
Evaluations of Hash Distributed A* in Optimal Sequence Alignment

Yoshikazu Kobayashi and Akihiro Kishimoto and Osamu Watanabe
Department of Mathematical and Computing Sciences

Graduate School of Information Science and Engineering
Tokyo Institute of Technology, Japan

{kobayas6, kishimoto, watanabe}@is.titech.ac.jp

Abstract

Hash Distributed A* (HDA*) is a parallel A* al-
gorithm that is proven to be effective in optimal
sequential planning with unit edge costs. HDA*
leverages the Zobrist function to almost uniformly
distribute and schedule work among processors.

This paper evaluates the performance of HDA* in
optimal sequence alignment. We observe that with
a large number of CPU cores HDA* suffers from
an increase of search overhead caused by reexpan-
sions of states in the closed list due to nonuniform
edge costs in this domain. We therefore present a
new work distribution strategy limiting processors
to distribute work, thus increasing the possibility of
detecting such duplicate search effort. We evalu-
ate the performance of this approach on a cluster
of multi-core machines and show that the approach
scales well up to 384 CPU cores.

1 Introduction

The A* algorithm [Hart et al., 1968] has been incorporated
into many applications such as path-finding, planning, and
sequence alignment in biology. However, when A* is re-
quired to solve large-scale problems, the main causes of per-
formance bottlenecks are the CPU and memory requirements.

Incorporating parallelism into A* in distributed-memory
environments is one way to improve both speed and solving
ability by utilizing larger CPU and memory resources. This
approach has become especially important to obtain signif-
icant speedups from the hardware because of limited speed
improvement for each individual CPU core and ubiquitous
availability of many machines connected in a network.

Hash Distributed A* (HDA*) is a simple but efficient par-
allel A* algorithm that has achieved a notable success in op-
timal unit-edge cost sequential planning [Kishimoto et al.,
2009]. HDA* can effectively use a vast amount of memory
distributed over the network. HDA* scaled well up to 512
CPU cores and improved its solving ability in [Kishimoto et
al., 2010]. However, HDA* often suffered from performance
deterioration with 1024 cores. Although Kishimoto et al. ob-
served a significant search overhead, they did not analyze the
reason why it occurred.

Parallelizing A* to search in a graph rather than a tree has
been a difficult issue especially in distributed-memory envi-
ronments, since the closed list used to detect duplicate detec-
tions cannot be shared without incurring parallel overheads.
While HDA* is considered to have an advantage of efficiently
detecting duplicate nodes by using the Zobrist function [Zo-
brist, 1970] (see the definition in Subsection 3.2), Kishimoto
et al.’s performance evaluation was limited to search spaces
with a uniform edge cost.

This paper contains an in-depth performance evaluation of
HDA* in a graph with nonuniform edge costs to further elu-
cidate its behavior. Multiple sequence alignment is an ideal
testbed, since there are many paths to the same state with a
variety of edge costs. Additionally, ideas invented in this do-
main are often transferred to other domains that have similar
graph representations. The contributions of this paper are:

• A new insight that HDA* frequently fails in duplicate
detections in multiple sequence alignment, resulting in
drastically increasing search overhead.

• A new hyperplane work distribution (HWD) strategy
with an application to multiple sequence alignment.

• Experimental results clearly demonstrating the superior-
ity of HWD to the Zobrist function over 300 CPU cores.

2 Multiple Sequence Alignment

Figure 1: Grid representation of sequence alignment

Given several DNA or amino acid sequences as sets of
strings, the purpose of the multiple sequence alignment
(MSA) problem is to align these sequences with the best score
by inserting gaps in each sequence.

MSA can be solved by an algorithm finding a lowest-cost
path from corner to corner in an n-dimensional grid. Figure

584

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence

1 shows an example with two sequences VAKLT and EVAK.
One sequence is placed vertically from top to bottom and the
other horizontally from left to right. Inserting a gap between
two characters in a sequence corresponds to moving down or
right from the current node and the diagonal move indicates
matching characters in the sequences (see circles and dotted
lines and representing nodes and edges, respectively). The
bold line is the best path from s to t, which is turned into the
best alignment (i.e., EVAK-- and -VAKLT).

Each edge cost is assigned by a scoring function based on
the similarity of two characters and a penalty for a gap. Such
a function is usually constructed by biologists. Note that the
edge cost is nonuniform in this paper.

Since MSA is a path-planning problem, A* can be used to
solve it. Although a more memory-efficient approach is avail-
able without maintaining the closed list [Korf et al., 2005]

(see Section 6 for detailed discussions), we focus on standard
A* as a sequential baseline because HDA* must maintain the
closed list for detecting duplicate nodes. Our main purpose is
to get a more complete picture of the behavior of HDA*.

3 Background

3.1 Parallel Overheads

Achieving good parallel performance in search algorithms is
notoriously difficult mainly due to the following overheads:

1. Search overhead is a useless part of a search tree built
only by parallel search as compared to sequential search.
It is approximated by the following value:

SO :=
Total number of nodes expanded in parallel

Number of nodes expanded by sequential search
−1.

2. Synchronization overhead is incurred when some pro-
cessors must sit idle to wait for the others’ computation.
The existence of synchronization overhead is estimated
by load balancing that refers to how evenly work is dis-
tributed among processors and that is defined as:

LB :=
Maximal number of nodes expanded by a processor

Average number of nodes expanded by each processor
.

The ideal case of LB = 1 hardly occurs in practice due
to various work granularity assigned to processors.

3. Communication overhead is the communication delay
caused by exchanging messages over the network to dis-
tribute work and share information among processors.

None of these overheads is independent. Since it is usually
a difficult task to theoretically find the best case of minimiz-
ing the overheads, trade-offs are tuned empirically in practice.

One crucial factor affecting parallel performance is that
there are many paths to the same node in many applications
including sequential planning and MSA. Sequential A* can
often omit searching duplicate nodes with the help of the
closed list or some other duplication detection techniques
(e.g. [Korf et al., 2005; Zhou and Hansen, 2006]). How-
ever, detecting duplicate nodes efficiently becomes a difficult
issue in parallel A* in distributed-memory environments, be-
cause the closed and open lists cannot be shared without in-
curring several overheads. In practice, balancing the work-
load without sharing these structures (e.g., [Karp and Zhang,

1988]) results in excessive search overhead incurred by du-
plicate search effort [Kishimoto et al., 2010].

3.2 Hash Distributed A*

HDA* is based on ideas behind the hash-based work distribu-
tion strategy in PRA* [Evett et al., 1995] and asynchronous
communication in transposition-table driven work scheduling
[Romein et al., 2002]. Pioneering work that is very similar to
HDA* appears in [Mahapatra and Dutt, 1997]. However, Ma-
hapatra and Dutt incorporate not only a different hash func-
tion for work distribution but also a few complicated proce-
dures such as the quality equalizing strategy [Dutt and Maha-
patra, 1994] that possibly reassigns nodes to other processors
and a procedure of partially expanding nodes.

In HDA* the closed/open list is partitioned over proces-
sors disjointly. This structure can be regarded as one large
closed/open list where each processor owns a partition of the
search space. The unique owner of each node is determined
by a hash function. See [Kishimoto et al., 2009] for detailed
descriptions of HDA*.

In HDA* each processor P works similarly to A* except
for an inclusion of the work distribution mechanism. P de-
queues a node N with the lowest f -value from its own open
list to generate N ’s children and saves N in P ’s closed list.
Then, instead of enqueueing these generated children to P ’s
local open list, P sends out them to their owners. P also pe-
riodically checks if nodes sent by others arrive at P . If so,
P checks its local closed list to check whether they are du-
plicates or should be saved in its local open list. Let g(N)
be a g-value of node N . A node N is considered as a du-
plicate, if the node M in the closed list is identical to N and
g(M) ≤ g(N) holds. HDA* continues these steps until an
optimal solution is found1.

HDA* has several merits. First, because HDA* sends and
receives nodes asynchronously, it can overlap communica-
tions and computations. In other words, once each proces-
sor sends the work, it can immediately work on the next node
saved in its local open list. Second, duplicate nodes are de-
tected efficiently by their owners. The owners detect such
duplicates by merely checking their local closed lists. Third,
effective load balancing is achieved with an almost uniformly
distributed hash function. Kishimoto et al. uses the Zobrist
function [Zobrist, 1970], defined below in case of MSA.

In MSA, a node can be represented by a location in the
n-dimensional grid. Let li be the length of the ith sequence
and a node x be (x1, x2, · · · , xn) where xi is an integer (0 ≤
xi ≤ li). Let Ri be a precomputed random table with li + 1
values. The Zobrist function Z(x) is then defined as:

Z(x) := R1[x1] xor R2[x2] xor · · · xor Rn[xn].

One important enhancement to HDA* is to pack more than
one node into one message when these nodes are sent to
the same owner. The best pack size is determined empiri-
cally. This approach reduces communication overhead. On

1Sequential A* terminates immediately when selecting a goal
node for expansion. However, a (first) solution is not always op-
timal in HDA*. HDA* must continue searching until proving that
no better solution exists.

585

the other hand, it may delay sending out important nodes and
increase search overhead (see Subsection 4.1).

4 Improving HDA* Based on Hyperplane

Work Distribution

4.1 A Drawback of HDA*

Figure 2: An example showing that HDA* may expand nodes
in a non-optimal order and resulting in duplicate search effort

Once sequential A* with consistent heuristics saves nodes
in the closed list, it never places these nodes back in the open
list. On the other hand, in HDA* each processor selects the
best node in its local open list and the selected node may not
be globally best. Hence, while HDA* allocates node N via
different paths to the same owner of N , it does not always
detect duplicate search effort even with consistent heuristics.
It may have to reopen N , because N may be received in an
arbitrary order. This problem becomes more crucial in MSA
where the edge cost is nonuniform, and can be explained with
the help of Figure 2. Assume that P1 owns nodes a and d.
Let the owners of b and c be P2 and P3, respectively. P1 must
reopen d if nodes are expanded as follows:

1. P1 expands a and generates b and c. While b is sent to
P2, c is sent to P3.

2. P3 expands c and sends d with g(d) = 3 + 1 = 4 to P1.

3. P1 expands d and d is saved in P ’s local closed list with
g(d) = 4.

4. P2 expands b and generates d. d is then sent to P1.

5. P1 receives d with g(d) = 1 + 1 = 2. Now P1 must
reopen d because g(d) = 4 in the closed list.

This is a less serious issue in unit-edge cost sequential
planning, because of the uniform edge cost. Because the path
length of a → c → d is equal to that of a → b → d, d via
a → b → d is detected as a duplicate in this scenario.

4.2 Hyperplane Work Distribution

We present the hyperplane work distribution (HWD) strategy
overcoming an issue of Zobrist-based work distribution. Our
new function determining the owner of node x is defined as:

Plane(x, d) :=

{ � 1
d

∑
xi�

(
d ∈ {1, 2, 3, ...}

)
1
d

∑
xi +

(
Z(x) mod 1

d

) (
d ∈ { 1

2
, 1
3
, ..., 1

p
}
)

where p is the number of processors and d is an empiri-
cally determined parameter indicating the thickness of the
hyperplane. Let P (x) := Plane(x, d) mod p. Processor
Pi (0 ≤ i < p) then owns x where i = P (x). Once x is

� ��� �

�

�

�

�

�

	
�� ��

Figure 3: Example of hyperplane work distribution (d = 1)

moved to Pi, Pi can check its local closed list to determine if
x is a duplicate.

Figure 3 illustrates an example of HWD in case of d = 1
and p = 2. White and black circles are assigned to processors
P0 and P1, respectively. The child generated from node x by
moving diagonally is allocated to the processor owningx and
the remaining children must be sent to the other processor.

Let Children(x) be a set of children generated from node
x owned by processor Pi and n be the number of sequences.
Plane(x, d) satisfies the following remark for Pi:

Remark 1

#

⎛
⎝ ⋃

x : P (x)=i

{P (x′) | x′ ∈ Children(x)}

⎞
⎠ ≤

⌊
n

d
+max(1,

1

d
)
⌋

Proof Let x = (x1, x2, · · · , xn) and y =
(y1, y2, · · · , yn) ∈ Children(x). Because yi ≤ xi + 1 (1 ≤
i ≤ n) holds in MSA, the following calculation is derived:

0 ≤

n∑
i=1

yi
d

−

n∑
i=1

xi

d
≤

n∑
i=1

xi + 1

d
−

n∑
i=1

xi

d
=

n

d
.

Now we consider the following cases:

Case d ≥ 1: By counting the number of non-negative inte-
gers between 0 and n/d, we can prove that the number

of processors owing y is limited to
⌊n
d
+ 1

⌋
.

Case d < 1: Let ZZ(y) := Z(y) mod (1/d) where 1/d is a
positive integer. It holds that 0 ≤ ZZ(y) ≤ 1/d−1. The
following calculation is therefore easily derived:

0 ≤

n∑
i=1

yi
d
+ZZ(y)−

n∑
i=1

xi

d
≤

n

d
+ZZ(y) ≤

n+ 1

d
−1.

Hence, the number of processors owing y is at most⌊
n+ 1

d

⌋
.

Remark 1 indicates that HWD can bound the number q of
processors to which each processor sends generated children
at each step by �n/d+max(1, 1/d)�, which is much smaller
than min(p, 2n − 1) if p and n are large. The bound of HWD
is controlled by d. This property increases the chance of al-
locating generated children to the same processor that orders
these children more reasonably, thus reducing unnecessary

586

node reexpansions. For example, assume that nodes b and c
are assigned to P2, and that b and c have the same heuristic
value in Figure 2. P2 can then expand b to generate d before
expanding c because g(b) < g(c). In this case, since d via
a → b → d reaches P1 first, P1 detects d via a → c → d
as a duplicate. Additionally, HWD helps to reduce the de-
lay time for sending nodes to other processors. In a typical
enhancement, each processor P packs k nodes as one mes-
sage that is sent to processor Q to reduce the communication
overhead; that is, until P generates k nodes that should be
owned by Q, P does not send the message. If we assume
that nodes are distributed uniformly among P ’s destination
processors, the probability that each node generated by P
is owned by Q is 1/q, which is much larger in HWD than
Zobrist-based work distribution. Hence HWD can accumu-
late k nodes much more quickly. One drawback is that HWD
might achieve less effective load balancing than the Zobrist
function. However, this can be controlled by d, although there
is a trade-off between effective load balancing and scalability.

4.3 Other Implementation Details

In order to reduce redundant search effort, our sequential and
parallel implementations incorporate the technique in [Ikeda
and Imai, 1999]. They first run weighted A* (WA*) search
to prove an upper-bound ub on the optimal solution and then
performs sequential/parallel A* with ub. If f(N) > ub holds
for nodeN , A* immediately discardsN . We set the weight of
WA* to 1.02. The computational overhead incurred by WA*
is much smaller than A* search (see the next section).

The number of packed nodes is set to 256, which returned
the best results in our initial experiments in both HDA* +
HWD and HDA* using the Zobrist function.

We use a typical consistent heuristic function based on
pairwise sequence alignments (e.g., [Korf et al., 2005]). Each
edge cost is based on the well-known PAM250 matrix score2

with a gap penalty of 8.
While selecting d for Plane(x, d) impacts performance, it

depends on many factors such as the number of processors
p and the total lengths of sequences l. By performing a few
initial experiments3, we empirically define d as:

d :=

{
round(λl

log p
) (λl

log p
≥ 1)

(round(log p

λl
))−1 (λl

log p
< 1)

where round(x) rounds off x and λ is a constant set to 0.003,
which achieved reasonable speedups in our preliminary ex-
periments.

5 Experiments

We selected test problems from BAliBASE3.0 [Thompson et
al., 2005], which is a popular database for protein alignments.
Because easy problems are not very informative in an evalu-
ation of parallel scaleup, we chose seven difficult problems

2http://prowl.rockefeller.edu/aainfo/

pam250.htm
3More specifically, we tried functions such as ones linear to p,√

p and log p. The former two did not perform well with large p
since they returned large values.

Table 1: Performance of sequential A* (n: number of se-
quences). Init. time indicates the execution time for the WA*
search. Runtime shown in seconds excludes init. time.

name n node expansion runtime init. time (ratio)

BB12022 5 166,237,332 1900.66 0.27 (1.410 × 10−4)

BBS12023 5 251,495,502 3026.12 19.01 (6.243 × 10−3)

BBS11037 5 324,063,825 3399.74 47.72 (1.384 × 10−2)

BBS11026 7 13,097,629 312.05 6.28 (1.973 × 10−2)

BB12036 7 64,729,569 1849.95 1.85 (1.001 × 10−3)

BBS12010 7 65,595,366 2967.83 0.37 (1.232 × 10−4)

BBS12032 9 4,020,764 446.41 2.55 (5.681 × 10−3)

that were solved by our sequential implementation between
five minutes and one hour (see Table 1 for the runtime and
node expansions), and four more difficult problems that re-
quired at least 12 cores to solve within one hour.

All experiments were performed on a cluster of multi-core
machines where each compute node has two hexa core Xeon
X5670 processors at 2.93GHz (12 CPU cores) with 54 GB
memory interconnected by QDR Infiniband ×2 (80 Gbps).
We used at most 32 compute nodes, resulting in a total of 384
CPU cores. As in [Kishimoto et al., 2009], when N CPU
cores were used, N MPI processes were invoked and com-
municated by MPI operations even if memory can be shared
on the same compute node.

The following programs were prepared and parallelized us-
ing MVAPICH24, an implementation of the MPI library:

• ZOBRIST: HDA* using the Zobrist function for work
distribution as in [Kishimoto et al., 2009].

• PLANE: HDA* using our hyperplane work distribution.

Table 2 shows the runtime and speedups of ZOBRIST and
PLANE on 12-384 CPU cores. When the speedups were mea-
sured, the initialization time spent by WA* was not included.
The thickness d of the hyperplane was automatically deter-
mined as explained in Subsection 4.3.

Both ZOBRIST and PLANE scale well up to 96 cores. For
example, compared to one core, Zobrist achieved speedups in
the range between 63 and 80 on 96 cores, while the speedups
of PLANE ranged between 67 and 935. However, two distinct
tendencies were observed in ZOBRIST with 192 cores. For
the four problems (BB12036, BBS12010, BBS12032, and
BB12003), observed speedups started to deteriorate, while
the runtime was still improved for the others. On 384 cores,
compared to 192 cores, performance degradation was ob-
served for most problems. Additionally, four problems that
ZOBRIST solved with a small number of cores were un-
solved with 384 cores within 600 seconds. On the other hand,

4
http://mvapich.cse.ohio-state.edu/

5These numbers were occasionally larger than theoretical
speedups calculated from parallel overheads. We used the fixed size
of the closed list constructed as a hash table per compute node for
sequential and parallel versions to maximize the amount of avail-
able memory for both versions. By using a performance profiler, we
observed that hash table access became slower if the table size was
increased. We hypothesize that sequential search had a higher cache
miss rate in accessing the table than parallel search, because it used
only one CPU and resulted in a smaller amount of cache available
for the hash table per compute node compared to parallel search.

587

Table 2: Speedup comparison (n: number of sequences, l: total length of n sequences, and p: number of CPU cores)

runtime (speedup)
name n l hash func. p = 12 p = 24 p = 48 p = 96 p = 192 p = 384

BB12022 5 1280 ZOBRIST 218.19 (8.71) 106.07 (17.92) 54.31 (34.99) 30.25 (62.84) 14.99 (126.82) > 600.0
PLANE 207.04 (9.18) 108.71 (17.48) 51.32 (37.04) 23.77 (79.95) 12.17 (156.19) 6.75 (281.75)

BBS12023 5 3481 ZOBRIST 300.44 (10.07) 146.74 (20.62) 75.06 (40.32) 39.21 (77.18) 20.40 (148.33) > 600.0
PLANE 280.52 (10.79) 144.55 (20.94) 70.35 (43.01) 32.32 (93.63) 16.52 (183.22) 10.50 (288.34)

BBS11037 5 1870 ZOBRIST 311.67 (10.91) 164.31 (20.69) 85.11 (39.94) 42.71 (79.59) 21.84 (155.67) > 600.0
PLANE 325.26 (10.45) 157.65 (21.56) 80.09 (42.45) 38.04 (89.37) 19.12 (177.79) 10.54 (322.67)

BBS11026 7 604 ZOBRIST 29.57 (10.55) 14.69 (21.25) 7.74 (40.31) 4.98 (62.72) 3.43 (91.05) 34.98 (8.92)
PLANE 30.12 (10.36) 15.58 (20.03) 7.74 (40.29) 4.28 (72.88) 2.45 (127.15) 1.86 (168.12)

BB12036 7 1499 ZOBRIST 175.08 (10.57) 86.26 (21.45) 44.80 (41.29) 23.46 (78.87) 48.27 (38.33) 64.87 (28.52)
PLANE 169.91 (10.89) 87.97 (21.03) 44.09 (41.96) 25.92 (71.36) 15.88 (116.49) 15.03 (123.11)

BBS12010 7 2221 ZOBRIST 288.49 (10.29) 140.09 (21.19) 69.30 (42.82) 41.02 (72.36) 87.26 (34.01) 79.76 (37.21)
PLANE 261.03 (11.37) 130.86 (22.68) 65.23 (45.49) 32.36 (91.72) 16.67 (178.06) 10.14 (292.56)

BBS12032 9 586 ZOBRIST 39.33 (11.35) 20.19 (22.11) 10.18 (43.83) 5.70 (78.35) 15.76 (28.32) 9.53 (46.87)
PLANE 40.99 (10.89) 21.03 (21.23) 10.59 (42.16) 6.70 (66.58) 3.64 (122.58) 2.68 (166.75)

BB12023 5 3593 ZOBRIST 694.53 (–) 297.81 (–) 140.07 (–) 73.73 (–) 39.78 (–) > 600.0
PLANE 567.77 (–) 286.19 (–) 133.43 (–) 62.91 (–) 32.96 (–) 21.78 (–)

BB12003 8 586 ZOBRIST 970.38 (–) 478.98 (–) 237.87 (–) 123.00 (–) 139.30 (–) 135.69 (–)
PLANE 956.58 (–) 492.05 (–) 244.59 (–) 175.67 (–) 66.00 (–) 42.31 (–)

BBS12005 9 1815 ZOBRIST 631.41 (–) 311.99 (–) 157.94 (–) 82.36 (–) 51.70 (–) 99.00 (–)
PLANE 610.53 (–) 310.29 (–) 153.60 (–) 79.72 (–) 42.22 (–) 33.78 (–)

BB12032 9 613 ZOBRIST 1709.26 (–) 844.25 (–) 428.21 (–) 264.09 (–) 157.44 (–) 162.67 (–)
PLANE 1688.52 (–) 880.70 (–) 442.14 (–) 221.28 (–) 117.66 (–) 74.97 (–)

PLANE constantly improved the runtime even over 100 cores
and resulted in achieving speedups that ranged between 123
and 323 on 384 cores.

Table 3 shows the total number of nodes reopened from
the closed list by all the cores and search overhead on 96-
384 cores. While sequential A* never reopens nodes in the
closed list due to the consistency of our heuristic, reopen-
ing nodes occurred in parallel A*. There was a strong cor-
relation between the number of nodes reopened by parallel
search and search overhead. While there were both cases
where ZOBRIST reopened fewer nodes than PLANE and vice
versa on 96 cores, the superiority of PLANE to ZOBRIST was
clearly observed in the cases of 192 and 384 cores. On 384
cores PLANE always reopened much fewer nodes than ZO-
BRIST (i.e., by a factor of one or two orders of magnitude).
For example, in solving BBS11026 with 384 cores, ZOBRIST

placed back 52,432,014 nodes from the closed list to the open
list, while this number was 823,296 for PLANE. This resulted
in a drastic difference in speedup values of the two methods
(8.92-fold versus 168.12-fold in Table 2). In particular, for
the problems unsolved by ZOBRIST, we observed that most
nodes were uselessly reopened, which was the major culprit
making ZOBRIST fail in solving the problems.

While results in [Kishimoto et al., 2010] showed that
HDA* scaled well up to 512 cores in unit-edge cost sequential
planning, the scaling behavior of ZOBRIST was more modest.
Assume that there are only two paths p1 and p2 that lead to
the same node N and the lengths of p1 and p2 are identical.
In unit-edge cost sequential planning, the local closed list of
HDA* can always detect that N is a duplicate in any search
order – i.e., N via p1 is first saved in the closed list and then
N via p2 is received, or the other way around. However, in
MSA, assume that the path cost of p1 is larger than that of
p2 and N via p1 is first saved in the closed list of N ’s owner.
If N via p2 is received, N must be reopened. In fact, about
90% of reopened nodes were caused by the case of which the

lengths of two paths were the same but their path costs were
different. This would be one reason why it was difficult to
achieve similar scaling behaviors to [Kishimoto et al., 2010]

in MSA.
Table 4 shows speedups and load balancing when d for

Plane(x, d) was varied in solving BB12036. There was
clearly a trade-off between the choice of d and the number
of processors. Thicker planes (1 ≤ d ≤ 2) could be used to
solve the problems with a relatively small number of cores.
However, load balancing worsened drastically with large d
with 384 cores. Note that our function for automatically set-
ting d is not best in this case. For example, on 384 cores,
while the best d was 1

4
, the function set d to 1. Improving the

technique to automatically tune d remains as future work.

6 Other Related Work

This section refers to related work addressing issues on se-
quential and parallel A* variants when they are applied to
domains that have many paths to the identical nodes.

Previous work on sequential algorithms tries to overcome
the memory limitation. While Iterative Deepening A* [Korf,
1985] is a popular approach, its primary drawback is the time
complexity in search spaces with multiple paths to the same
state [Korf et al., 2005]. At the price of a very small re-search
overhead incurred by a divide-and-conquer approach, frontier
search [Korf et al., 2005] reduces the memory requirement of
A* by storing only the open list. However, one drawback of
frontier search is that it requires to mark used operators to
avoid duplicate search in MSA. Since the number of possible
operators is 2n−1 with n sequences, the structure required to
manage a set of used operators suffers from a large blowup.
In [Korf et al., 2005]n was set to at most five, while we varied
n between five and nine.

Table 5 shows the ratio of the maximal amount of memory
allocated as the open list of the A* version of frontier search
to that for A*’s open and closed lists in solving test problems

588

Table 3: Number of nodes reopened and search overhead

p = 96 p = 192 p = 384
ZOBRIST PLANE ZOBRIST PLANE ZOBRIST PLANE

name n reopen SO reopen SO reopen SO reopen SO reopen SO reopen SO
BB12022 5 26,931,867 0.23 31,406,029 0.25 45,206,738 0.32 34,649,396 0.28 unsolved – 38,539,535 0.36

BBS12023 5 37,192,810 0.19 29,155,948 0.21 55,657,404 0.29 32,080,412 0.20 unsolved – 36,633,254 0.27
BBS11037 5 37,750,926 0.12 61,706,272 0.20 45,495,779 0.14 63,877,579 0.15 unsolved – 57,623,110 0.18
BBS11026 7 1,389,909 0.14 139,358 0.05 3,010,496 0.26 296,010 0.12 52,432,014 4.11 823,296 0.23
BB12036 7 791,046 0.02 1,016,997 0.06 34,342,573 0.60 1,544,408 0.07 75,757,905 1.23 3,479,174 0.11

BBS12010 7 12,153,632 0.27 1,265,006 0.10 85,180,615 1.87 1,507,513 0.18 107,473,282 2.11 2,237,737 0.46
BBS12032 9 57,683 0.02 100,910 0.03 1,603,316 0.41 115,733 0.04 6,203,252 1.55 243,561 0.07

BB12023 5 43,100,914 – 75,639,061 – 68,259,973 – 73,777,509 – unsolved – 66,966,386 –
BB12003 8 292,734 – 8,779,841 – 20,701,650 – 443,640 – 40,359,186 – 2,027,297 –

BBS12005 9 240,489 – 164,489 – 884,404 – 718,479 – 24,526,060 – 1,067,810 –
BB12032 9 4,446,211 – 288,224 – 5,857,432 – 725,350 – 14,637,606 – 3,063,362 –

Table 4: Parallel performance with various d for PLANE (BB12036, p: number of cores)

p = 12 p = 24 p = 48 p = 96 p = 192 p = 384

d
runtime

(speedup) SO LB
runtime

(speedup) SO LB
runtime

(speedup) SO LB
runtime

(speedup) SO LB
runtime

(speedup) SO LB
runtime

(speedup) SO LB
Plane(x, 1/4) 182.22 (10.15) 0.04 1.04 91.66 (20.18) 0.01 1.02 45.47 (40.69) 0.04 1.04 22.55 (82.05) 0.03 1.05 12.25 (151.02) 0.06 1.06 7.29 (253.69) 0.11 1.14
Plane(x, 1/2) 177.03 (10.45) 0.04 1.05 89.95 (20.57) 0.04 1.05 44.53 (41.54) 0.01 1.04 22.86 (80.92) 0.06 1.06 13.12 (140.98) 0.06 1.16 8.64 (214.00) 0.09 1.37
Plane(x, 1) 169.00 (10.95) 0.01 1.02 87.97 (21.03) 0.03 1.06 44.09 (41.96) 0.03 1.04 25.92 (71.36) 0.06 1.16 15.88 (116.49) 0.07 1.37 15.03 (123.11) 0.11 2.39
Plane(x, 2) 169.91 (10.89) 0.02 1.05 88.74 (20.85) 0.03 1.04 50.35 (36.74) 0.05 1.17 31.39 (58.93) 0.07 1.37 29.17 (63.43) 0.11 2.35 29.02 (63.74) 0.15 4.43
Plane(x, 4) 179.69 (10.30) 0.03 1.03 102.54 (18.04) 0.05 1.15 62.67 (29.52) 0.07 1.36 55.34 (33.43) 0.09 2.34 55.13 (33.55) 0.13 4.52 48.79 (37.92) 0.07 8.26

Table 5: Comparison on memory efficiency between sequen-
tial A* and frontier A* (n: number of sequences)

name n Frontier A*/A*

BB12022 5 0.977
BBS12023 5 0.599
BBS11037 5 0.525
BBS11026 7 4.381
BB12036 7 3.637

BBS12010 7 4.148
BBS12032 9 21.176

shown in Table 1. Frontier A* achieved memory savings with
n = 5 as shown in [Korf et al., 2005]. However, due to an
additional data structure for marking used operators, frontier
A* suffered from much more memory consumption than stan-
dard A* if n ≥ 7. This implies that another approach such
as [Zhou and Hansen, 2003] would be necessary to overcome
this issue, which is a possible extension to explore as future
work.

In order to parallelize frontier search, one obstacle is how
to detect duplicate nodes efficiently and correctly without the
closed list. Correctness of used operators is based on the node
ordering of sequential A* with consistent heuristic functions.
HDA* expands a node that is locally best even with consis-
tent heuristic functions. Therefore, the used operators cannot
correctly detect redundant paths to the identical node if they
are combined with HDA*.

The first attempt to parallelizing frontier search (PFA*-
DDD) was presented in [Niewiadomski et al., 2006] with de-
layed duplication detection (DDD) [Korf, 2003]. It dynami-
cally splits the search space into intervals computed by sam-
pling to try to evenly distribute the workload. However, two
drawbacks of PFA*-DDD discussed in [Burns et al., 2010]

are an expensive workload distribution scheme and a large

synchronization step incurred by sorting nodes and dupli-
cate detection methods for their data structures. Addition-
ally, PFA*-DDD must manage used operators, which may be
an issue with a larger number of sequences aligned in MSA.
Niewiadomski et al. used test problems with five sequences.
On the other hand, in HDA* + HWD, each processor expands
a node with the locally best f-value without exchanging any
information on the globally best f-value. Additionally, it re-
quires no synchronization step to achieve load balancing, be-
cause the workload is determined by Plane(x, d).

Abstraction is used to partition the search space and effi-
ciently detect duplicate nodes in [Burns et al., 2010]. Several
parallel algorithms including AHDA* and PBNF leverage ab-
stract information to reduce the overhead caused by thread
contentions in a shared-memory machine. Their abstraction
has similarity to HWD in the sense that both methods exploit
locality of work. However, their approach is currently exper-
imented in shared-memory settings.

Mahapatra and Dutt present not only the idea behind HDA*
called Global Hashing of Nodes but also Local Hashing of
Nodes (LOHA) that partitions the search space to disjoint
processor groups on the Traveling Salesperson Problem in
[Mahapatra and Dutt, 1997]. HWD and LOHA are similar
in the sense that both provide a way to limit the number of
destination processors to which each processor sends work by
using a hash function in a levelized graph. However, LOHA
was designed to minimize the global communication costs on
a Hypercube machine where these communication costs vary
among pairs of processors. It first allocates coarse-grained
work to its corresponding subcube that contains a set of pro-
cessors, because of slow communications among subcubes. It
then splits such work finely to the processors inside the sub-
cube, where communications are faster. On the other hand,
HWD directly splits fine-grained work to limited processors

589

and aims at reducing search overhead incurred by failures in
duplicate detections on a state-of-the-art hardware architec-
ture that is a very different and more established platform
than Hypercube. Communication delays that were essential
for LOHA to avoid are not an obstacle in our environment and
our in-depth analysis demonstrates that successful duplicate
detections play an important role in scaling well.

7 Conclusions and Future Work

By using MSA as a test domain, we evaluated the scaling
behavior of HDA* that was originally adapted to optimal
unit-edge cost sequential planning. Our experimental results
demonstrated that HDA* suffered from the increased search
overhead caused by failures in duplicate detections due to the
nonuniform edge cost. We therefore developed the hyper-
plane work distribution strategy selecting a subset of proces-
sors to distribute work. This approach scaled well up to 384
cores, while HDA*’s scalability was limited to 96 cores.

There are a few possible extensions yet to explore. One
direction is to combine the idea behind HDA* with frontier
search. An obstacle is that HDA* relies on the closed list
for duplicate detections, while frontier search does not man-
age it. Additionally, it is necessary to reduce the size of used
operators to solve MSA problems with a large number of se-
quences. The other possibility is to apply the idea behind hy-
perplane work distribution to other domains, because the idea
itself is so natural that it is not limited to MSA. Cost-optimal
planning is a strong candidate in our current research, since a
similar issue caused by multiple paths to the same state and
nonuniform edge costs would arise in this domain.

Acknowledgments

We would like to thank Adi Botea and Alex Fukunaga for
their beneficial feedback on this paper. This research is sup-
ported by the JSPS Global COE program “Computationism
as a Foundation for the Sciences”.

References

[Burns et al., 2010] E. Burns, S. Lemons, W. Ruml, and
R. Zhou. Best-first heuristic search for multicore ma-
chines. Journal of Artificial Intelligence Research,
39:689–743, 2010.

[Dutt and Mahapatra, 1994] S. Dutt and N. Mahapatra. Scal-
able load balancing strategies for parallel A* algorithms.
Journal of Parallel and Distributed Computing, 22:488–
505, 1994.

[Evett et al., 1995] M. Evett, J. Hendler, A. Mahanti, and
D. Nau. PRA∗: Massively parallel heuristic search. Jour-
nal of Parallel and Distributed Computing, 25(2):133–
143, 1995.

[Hart et al., 1968] P. Hart, N. Nilsson, and B. Raphael. A
formal basis for the heuristic determination of minimum
cost paths. IEEE Transactions on Systems Science and
Cybernetics, 4(2):100–107, 1968.

[Ikeda and Imai, 1999] T. Ikeda and H. Imai. Enhanced
A* algorithms for multiple alignments: Optimal align-
ments for several sequences and k-opt approximate align-
ments for large cases. Theoretical Computer Science,
210(2):341–374, 1999.

[Karp and Zhang, 1988] R. Karp and Y. Zhang. A random-
ized parallel branch-and-bound procedure. In Proceed-
ings of the 20th ACM Symposium on Theory of Computing
(STOC), pages 290–300, 1988.

[Kishimoto et al., 2009] A. Kishimoto, A. Fukunaga, and
A. Botea. Scalable, parallel best-first search for optimal
sequential planning. In Proceedings of the 19th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS-2009), pages 201–208, 2009.

[Kishimoto et al., 2010] A. Kishimoto, A. Fukunaga, and
A. Botea. On the scaling behavior of HDA*. In Pro-
ceedings of the 3rd Symposium on Combinatorial Search
(SoCS’2010), pages 61–62. AAAI Press, 2010.

[Korf et al., 2005] R. E. Korf, W. Zhang, I. Thayer, and
H. Hohwald. Frontier search. Journal of the ACM,
52(5):715–748, 2005.

[Korf, 1985] R. Korf. Depth-first iterative deepening: An
optimal admissible tree search. Artificial Intelligence,
27(1):97–109, 1985.

[Korf, 2003] R. E. Korf. Delayed duplicate detection: ex-
tended abstract. In Proceedings of IJCAI-03, pages 1539–
1541, 2003.

[Mahapatra and Dutt, 1997] N. Mahapatra and S. Dutt. Scal-
able global and local hashing strategies for duplicate prun-
ing in parallel A* graph search. IEEE Transactions on
Parallel and Distributed Systems, 8(7):738–756, 1997.

[Niewiadomski et al., 2006] R. Niewiadomski, J. N. Amaral,
and R. C. Holte. Sequential and parallel algorithms for
frontier A* with delayed duplicate detection. In Proceed-
ings of AAAI-06, pages 1039–1044, 2006.

[Romein et al., 2002] J. W. Romein, H. E. Bal, J. Scha-
effer, and A. Plaat. A performance analysis of
transposition-table-driven work scheduling in distributed
search. IEEE Transactions on Parallel and Distributed
Systems, 13(5):447–459, 2002.

[Thompson et al., 2005] J. D. Thompson, P. Koehl, R. Ripp,
and O. Poch. BAliBASE 3.0: Latest developments of the
multiple sequence alignment benchmark. Proteins: Struc-
ture, Function, and Bioinformatics, 61:127–136, 2005.

[Zhou and Hansen, 2003] R. Zhou and E. Hansen. Sparse-
memory graph search. In Proceedings of IJCAI’2003,
pages 1259–1266, 2003.

[Zhou and Hansen, 2006] R. Zhou and E. Hansen. Domain-
independent structured duplicate detection. In Proceed-
ings of AAAI-06, pages 1082–1087, 2006.

[Zobrist, 1970] A.L. Zobrist. A new hashing method with
application for game playing. Technical Report 88, Uni-
versity of Wisconsin, 1970.

590

