ansótegui et al., 2009; 2010] and we
will refer to them as unsatisfiability-based algorithms.

Unsatisfiability-based Max-SAT algorithms perform well
on industrial problem instances. However, the number of
relaxation variables, and the number and size of cardinality
constraints can represent a drawback for these algorithms.
One approach to reduce the number of relaxation variables
and (indirectly) the number and size of cardinality constraints
would be to actually apply Max-SAT resolution [Bonet et al.,
2007; Larrosa et al., 2008] on the resolution proofs generated
by unsatisfiability-based algorithms.

Building on this idea, this paper proposes the integration
of the techniques used in both families of algorithms. In par-
ticular, we study how the resolution rule for Max-SAT can
be applied in unsatisfiability-based solvers. First, we show
that the resolution rule for Max-SAT can be safely applied
as dictated by the resolution proof associated with an un-
satisfiable core when such proof is read-once [Iwama and
Miyano, 1995], that is, each clause is used at most once
in the whole resolution process. Second, we study how
this property can be integrated in an unsatisfiability-based
solver. Essentially, the resolution rule for Max-SAT is ap-
plied to read-once proofs or to read-once subparts of a gen-
eral resolution proof. Note that we focus our study in the
algorithm of [Fu and Malik, 2006] and extended to han-
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dle weighted partial Max-SAT in [Ansótegui et al., 2009;
Manquinho et al., 2009], but read-once resolution could be
also applied to other unsatisfiability-based Max-SAT solvers.
Finally, we perform an empirical investigation on crafted and
industrial instances of recent Max-SAT evaluations. The re-
sults show that the performance of an unsatisfiability-based
Max-SAT solver is clearly improved in many benchmarks.

The paper is organized as follows. Section 2 introduces
preliminary definitions and notation. Section 3 presents an
unsatisfiability-based algorithm for Max-SAT. Section 4 stud-
ies read-once resolution in the Max-SAT context and Section
5 proposes its integration on unsatisfiability-based Max-SAT
solvers. The experimental investigation is presented in Sec-
tion 6. Finally, Section 7 points out some concluding remarks
and future work.

2 Definitions

In this Section we introduce the necessary definitions and no-
tation related to the SAT and Max-SAT problems.

2.1 SAT

We define X = {x1, x2, . . . , xn} as the set of Boolean vari-
ables. A literal is either a variable xi or its negation x̄i. The
variable to which a literal l refers is denoted by var(l). Given
a literal l, its negation l̄ is x̄i if l is xi and it is xi if l is x̄i.

A clause C is a disjunction of literals. Hereafter, capital
letters will represent clauses. The size of a clause, noted |C|,
is the number of literals that it has. A formula in conjunctive
normal form (CNF) ϕ is a set of clauses.

An assignment is a set of literals A = {l1, l2, . . . , lk} such
that for all li ∈ A, its variable var(li) = xi is assigned value
true or false. If variable xi is assigned to true , literal xi

is satisfied and literal x̄i is falsified. Similarly, if variable
xi is assigned false , literal x̄i is satisfied and literal xi is
falsified. If all variables in X are assigned, the assignment is
called complete, otherwise it is called partial. An assignment
satisfies a literal iff it belongs to the assignment, it satisfies a
clause iff it satisfies one or more of its literals and it falsifies
a clause iff it contains the negation of all its literals. The
empty clause noted � has no literals (size 0) and cannot be
satisfied. If a clause is falsified by an assignment, the clause
is conflicting and it can be represented using the empty clause.
A model is a complete assignment that satisfies all the clauses
in a CNF formula ϕ. The SAT problem is the task of finding
a model for a given formula.

The Classical resolution is a well-known sound and com-
plete inference mechanism for SAT. Given two clashing
clauses (x ∨ A) and (x̄ ∨ B) then the clause (A ∨ B) can
be added to the formula. The new clause is usually referred
to as resolvent. Clauses of size one are called unit clauses.
When a formula contains a unit clause l , it can be simplied
by removing all clauses containing l and removing l̄ from all
the clauses where it appears. The application of this rule until
fixed-point is called unit propagation and it can be understood
as a resolution-based simplification.

Given a CNF formula, a subset of clauses is inconsistent
if all them cannot be simultaneously satisfied by any variable
assignment. The clauses involved in an inconsistent subset

of clauses can be determined with several steps of resolution.
This process is called resolution proof. Let each clause C be
identified by a label i and denote it as Ci. A resolution proof
is an ordered set:

R = {Ci = (Ci′ �� Ci′′ ), Ci+1 = (Ci′+1 �� Ci′′+1), . . . ,

Ci+k = (Ci′+k �� Ci′′+k)}
Each clause Cj with i ≤ j ≤ k is the resolvent of apply-
ing resolution (represented by symbol ��) between clashing
clausesCj′ andCj′′ . The last resolvent in the resolution proof
is always the empty clause (i.e. Ci+k = �). Clashing clauses
generated in a previous resolution step of a resolution proof
are called derived clauses, otherwise they are original. If all
the clauses involved in a resolution proof are used at most
once, it is called a read-once resolution proof [Iwama and
Miyano, 1995], otherwise it is a general resolution proof.

Given an unsatisfiable SAT formula ϕ, a subset of clauses
ϕC whose conjunction is still unsatisfiable is called an unsat-
isfiable core (or trace) [Zhang and Malik, 2003] of the origi-
nal formula (ϕC ⊆ ϕ). Modern SAT solvers can be instructed
to generate an unsatisfiable core or a general resolution proof
for unsatisfiable formulas [Zhang and Malik, 2003]. Observe
that an unsatisfiable core only contains the original clauses
used in the related resolution proof.

2.2 Max-SAT

A weighted clause is a pair (C,w), where C is a clause and
w is the cost of its falsification, also called its weight. Many
real problems contain clauses that must be satisfied. We call
these clauses mandatory or hard and we associate to them
a special weight �. Note that any weight w ≥ � indi-
cates that the associated clause must be necessarily satisfied.
Thus, we can replace w by � without changing the prob-
lem. Consequently, we can assume all weights in the interval
[0..�]. Non-mandatory clauses are also called soft clauses. A
weighted formula in conjunctive normal form (WCNF) ϕ is a
set of weighted clauses.

A model is a complete assignment that satisfies all manda-
tory clauses. The cost of an assignment is the sum of weights
of the clauses that it falsifies. Given a WCNF formula,
Weighted Max-SAT is the problem of finding a model of min-
imum cost. Note that if a formula contains only mandatory
clauses, weighted Max-SAT is equivalent to classical SAT. If
all the clauses have weight 1, we have the (unweighted) Max-
SAT problem. Hereafter, we will assume weighted Max-SAT.

A weighted formula ϕ′ is a relaxation of ϕ (noted ϕ′ 	 ϕ
) if the optimal cost of ϕ′ is less than or equal to the optimal
cost in ϕ (non-models are considered to have cost infinity).
Two weighted formulas ϕ′ and ϕ are equivalent (denoted as
ϕ′ ≡ ϕ) if ϕ′ 	 ϕ and ϕ 	 ϕ′.

Let u and w be two weights. Their sum is defined as,
u ⊕ w = min(u + w,�) in order to keep the result within
the interval [0..�]. If u ≥ w, their subtraction is defined as,

u� w =

{
u− w : u 
= �

� : u = �

The De Morgan laws cannot be used in Max-SAT [Bonet
et al., 2007; Larrosa et al., 2008]. Instead, the fol-
lowing rule should be repeatedly used until the con-

junctive normal form is achieved: (A ∨ l ∨C,w) ≡
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{(A ∨ C̄, w), (A ∨ l̄ ∨ C,w)}. If a formula con-
tains clauses (C, u) and (C, v), they can be replaced by
(C, u⊕v). If a formula contains the clause (C, 0), such clause
can be removed. The empty clause may appear in a formula.
If its weight is �, i.e. (�,�), it is clear that the formula does
not have any model. If its weight is w, i.e. (�, w), the cost
of any assignment will include that weight, therefore w is a
lower bound of the formula optimal cost.

The resolution rule can be extended from SAT to Max-SAT
[Bonet et al., 2007; Larrosa et al., 2008] as {(x ∨A, u), (x̄ ∨
B,w)} ≡ {(A∨B,m), (x∨A, u�m), (x̄∨B,w�m), (x∨
A∨ B̄, m), (x̄∨ Ā∨B,m)} where m = min(u,w). Briefly,
(x∨A, u) and (x̄∨B,w) are the clashing clauses, (A∨B,m)
is the resolvent, (x ∨A, u �m) and (x̄ ∨B,w �m) are the
posterior clashing clauses, and (x∨A∨ B̄,m) and (x̄∨ Ā∨
B,m) are the compensation clauses.

The resolution step i of a resolution proof R includ-
ing weighted clauses is noted (Ci, wi) = (Ci′ , wi′ ) ��
(Ci′′ , wi′′ ), where (Ci, wi) is the resolvent and (Ci′ , wi′) and
(Ci′′ , wi′′ ) are the clashing clauses. The set of compensa-
tion clauses produced by such resolution step will be noted as
[(Ci′ , wi′) �� (Ci′′ , wi′′ )].

3 An Unsatisfiability-Based Max-SAT Solver

Algorithm 1 summarizes a unsatisfiability-based Max-
SAT algorithm to handle weighted partial Max-SAT formulas
[Manquinho et al., 2009; Ansótegui et al., 2009]. The al-
gorithm iteratively finds unsatisfiable cores by calling a SAT
solver (line 4). Lines 11-21 should be omitted as they intro-
duce read-once resolution that will be explained later.

The input of Algorithm 1 is a Max-SAT formula ϕ. Be-
sides, it maintains a working formula ϕW and a lower bound
λ of the optimal solution which are initialized to ϕ and 0,
respectively. For each unsatisfiable sub-formula ϕC , the min-
imum weight m of the soft clauses (i.e. (C,w) with w < �)
in the sub-formula (line 9) is computed. Then, the minimum
weight is used to update the lower bound (line 10). Soft
clauses in the unsatisfiable sub-formula are relaxed (lines 22
to 30) by adding new relaxation variables and requiring that
exactly one of the relaxation variables must be assigned to
true. This is usually expressed by adding cardinality con-
straints (line 31). Observe that if the weight of a clause is
larger than m, then a copy clause of the original clause with
weight m is created (and relaxed), and the weight of the orig-
inal clause is decreased by m.

The first unsatisfiability-based algorithm for Max-SAT [Fu
and Malik, 2006] was designed to handle unweighted par-
tial Max-SAT, it added several relaxation variables to the
same clause and it used the pairwise encoding for the cardi-
nality constraints. More sophisticated algorithms have been
developed in recent years, which add only one relaxation
variable per clause, use alternative encodings for the car-
dinality constraints, and are able to handle weighted soft
clauses and hard clauses [Marques-Silva and Planes, 2008;
Manquinho et al., 2009; Ansótegui et al., 2009; 2010].

Theorem 1 The value returned by Algorithm 1 (excluding
lines 11-21) is the minimum cost of unsatisfied clauses in ϕ.

Proof 1 Proof included in [Ansótegui et al., 2009].

Algorithm 1 Weighted partial Max-SAT algorithm enhanced
with read-once resolution

SOLVE(ϕ)

1 ϕW ← ϕ
2 λ← 0
3 while true
4 do (status, ϕC)← SAT(ϕW )
5 if status = true
6 then � Solution to Weighted Max-SAT problem
7 return λ
8 ϕW ← ϕW − ϕC

9 m ← min{w|(C,w) ∈ ϕC ∧ w < �}
10 λ← λ+m
11 RC ← getProof(ϕC )
12 for each (Ci, wi) = (Ci′ , wi′) �� (Ci′′ , wi′′ ) ∈ RC

13 do
14 if ROR((Ci, wi),RC)
15 then (Ci′ , wi′)← (Ci′ , wi′ �m)
16 (Ci′′ , wi′′)← (Ci′′ , wi′′ �m)
17 ϕC ← ϕC − {(Ci′ , wi′), (Ci′′ , wi′′)}
18 ϕW ← ϕW ∪ {(Ci′ , wi′), (Ci′′ , wi′′)}
19 ϕW ← ϕW ∪ {[(Ci′ , wi′) �� (Ci′′ , wi′′)]}
20 if Ci �= �

21 then ϕC ← ϕC ∪ {(Ci,m)}
22 VR ← ∅
23 for each (C,w) ∈ ϕC with w < �
24 do
25 r is a new relaxation variable
26 VR ← VR ∪ {r}
27 ϕC ← ϕC ∪ {(C ∪ {r},m)}
28 if w > m
29 then (C,w)← (C,w �m)
30 else ϕC ← ϕC − {(C,w)}
31 ϕC ← CNF(

∑
r∈VR

r = 1)
32 ϕW ← ϕW ∪ ϕC

4 Read-Once Resolution in Max-SAT

For each unsatisfiable core, unsatisfiability-based Max-SAT
algorithms add a set of relaxation variables and cardinality
constraints to the formula. Recall that we can always retrieve
a resolution proof from any unsatisfiable core. A different
approach would be to apply Max-SAT resolution as dictated
by such a resolution proof in order to increase the weight of
the empty clause. As a result, the relaxation variables and
cardinality constraints would not be necessary. However, this
approach cannot be applied in general:

Example 1 Let ϕ = {(x1 ∨ x2, 1)i1, (x̄1 ∨ x2, 1)i2, (x̄2 ∨
x3, 1)i3, (x̄2 ∨ x̄4, 1)i4, (x̄3 ∨ x4, 1)i5} and a SAT solver re-
turned the following resolution proof R = {(i6 = i1 ��
i2), (i7 = i6 �� i3), (i8 = i7 �� i5), (i9 = i6 �� i4), (i10 =
i8 �� i9)}. The soft clause with identifier i6 is used twice in
the proof. In the Max-SAT context, the application of Max-
SAT resolution between two clashing soft clauses produces
a new resolvent but also the clashing clauses may disap-
pear (ie. their weight equals 0). Hence, if we apply Max-
SAT resolution as dictated by R, we cannot continue at step
(i9 = i6 �� i4) because clause i6 has been consumed at step
(i7 = i6 �� i3). Then, the empty clause cannot be increased.
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In other words, when soft clauses with weights greater than
0 are resolved more than once, Max-SAT resolution does
not ensure to produce resolvents with weight greater than 0.
Hence, it would be interesting to study what happens if we
restrict the application of resolution to the case in which each
clause is used at most once in a proof. This process is re-
ferred to as Read-once resolution (ROR) [Iwama and Miyano,
1995]. ROR is an incomplete calculus in which pairs of clash-
ing clauses (x ∨ A) and (x̄ ∨ B) are resolved into (A ∨ B)
and then both clashing clauses disappear from the formula.

Remark 1 ROR is an incomplete calculus, that is, it cannot
generate resolution proofs for some unsatisfiable formulas.
This is a known result [Iwama and Miyano, 1995].

When we look at the recent Max-SAT resolution, we ob-
serve that it has precisely a similar behavior to read-once res-
olution. In particular, when both clashing clauses are soft,
they may disappear after the resolution step. The main dif-
ference is that Max-SAT resolution adds new compensation
clauses to recover an equivalent Max-SAT formula.

Observe that current branch and bound Max-SAT solvers
apply the Max-SAT resolution rule when different unsatisfi-
able formulas describing a specific pattern are detected [Li
et al., 2007; Larrosa et al., 2008; Heras and Larrosa, 2008;
Li et al., 2010]. Such patterns include a small set of bi-
nary and unary clauses and each clause is resolved once. In
[Heras et al., 2008], it is shown that for each unsatisfiable
sub-formula detected by unit propagation, a resolution proof
using each clause once can be always built. However, there
are unsatisfiable sub-formulas with ROR proofs that cannot
be detected by solely applying unit propagation:

Example 2 Let be ϕ = {(x1 ∨ x2)i1, (x̄1 ∨ x2)i2, (x1 ∨
x̄2)i3, (x̄1∨x̄2)i4} and its associated ROR proof R = {(i5 =
i1 �� i2), (i6 = i3 �� i4), (i7 = i5 �� i6)}. Clearly, unit
propagation cannot prove the unsatisfiability of ϕ.

In [Cooper et al., 2010], the same observation reported in
Example 1 is studied in the context of the Weighted Con-
straint Satisfaction Problem (WCSP). Recall that the Max-
SAT problem can be seen as a WCSP in which variables are
boolean and clauses are forbidden tuples of weighted con-
straints. The authors propose using rational weights in order
to produce equivalent WCSP problems which remain in the
arc level, that is, all transformations produce constraints of
at most size two. Differently, our approach considers natural
weights but it allows resulting clauses of size greater than 2.

5 Unsatisfiability-Based Max-SAT with ROR

Algorithm 1 contains the necessary code to apply Max-
SAT resolution when the read-once resolution (ROR) crite-
rion is executed between lines 11-21. The resolution proof
RC associated to each unsatisfiable core is built in line 11
[Zhang and Malik, 2003]. Then, the algorithm iterates over
the resolution steps as dictated by RC . For each read-once
step, Max-SAT resolution is actually applied (line 14 to 21).
In particular, the weights of the clashing clauses (Ci′ , wi′ )
and (Ci′′ , wi′′ ) are decreased by m (lines 15 and 16). If the
clashing clauses are soft (this detail is omitted from the pseu-
docode), they are removed from the unsatisfiable core ϕC

Algorithm 2 Determines if a clause is hard or not.

HARD((Ci, wi),R)

1 if Input((Ci, wi),R) ∧ wi = �
2 then
3 return true
4 if Input((Ci, wi),R) ∧ wi �= �
5 then
6 return false
7 {(Ci′ , wi′), (Ci′′ , wi′′)} ← ancestors((Ci, wi),R)
8 return Hard((Ci′ , wi′),R) ∧Hard((Ci′′ , wi′′),R)

Algorithm 3 Determines if a clause is hard or it and its an-
cestors are used at most once.

ROR((Ci, wi),R)

1 if Hard((Ci, wi),R)
2 then
3 return true
4 if Input((Ci, w)i,R) ∧ Used(Ci, w),R) = 1
5 then
6 return true
7 if Used(Ci, wi),R) > 1
8 then
9 return false

10 {(Ci′ , wi′), (Ci′′ , wi′′)} ← ancestors((Ci, wi),R)
11 return ROR((Ci′ , wi′),R) ∧ROR((Ci′′ , wi′′),R)

(line 17) but the resolvent is added to ϕC (line 21). If the
clashing clauses are hard they are just maintained in the core
as they may be used again in a different resolution step. Fi-
nally, the clashing and compensation clauses are added to the
working formula ϕW (lines 18 and 19).

In what follows we introduce the read-once criterion. Let
be (Ci, wi) = (Ci′ , wi′) �� (Ci′′ , wi′′) a resolution step in
a proof R. The function ancestors((Ci, wi),R) returns the
pair of clauses (Ci′ , wi′) and (Ci′′ , wi′′ ) from which (Ci, wi)
was derived as dictated by R. Predicate Input((Ci, wi),R)
returns true if clause (Ci, wi) is an original clause in proof
R (i.e. it is not a resolvent of any step in R), otherwise
it returns false. Function Used((Ci, wi),R) returns how
many times clause (Ci, wi) is resolved in proof R. Pred-
icate Hard((Ci, wi),R) (see Algorihm 2) returns true if
clause (Ci, wi) is an input hard clause or if all its ances-
tors are hard, otherwise it returns false. Finally, predicate
ROR((Ci, w),R) (see Algorihm 3) returns true if clause
(Ci, wi) is hard or if it and all of its soft ancestors have been
used at most once in the resolution proof R.

Consider (Ck, wk) = (Ck′ , wk′ ) �� (Ck′′ , wk′′ ), where
(Ck, wk) is the last resolvent in a resolution proof R. Clearly,
if ROR((Ck, wk)) is true it means that the entire resolution
proof R is read-once. When this happens the algorithm does
not need to add relaxation variables neither cardinality con-
straints. This could be a key advantage to improve the effi-
ciency of the original algorithm. More concretely, when the
last step of resolution is ROR the related resolvent is equal
to the empty clause (�,m). As we have increased the lower
bound in line 10 we don’t add the empty clause to the for-
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mula as it would mean adding twice the same contribution to
the lower bound (line 20).

Observe that Algorithms 2 and 3 are in practice imple-
mented with a standard depth first search, that visits each res-
olution proof node at most once.

Theorem 2 Algorithm 1 with ROR (including lines 11-21)
returns the minimum cost of unsatisfied clauses in ϕ.

Proof 2 (Sketch) The proof shows that any transformation
to the working formula ϕW results in a Max-SAT equiva-
lent formula [Ansótegui et al., 2009]. This invariant needs
to be maintained in the whole algorithm. The general al-
gorithm (i.e. by excluding lines 11-21) is known to be cor-
rect, again because at each iteration ϕW is transformed into
an equivalent formula [Ansótegui et al., 2009]. What re-
mains to be shown is that the lines 11-21 respect the in-
variant. Suppose any subtree of a general resolution proof
where each clause is used at most once (ie. ROR subtree).
Max-SAT resolution can be applied to such subtree and then
the resulting formula is guaranteed to be equivalent and the
last resolvent has weight greater than 0 [Bonet et al., 2007;
Larrosa et al., 2008] (otherwise the subtree is not ROR). Let
be R the resulting resolvent of the last resolution step after
applying resolution to such ROR subtree. Now, the general
resolution proof can be transformed by replacing the whole
ROR subtree with the resulting clause R (and compensation
clauses are properly added to the working formula). Finally,
the modifications made in 11-21 provide an equivalent for-
mula and unsatisfiable core for the line 22, hence the termi-
nation is guaranteed from [Ansótegui et al., 2009].

6 Experimental Results

In order to evaluate the use of read-once resolution inside an
unsatisfiability-based Max-SAT solver, we extended the C++
MSUNCORE [Manquinho et al., 2009] Max-SAT solver
(shortly WMSU1) which interfaces PICOSAT [Biere, 2008]

as SAT solver. WMSU1 is similar to the original [Fu and Ma-
lik, 2006] solver but it is extended to handle weighted partial
Max-SAT [Ansótegui et al., 2009; Manquinho et al., 2009]

and it uses the bitwise encoding for the cardinality constraints
[Prestwich, 2007].

Due to clause minimization techniques in PICOSAT, it re-
turns traces which contain only the original clauses involved
in the core, but the order of clauses does not represent the ac-
tual resolutions steps. To integrate ROR into the Max-SAT
solver, these unordered traces need to be reordered into ac-
tual resolution proofs [Beame et al., 2004]. The reordeing is
performed with the TRACECHECK tool 1.

In our experiments, we considered all industrial and partial
crafted instances coming from recent Max-SAT Evaluations
2. We considered all the unweighted Max-SAT industrial and
unweighted partial Max-SAT industrial instances from the
2009 Max-SAT Evaluation since in the 2010 edition only a
subset was considered. For the remaining categories, we con-
sidered the instances in the 2010 Max-SAT Evaluation. All
experiments were conducted on a HPC cluster with 50 nodes,

1http://fmv.jku.at/booleforce/
2http://www.maxsat.udl.cat/

each node is a CPU Xeon E5450 3GHz, 32GB RAM and
Linux. A time limit of 1200 seconds and 2GB of memory
were given for each execution.

Preliminary experiments with ROR transformations
showed that traces (input files for TRACECHECK) and actual
proofs (output files of TRACECHECK) can be very large for
some industrial benchmarks (up to hundreds of megabytes).
Besides, for too large proofs, the unrestricted application
of resolution could increase substantially the size of the
formula. For these reasons, we restricted the application of
ROR to traces and proofs up to a maximum file size (2 MB
for traces and 20 MB for proofs). We manually set such
limits with respect to a small set of industrial instances and
such limit was fairly good in general.

Table 1 shows the number of instances solved by each
solver within the time limit. The first column shows the name
of the benchmark set. The second column presents the to-
tal number of instances for each set. The third and fourth
columns show the number of solved instances by WMSU1
and the average time for the solved instances of each set, re-
spectively. Similarly, the fifth and sixth columns show the
number of solved instances by WMSU1-ROR (ie. WMSU1
with ROR) and the average time for each set, respectively.

We observe that ROR improve the performance of
WMSU1 in many of the 31 benchmark sets. In particular,
there is an improvement in 14 sets and a slight worsening in
2 sets. Significant improvements are reported in some indus-
trial benchmarks such as Bcp-fir, Bcp-hipp-su, and Bcp-msp
but also in crafted benchmarks such as Scheduling, Ware-
houses and RandomNet. Observe that 211 unsolved instances
by WMSU1 become solved by WMSU1-ROR, that is, 19%
of the instances are solved by adding ROR.

Figure 1 presents a scatter plot comparing the cpu time in
seconds required by WMSU1 and WMSU1-ROR in all the
instances that can be solved by at least one of them. The
scatter plot shows that WMSU1 requires less time for in-
stances that can be solved by both solvers. But, WMSU1-
ROR aborts much fewer instances than WMSU1.

Finally, Table 2 shows the number of solved instances
by state-of-the-art Max-SAT solvers including WPM1
[Ansótegui et al., 2009] , MINIM [Heras et al., 2008], SAT4J
[Berre and Parrain, 2010], PM2 [Ansótegui et al., 2009]

and WPM2 [Ansótegui et al., 2010]. For unweighted Max-
SAT, WMSU1-ROR notably improves the performance of
WMSU1 but there are more efficient solvers. For weighted
Max-SAT, WMSU1 is the most robust solver.

7 Conclusions and Future Work

This paper proposes to apply Max-SAT resolution in an
unsatisfiability-based Max-SAT solver when the unsatisfiable
core has an associated ROR proof or to subparts of a gen-
eral proof which are also read-once. Future work includes
integrating read-once resolution in other unsatisfiability-
based Max-SAT solvers, including WMSU4 [Marques-Silva
and Planes, 2008], PM2 [Ansótegui et al., 2009] and
WPM2[Ansótegui et al., 2010]. Moreover, we will study
under which conditions general proofs can be converted into
ROR proofs for Max-SAT.
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Benchmark Set #Ins.WMSU1 TIME WMSU1-ROR TIME

1. ms/ind/CircuitDebugg. 9 9 104.45 9 13.03

2. ms/ind/SeanSafarpour 112 92 38.38 93 41.93

3. pms/ind/Bcp-fir 59 50 62.78 57 30.51

4. pms/ind/Bcp-hipp-simp 138 131 1.87 132 3.65

5. pms/ind/Bcp-hipp-su 38 12 113.44 17 138.34

6. pms/ind/Bcp-msp 148 20 20.19 62 3.76

7. pms/ind/Bcp-mtg 215 172 11.84 175 12.5

8. pms/ind/Bcp-syn 74 30 39.7 37 68.88

9. pms/ind/CircuitTraceComp. 4 0 - 0 -

10. pms/ind/Haplotype-Asse. 6 5 9.15 5 52.04

11. pms/ind/Pbo-mqc-nencdr 128 61 54.89 59 73.39

12. pms/ind/Pbo-mqc-nlogen. 128 70 45.77 65 37.67

13. pms/ind/Pbo-routing 15 15 0.18 15 1.11

14. pms/ind/Protein 12 0 - 1 22.39

15. pms/craft/JobShop 25 0 - 0 -

16. pms/craft/Frb 4 2 204.42 2 148.47

17. pms/craft/MaxCliqueRnd 96 0 0 14 11.23

18. pms/craft/MaxCliqueStr 62 4 0.5 19 1.82

19. pms/craft/MaxOneRnd 80 39 34.75 47 14.49

20. pms/craft/MaxOneStr 60 0 - 2 2.34

21. pms/craft/Kbtree 54 13 9.59 13 27.35

22. pms/craft/MipLib 4 2 3.12 2 0.51

23. wpms/craft/Paths 88 0 - 5 2.76

24. wpms/craft/Scheduling 84 0 - 66 1.16

25. wpms/craft/Planning 56 29 1.48 34 3.7

26. wpms/craft/Warehouses 18 1 0.01 18 33.67

27. wpms/craft/MipLib 12 1 0.02 1 0.06

28. wpms/craft/RandomNet 78 15 38.13 32 83.34

29. wpms/craft/Spot5 21 3 21.83 4 0.2

30. wpms/ind/Upgrade 100 100 50.97 100 66.59

31. wpms/ind/TimeTabling 32 11 199.91 12 161.9

Total 1960 887 - 1098 -

Table 1: Solved instances by WMSU1 and WMSU1-ROR.

Solver #Ins.WMSU1 WMSU1-ROR WPM1 MINIM SAT4J PM2+WPM2

Unweighted 1471 727 826 782 969 1037 1167

Weighted 489 160 272 138 236 212 113

Table 2: Number of solved instances.
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J. Levy. Solving (weighted) partial MaxSAT through sat-
isfiability testing. In SAT, pages 427–440, July 2009.

[Ansótegui et al., 2010] C. Ansótegui, M. L. Bonet, and
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