
A Generalized Arc-Consistency Algorithm
for a Class of Counting Constraints

Thierry Petit and Nicolas Beldiceanu and Xavier Lorca

Mines-Nantes, LINA UMR CNRS 6241,
4, rue Alfred Kastler, FR-44307 Nantes, France.

{Thierry.Petit, Nicolas.Beldiceanu, Xavier.Lorca}@mines-nantes.fr

Abstract

This paper introduces the SEQ BIN meta-constraint
with a polytime algorithm achieving generalized
arc-consistency. SEQ BIN can be used for encod-
ing counting constraints such as CHANGE, SMOOTH,
or INCREASING NVALUE. For all of them the time
and space complexity is linear in the sum of domain
sizes, which improves or equals the best known re-
sults of the literature.

1 Introduction

Many constraints are such that a counting variable is equal
to the number of times a given property is satisfied in a se-
quence of variables. To represent some of these constraints in
a generic way, we introduce the SEQ BIN(N,X,C,B) meta-
constraint, where N is an integer variable, X is a sequence of
integer variables and C and B are two binary constraints.

Based on the notion C-stretch, a generalization of
stretch [Pesant, 2001] where the equality constraint is made
explicit and is replaced by C, SEQ BIN holds if and only if two
conditions are both satisfied: (1) N is equal to the number of
C-stretches in the sequence X , and (2) B holds on any pair
of consecutive variables in X .

Among the constraints that can be expressed thanks to
SEQ BIN, many were introduced for solving real-world prob-
lems, e.g., CHANGE [Cosytec, 1997] (time tabling problems),
SMOOTH [Beldiceanu et al., 2010a] (time tabling and schedul-
ing), or INCREASING NVALUE [Beldiceanu et al., 2010b]
(symmetry breaking for resource allocation problems).

The main contribution of this paper is a generic poly-
time filtering algorithm for SEQ BIN, achieving generalized
arc-consistency (GAC) when the constraint B is mono-
tonic [Van Hentenryck et al., 1992]. This algorithm can be
seen as a generalization of the INCREASING NVALUE filtering
algorithm [Beldiceanu et al., 2010b]. Given n the size of
X , d the maximum domain size, and ΣDi the sum of domain
sizes, we characterize properties on C and B which lead to a
time and space complexity in O(ΣDi). These properties are
satisfied when SEQ BIN represents CHANGE, SMOOTH and IN-
CREASING NVALUE. For all these constraints, our technique
improves or equals the best known results.

Section 2 provides the definitions used in this paper. Sec-
tion 3 defines SEQ BIN and shows how to express well-known

constraints with SEQ BIN. Section 4 provides a necessary and
sufficient condition for achieving GAC. Section 5 details the
corresponding GAC filtering algorithm. Finally, Section 6
discusses about related works and Section 7 concludes.

2 Background

A Constraint Network is defined by a sequence of variables
X = [x0, x1, . . . , xn−1], a sequence of domains D, where
each D(xi) ∈ D is the finite set of values that variable xi

can take, and a set of constraints C that specifies the allowed
combinations of values for given subsets of variables. min(x)
(resp. max(x)) is the minimum (resp. maximum) value of
D(x). A sequence of variables X ′ = [xi, xi+1, . . . , xj],
0 ≤ i ≤ j ≤ n−1 (resp. i > 0 or i < n−1), is a subsequence
(resp. a strict subsequence) of X and is denoted by X ′ ⊆ X
(resp. X ′ ⊂ X). A[X] denotes an assignment of values to
variables in X . Given x ∈ X , A[x] is the value of x in A[X].
A[X] is valid if and only if ∀xi ∈ X , A[xi] ∈ D(xi). An
instantiation I[X] is a valid assignment of X . Given x ∈ X ,
I[x] is the value of x in I[X]. Given the sequence X and i,
j two integers such that 0 ≤ i ≤ j ≤ n − 1, I[xi, . . . , xj]
is the projection of I[X] on [xi, xi+1, , . . . , xj]. A constraint
C(X) ∈ C specifies the allowed combinations of values for
X . We also use the simple notation C. C(X) defines a subset
RC(D) of the cartesian product of the domains Πxi∈XD(xi).
If X is a pair of variables, then C(X) is binary. We denote by
vCw a pair of values (v, w) that satisfies a binary constraint
C. ¬C is the opposite of C, that is, ¬C defines the relation
R¬C(D) = Πxi∈XD(xi) \ RC(D). A feasible instantiation
I[X] of C[X] is an instantiation which is in RC(D). We say
that I[X] satisfies C(X), or that I[X] is a support on C(X).
Otherwise, I[X] violates C(X). If C is a binary constraint
on X = {xi, xi+1} and v ∈ D(xi) then the set of supports
such that xi = v can be considered as a set of values (a subset
of D(xi+1)). A solution of a constraint network is an instan-
tiation of all the variables satisfying all the constraints.

Value v ∈ D(xi), xi ∈ X , is (generalized) arc-consistent
(GAC) with respect to C(X) if and only if v belongs to a
support of C(X). A domain D(xi), xi ∈ X , is GAC with
respect to C(X) if and only if ∀v ∈ D(xi), v is GAC with
respect to C(X). C(X) is GAC if and only if ∀xi ∈ X ,
D(xi) is GAC with respect to C(X). A constraint network
is GAC if and only if it is closed for GAC [Bessière, 2006]:
∀xi ∈ X all values in D(xi) that are not GAC with respect

643

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence

to a constraint in C have been removed.

3 The SEQ BIN Meta-Constraint

We first generalize the notion of stretches [Pesant, 2001] to
characterize a sequence of consecutive variables where the
same binary constraint is satisfied.
Definition 1 (C-stretch). Let I[X] be an instantiation of the
variable sequence X = [x0, x1, . . . , xn−1] and C a binary
constraint. The C-sequence constraint C(I[X], C) holds if
and only if:

• Either n = 1,
• or n > 1 and ∀k ∈ [0, n− 2] C(I[xk], I[xk+1]) holds.

A C-stretch of I[X] is a subsequence X ′ ⊆ X such that the
two following conditions are both satisfied:

1. The C-sequence C(I[X ′], C) holds,
2. ∀X” such that X ′ ⊂ X” ⊆ X the C-sequence

C(I[X”], C) does not hold.
The intuition behind Definition 1 is to consider the max-

imum length subsequences where the binary constraint C is
satisfied between consecutive variables. Thanks to this gener-
alized definition of stretches we can now introduce SEQ BIN.
Definition 2. The meta-constraint SEQ BIN(N,X,C,B) is
defined by a variable N , a sequence of n variables
X = [x0, x1, . . . , xn−1] and two binary constraints C
and B. Given an instantiation I[N, x0, x1, . . . , xn−1],
SEQ BIN(N,X,C,B) is satisfied if and only if for any i ∈
[0, n − 2], I[xi]B I[xi+1] holds, and I[N] is equal to the
number of C-stretches in I[X].

The constraint CHANGE was introduced in the context of
timetabling problems [Cosytec, 1997], in order to put an up-
per limit on the number of changes of job types during a
given period. The relation between classical stretches and
CHANGE was initially stressed in [Hellsten, 2004, page 64].
CHANGE is defined on a variable N , a sequence of variables
X = [x0, x1, . . . , xn−1], and a binary constraint C ∈ {=, �=
, <,>,≤,≥}. It is satisfied if and only if N is equal to the
number of times the constraint C holds on consecutive vari-
ables of X . Without hindering propagation (the constraint
network is Berge-acyclic), CHANGE can be reformulated as
SEQ BIN(N ′, X,¬C,true) ∧ [N = N ′ − 1], where true is
the universal constraint.

SMOOTH(N,X) is a variant of CHANGE(N,X,C), where
xi C xi+1 is defined by |xi − xi+1| > cst , cst ∈ N. It is use-
ful to limit the number of drastic variations on a cumulative
profile [Beldiceanu et al., 2010a; De Clercq, 2010].

As a last example, consider the INCREASING NVALUE con-
straint, which is a specialized version of NVALUE [Pa-
chet and Roy, 1999]. It was introduced for breaking vari-
able symmetry in the context of resource allocation prob-
lems [Beldiceanu et al., 2010b]. INCREASING NVALUE is
defined on a variable N and on a sequence of variables
X = [x0, x1, . . . , xn−1]. Given an instantiation, INCREAS-
ING NVALUE(N,X) is satisfied if and only if N is equal to
the number of distinct values assigned to variables in X , and
for any i ∈ [0, n − 2], xi ≤ xi+1. We reformulate INCREAS-
ING NVALUE(N,X) as SEQ BIN(N,X,=,≤).

4 Consistency of SEQ BIN

We first present how to compute, for any value in a given
domain of a variable xi ∈ X , the minimum and maximum
number of C-stretches within the suffix of X starting at xi

(resp. the prefix of X ending at xi) satisfying a chain of bi-
nary constraints of type B. Then, we introduce several prop-
erties useful to obtain a feasibility condition for SEQ BIN, and
a necessary and sufficient condition for filtering which leads
to the GAC filtering algorithm presented in Section 5.

4.1 Computing of the Number of C-stretches

According to Definition 2, we have to ensure that the chain
of B constraints are satisfied along the sequence of vari-
ables X = [x0, x1, . . . , xn−1]. An instantiation I[X] is said
B-coherent if and only if either n = 1 or for any i ∈ [0, n−2],
we have I[xi]B I[xi+1]. A value v ∈ D(xi) is said to be
B-coherent with respect to xi if and only if it can be part of
at least one B-coherent instantiation. Then, given an integer
i ∈ [0, n − 2], if v ∈ D(xi) is B-coherent with respect to xi

then there exists w ∈ D(xi+1) such that v B w.
Consequently, within a given domain D(xi), values that

are not B-coherent can be removed since they cannot be part
of any solution of SEQ BIN. Our aim is now to compute for
each B-coherent value v in the domain of any variable xi the
minimum and maximum number of C-stretches on X .

Notation 1. s(xi, v) (resp. s(xi, v)) is the minimum
(resp. maximum) number of C-stretches within the se-
quence of variables [xi, xi+1, . . . , xn−1] under the hypoth-
esis that xi = v. p(xi, v) (resp. p(xi, v)) is the minimum
(resp. maximum) number of C-stretches within the sequence
[x0, x1, . . . , xi] under the hypothesis that xi = v. Given
X = [x0, x1, . . . , xn−1], s(X) (resp. s(X)) denotes the min-
imum (resp. maximum) value of s(x0, v) (resp. s(x0, v)).

Lemma 1. Given SEQ BIN(N,X,C,B) with X =
[x0, x1, . . . , xn−1], assume the domains in X contain only
B-coherent values. Given i ∈ [0, n− 1] and v ∈ D(xi),

• If i = n− 1: s(xn−1, v) = 1.
• Else:

s(xi, v) = min
w∈D(xi+1)

(
min[vBw]∧[vCw](s(xi+1, w)),

min[vBw]∧[v¬Cw](s(xi+1, w)) + 1

)

Proof. By induction. From Definition 1, for any v ∈
D(xn−1), we have s(xn−1, v) = 1 (i.e., a C-stretch of
length 1). Consider now xi ∈ X with i < n − 1, and
a value v ∈ D(xi). Consider the set of instantiations
I[xi+1, xi+2, . . . , xn−1] that are B-coherent, and that min-
imize the number of C-stretches in [xi+1, xi+2, . . . , xn−1].
We denote this minimum number of C-stretches by mins . At
least one B-coherent instantiation exists since all values in
the domains of [xi+1, xi+2, . . . , xn−1] are B-coherent. For
each such instantiation, let us denote by w the value associ-
ated with I[xi+1]. Either there exists such an instantiation
with mins C-stretches with the conjunction B ∧ C satis-
fied by (I[xi], I[xi+1]). Then, s(xi, v) = s(xi+1, w) since
the first C-stretch of I[xi+1, xi+2, . . . , xn−1] is extended
when augmenting I[xi+1, xi+2, . . . , xn−1] with value v for
xi. Or all instantiations I[xi+1, xi+2, . . . , xn−1] with mins

644

C-stretches are such that C is violated by (I[xi], I[xi+1]):
(I[xi], I[xi+1]) satisfies B∧¬C. By construction, any instan-
tiation I[xi, xi+1, . . . , xn−1] with I[xi] = v has a number of
C-stretches strictly greater than mins . Consequently, given
I[xi+1, xi+2, . . . , xn−1] with mins C-stretches, the number
of C-stretches obtained by augmenting this instantiation with
value v for xi is exactly mins + 1.

Lemma 2. Given SEQ BIN(N,X,C,B) with X =
[x0, x1, . . . , xn−1], assume the domains in X contain only
B-coherent values. Given i ∈ [0, n− 1] and v ∈ D(xi):
• If i = n− 1: s(xn−1, v) = 1.
• Else:

s(xi, v) = max
w∈D(xi+1)

(
max[vBw]∧[vCw](s(xi+1, w)),

max[vBw]∧[v¬Cw](s(xi+1, w)) + 1

)

Given a sequence of variables [x0, x1, . . . , xn−1] such that
their domains contain only B-coherent values, for any xi in
the sequence and any v ∈ D(xi), computing p(xi, v) (resp.
p(xi, v)) is symmetrical to s(xi, v) (resp. s(xi, v)). We sub-
stitute min by max (resp. max by min), xi+1 by xi−1, and
vRw by wRv for any R ∈ {B,C,¬C}.

4.2 Properties on the Number of C-stretches

This section provides the properties linking the values in
a domain D(xi) with the minimum and maximum number
of C-stretches in X . We consider only B-coherent values,
which may be part of a feasible instantiation of SEQ BIN. Next
property is a direct consequence of Lemmas 1 and 2.
Property 1. For any B-coherent value v in D(xi), with re-
spect to xi, s(xi, v) ≤ s(xi, v).
Property 2. Consider SEQ BIN(N,X,C,B), a variable xi ∈
X (0 ≤ i ≤ n − 1), and two B-coherent values v1, v2 ∈
D(xi). If i = n − 1 or if there exists a B-coherent w ∈
D(xi+1) such that v1Bw and v2Bw, then s(xi, v1) + 1 ≥
s(xi, v2).

Proof. Obviously, if i = n − 1. If v1 = v2, by Property 1
the property holds. Otherwise, assume there exist two values
v1 and v2 such that ∃w ∈ D(xi+1) for which v1Bw and
v2Bw, and s(xi, v1) + 1 < s(xi, v2) (hypothesis H). By
Lemma 2, s(xi, v1) ≥ s(xi+1, w). By Lemma 1, s(xi, v2) ≤
s(xi+1, w)+1. From hypothesis H , this entails s(xi+1, w)+
1 < s(xi+1, w)+1, which leads to s(xi+1, w) < s(xi+1, w),
which is, by Property 1, not possible.

Property 3. Consider SEQ BIN(N,X,C,B), a variable xi ∈
X (0 ≤ i ≤ n − 1), and two B-coherent values v1, v2 ∈
D(xi). If either i = n − 1 or there exists B-coherent
w ∈ D(xi+1) such that v1 Bw and v2 Bw then, for any
k ∈ [min(s(xi, v1), s(xi, v2)),max(s(xi, v1), s(xi, v2))], ei-
ther k ∈ [s(xi, v1), s(xi, v1)] or k ∈ [s(xi, v2), s(xi, v2)].

Proof. Obviously, if i = n − 1 or v1 = v2 . If
[s(xi, v1), s(xi, v1)] ∩ [s(xi, v2), s(xi, v2)] is not empty,
then the property holds. Assume [s(xi, v1), s(xi, v1)]
and [s(xi, v2), s(xi, v2)] are disjoint. W.l.o.g., assume
s(xi, v1) < s(xi, v2). By Property 2, s(xi, v1) + 1 ≥
s(xi, v2), thus s(xi, v1) = s(xi, v2) − 1. Either k ∈

[s(xi, v1), s(xi, v1)] or k ∈ [s(xi, v2), s(xi, v2)] (there is no
hole in the range formed by the union of these intervals).

4.3 Properties on Binary Constraints

Property 3 is central for providing a GAC filtering algorithm
based on the count, for each B-coherent value in a domain, of
the minimum and maximum number of C-stretches in com-
plete instantiations. Given SEQ BIN(N,X,C,B), we focus on
binary constraints B which guarantee that Property 3 holds.

Definition 3. [Van Hentenryck et al., 1992] A binary con-
straint F is monotonic if and only if there exists a total order-
ing ≺ of values in domains such that: for any value v and any
value w, vFw holds implies v′Fw′ holds for all valid tuple
such that v′≺ v and w≺ w′.

Binary constraints <, >, ≤ and ≥ are monotonic, as well
as the universal constraint true.

Property 4. Consider SEQ BIN(N,X,C,B) such that all non
B-coherent values have been removed from domains of vari-
ables in X . B is monotonic if and only if for any variable
xi ∈ X , 0 ≤ i < n− 1, for any values v1, v2 ∈ D(xi), there
exists w ∈ D(xi+1) such that v1Bw and v2Bw.

Proof. (⇒) From Definition 3 and since we consider only B-
coherent values, each value has at least one support on B.
Moreover, from Definition 3, {w | v2Cw} ⊆ {w | v1Cw}
or {w | v1Cw} ⊆ {w | v2Cw}. The property holds.
(⇐) Suppose that the second proposition is true and B is
not monotonic. From Definition 3, if B is not monotonic
then ∃v1 and v2 in the domain of a variable xi ∈ X such
that, by considering the constraint B on the pair of vari-
ables (xi, xi+1), neither {w | v2Cw} ⊆ {w | v1Cw} nor
{w | v1Cw} ⊆ {w | v2Cw}. Thus, there exists a support
v1Bw such that (v2, w) is not a support on B, and a support
v2Bw′ such that (v1, w′) is not a support on B. We can have
D(xi+1) = {w,w′}, which leads to a contradiction with the
second proposition. The property holds.

4.4 Feasibility

From Property 4, this section provides an equivalence rela-
tion between the existence of a solution for SEQ BIN and the
current variable domains of X and N . Without loss of gen-
erality, in this section we consider that all non B-coherent
values have been removed from domains of variables in X .
First, Definition 2 entails the following necessary condition
for feasibility.

Proposition 1. Given SEQ BIN(N,X,C,B), if s(X) >
max(D(N)) or s(X) < min(D(N)) then SEQ BIN fails.

D(N) can be restricted to [s(X), s(X)], but D(N) may
have holes or may be strictly included in [s(X), s(X)]. We
have the following proposition.

Proposition 2. Consider SEQ BIN(N,X,C,B) such that B
is monotonic, with X = [x0, x1, . . . , xn−1]. For any in-
teger k in [s(X), s(X)] there exists v in D(x0) such that
k ∈ [s(x0, v), s(x0, v)].

Proof. Let v1 ∈ D(x0) a value such that s(x0, v1) = s(X).
Let v2 ∈ D(x0) a value such that s(x0, v2) = s(X). By

645

Property 4, either n = 1 or ∃w ∈ D(x1) such that v1Bw
and v2Bw. Thus, from Property 3, ∀k ∈ [s(X), s(X)], either
k ∈ [s(x0, v1), s(x0, v1)] or k ∈ [s(x0, v2), s(x0, v2)].

Thus, any value for N in D(N)∩ [s(X), s(X)] is general-
ized arc-consistent.

Proposition 3. Given an instance of SEQ BIN(N,X,C,B)
such that B is monotonic, SEQ BIN(N,X,C,B) has a solu-
tion if and only if [s(X), s(X)] ∩D(N) �= ∅.

Proof. (⇒) Assume SEQ BIN(N,X,C,B) has a solution. Let
I[{N} ∪ X] be such a solution. By Lemmas 1 and 2, the
number of C-stretches I[N] belongs to [s(X), s(X)]. (⇐)
Let k ∈ [s(X), s(X)] ∩ D(N) (not empty). From Proposi-
tion 2, for any value k in [s(X), s(X)], ∃v ∈ D(x0) such that
k ∈ [s(x0, v), s(x0, v)]. By Definition 2 and since Lemmas 1
and 2 consider only B-coherent values, there is a solution of
SEQ BIN(N,X,C,B) with k C-stretches.

4.5 Necessary and Sufficient Filtering Condition

Given SEQ BIN(N,X,C,B), Proposition 3 can be used to fil-
ter the variable N from variables in X . Propositions 1 and 2
ensure that every remaining value in [s(X), s(X)] ∩ D(N)
is involved in at least one solution satisfying SEQ BIN. We
consider now the filtering of variables in X .

Proposition 4. Given SEQ BIN(N,X,C,B) such that B is
monotonic, let v be a value in D(xi), i ∈ [0, n− 1]. The two
following propositions are equivalent:

1. v is B-coherent and v is GAC with respect to SEQ BIN

2.
[
p(xi, v) + s(xi, v)− 1,
p(xi, v) + s(xi, v)− 1

]
∩D(N) �= ∅

Proof. If v is not B-coherent then, by Definition 2, v is not
GAC. Otherwise, p(xi, v) (resp. s(xi, v)) is the exact min-
imum number of C-stretches among B-coherent instantia-
tions I[x0, x1, . . . , xi] (resp. I[xi, xi+1, . . . , xn−1]) such that
I[xi] = v. Thus, by Lemma 1 (and its symmetrical for pre-
fixes), the exact minimum number of C-stretches among B-
coherent instantiations I[x0, x1, . . . , xn−1] such that I[xi] =
v is p(xi, v) + s(xi, v) − 1. Let D(i,v) ⊆ D such that all
domains in D(i,v) are equal to domains in D except D(xi)
which is reduced to {v}. We call X(i,v) the sequence of
variables associated with domains in D(i,v). By construction
p(xi, v) + s(xi, v) − 1 = s(X(i,v)). By a symmetrical rea-
soning, p(xi, v)+s(xi, v)−1 = s(X(i,v)). By Proposition 3,
the proposition holds.

The “− 1” in expressions p(xi, v) + s(xi, v) − 1 and
p(xi, v) + s(xi, v) − 1 prevents us from counting twice
a C-stretch at an extremity xi of the two sequences
[x0, x1, . . . , xi] and [xi, xi+1, . . . , xn−1].

5 GAC Filtering Algorithm

Based on the necessary and sufficient filtering condition of
Proposition 4, this section provides an implementation of
the GAC filtering algorithm for SEQ BIN(N,X,C,B) with a
monotonic constraint B.

If B /∈ {≤,≥, <,>,true} then the total ordering ≺
entailing monotonicity of B is not the natural order of in-
tegers. In this case, if ≺ is not known, it is necessary
to compute such an ordering with respect to all values
in ∪i∈[0,n−1](D(xi)), once before the first propagation of
SEQ BIN. Consider that the two variables of B can take any
value in ∪i∈[0,n−1](D(xi)): Due to the inclusion of sets of
supports of values (see Definition 3), the order remains the
same when the domains of the variables constrained by B do
not contain all values in ∪i∈[0,n−1](D(xi)).

To compute ≺, the following procedure can be used:
Count the number of supports of each value, in O(d2) time
(recall d is the maximum domain size of a variable in X),
and sort values according to the number of supports, in
O(| ∪i∈[0,n−1] (D(xi))|log(| ∪i∈[0,n−1] (D(xi))|)) time.

Then, given the sequence of variables X , the algorithm is
decomposed into four phases:

� Remove all non B-coherent values in the domains of X .

� For all values in the domains of X , compute the mini-
mum and maximum number of C-stretches of prefixes
and suffixes.

� Adjust the minimum and maximum value of N with
respect to the minimum and maximum number of
C-stretches of X .

� Using the result phase � and Proposition 4, prune the
remaining B-coherent values.

With respect to phase �, recall that B is monotonic: Ac-
cording to ≺, for any pair of variables (xi, xi+1), ∃v0 in
D(xi) such that ∀vj ∈ D(xi), vj �= v0, vj has a set of
supports on B(xi, xi+1) included in the supports of v0 on
B(xi, xi+1). By removing from D(xi+1) non supports of v0
on B(xi, xi+1) in O(|D(xi+1)|), all non B-coherent values
of D(xi+1) with respect to B(xi, xi+1) are removed. By re-
peating such a process in the two directions (starting from
the pair (xn−2, xn−1) and from the pair (x0, x1)), all non B-
-coherent values can be removed from domains in O(ΣDi)
time complexity.

To achieve phase � we use Lemmas 1 and 2 and their sym-
metrical formulations for prefixes. Without loss of generality,
we focus on the minimum number of C-stretches of a value vj
in the domain of a variable xi, i < n−1, thanks to Lemma 1.
Assume that for all w ∈ D(xi+1), s(xi+1, w) has been com-
puted. If there is no particular property on C, the supports
Sj ∈ D(xi+1) of vj on C(xi, xi+1) ∧ B(xi, xi+1) and the
subset ¬Sj ∈ D(xi+1) of non-supports of vj on C(xi, xi+1)
which satisfy B have to be scanned, in order to determine for
each set a value w ∈ Sj minimizing s(xi+1, w) and a value
w′ ∈ ¬Sj minimizing s(xi+1, w

′) + 1. This process takes
O(|D(xi+1)|) for each value, leading to O(d2) for the whole
domain. Since all the variables need to be scanned and for all
the values in domains the quantities are stored, phase � takes
O(nd2) in time, and O(ΣDi) in space.

Phases � and � take O(ΣDi) time each since all the
domains have to be scanned. By Proposition 4, all the
non-GAC values have been removed after this last phase.

646

If B ∈ {≤,≥, <,>,true}, ≺ is known. The worst-case
time and space results come from Phase �. The bottleneck
stems from the fact that, when a domain D(xi) is scanned, the
minimum and maximum number of C-stretches of each value
are computed from scratch, while an incremental computa-
tion would avoid to scan D(xi+1) for each value in D(xi).
This observation leads to Property 5. Again, we focus on the
minimum number of C-stretches on suffixes. Other cases are
symmetrical.
Notation 2. Given SEQ BIN(N,X,C,B), xi ∈ X , 0 ≤ i < n
and a value vj ∈ D(xi), if i < n− 1, let Vj denote the set of
integer values such that a value s(vj , w) ∈ Vj corresponds to
each w ∈ D(xi+1) and is equal to:

• s(xi+1, w) if and only if w ∈ Sj

• s(xi+1, w) + 1 if and only if w ∈ ¬Sj

Within notation 2, the set Vj corresponds to the minimum
number of stretches of values in D(xi+1) increased by one if
they are non supports of value vj with respect to C.
Property 5. Given SEQ BIN(N,X,C,B) such that B ∈ {≤
,≥, <,>,true} and xi ∈ X , 0 ≤ i < n − 1, if the compu-
tation of minw∈D(xi+1)(s(vj , w)) for all vj ∈ D(xi) can be
performed in O(|D(xi+1)|) time then GAC can be achieved
on SEQ BIN in O(ΣDi) time and space complexity.

Proof. Applying Lemma 1 to the whole domain D(xi)
takes O(|D(xi+1)|) time. Storing the minimum number of
stretches for each value in D(xi) requires O(|D(xi)|) space.
Phase � takes O(ΣDi) space and O(ΣDi) time.

When they are represented by SEQ BIN, all the practical
constraints mentioned in the introduction satisfy a condition
that entails Property 5: Given xi, it is possible to compute
in O(|D(xi+1)|) the quantity minw∈D(xi+1)(s(v0, w)) for a
first value v0 ∈ D(xi) and then, following the natural order of
integers, to derive with a constant or amortized time complex-
ity the quantity for the next value v1, and then the quantity for
the next value v2, and so on. Thus, to obtain GAC in O(ΣDi)
for all these constraints, we specialize Phase � in order to
exploit such a property. We now detail how to proceed.

When SEQ BIN represents CHANGE, SMOOTH or INCREAS-
ING NVALUE, computing minw∈D(xi+1)(s(v0, w)) for the
minimum value v0 = min(D(xi)) (respectively the max-
imum value) can be performed by scanning the minimum
number of C-stretches of values in D(xi+1).

We now study for CHANGE, SMOOTH and INCREAS-
ING NVALUE how to efficiently compute the value
minw∈D(xi+1)(s(vk, w)) of vk ∈ D(xi), either directly
or from the previous value minw∈D(xi+1)(s(vk−1, w)), in
order to compute minw∈D(xi+1)(s(vj , w)) for all vj ∈ D(xi)
in O(|D(xi)|) time and therefore achieve Phase � in
O(ΣDi).

The CHANGE constraint

Section 3 showed a reformulation of CHANGE(N,X,CTR)
as SEQ BIN(N ′, X,C,true)∧ [N = N ′ − 1], where C is the
opposite of CTR.

− If C is ‘=’ then for each vj ∈ D(xi) there is a unique
potential support for C on xi+1, the value vj . Therefore,

by memorizing once the value vmin1 in D(xi+1) which
corresponds to the smallest minimum numbers of C-stretches
on the suffix starting at xi+1: ∀vj , minw∈D(xi+1)(s(vj , w))
= min(s(xi+1, vj), s(xi+1, vmin1) + 1), assuming
s(xi+1, vj) = +∞ when vj /∈ D(xi+1).

− If C is ‘�=’ then for each vj ∈ D(xi) there is
a single non support. By memorizing the two values
vmin1 and vmin2 which minimize the minimum numbers of
C-stretches on the suffix starting at xi+1, for any value vj
minw∈D(xi+1)(s(vj , w)) is equal to: min(s(xi+1, vmin1) +
1, s(xi+1, vmin2)) when vmin1 = vj , and s(xi+1, vmin1)
otherwise.

− If C is ‘>’ (the principle is similar for ‘≤’,’≥’ and ’<’),
we introduce two quantities lt(vj , xi+1) and geq(vj , xi+1)
respectively equal to minw∈[min(D(xi)),vj [(s(xi+1, w)) and
minw∈[vj ,max(D(xi))](s(xi+1, w)). The computation is per-
formed in three steps:

1. Starting from v0 = min(D(xi)), that is, the value hav-
ing the smallest number of supports for C on xi+1,
compute lt(vj , xi+1) in increasing order of vj . Tak-
ing advantage that, given a value vj−1 ∈ D(xi) and
the next value vj ∈ D(xi), [min(D(xi)), vj−1[is in-
cluded in [min(D(xi)), vj [. Therefore, the computation
of all minw∈[min(D(xi)),vj [(s(xi+1, w)) can be amor-
tized over D(xi+1). The time complexity for comput-
ing lt(vj , xi+1) for all vj ∈ D(xi) is in O(|D(xi)| +
|D(xi+1)|).

2. Similarly starting from v0 = max(D(xi)), compute in-
crementally geq(vj , xi+1) in decreasing order of vj , in
O(|D(xi)|+ |D(xi+1)|).

3. Finally, for each vj ∈ D(xi), minw∈D(xi+1)(s(vj , w))
is equal to min(lt(vj , xi+1), geq(vj , xi+1) + 1).

Since step 3. takes O(D(xi)), we get an overall time com-
plexity for Phase � in O(ΣDi).

The SMOOTH constraint

It is a variant of CHANGE(N,X,CTR), where xi CTR xi+1

is |xi − xi+1| > cst , cst ∈ N that can be reformulated
as SEQ BIN(N ′, X,C,true) ∧ [N = N ′ − 1], where C is
|xi − xi+1| ≤ cst . Assume v0 = min(D(xi)) and we scan
values in increasing order. Supports of values in D(xi) for
|xi − xi+1| ≤ cst define a set of sliding windows for which
both the starts and the ends are increasing sequences (not nec-
essarily strictly). Thus, minw∈Sj

(s(vj , w)) can be computed
for all vj in D(xi) in O(|D(xi)|) thanks to the ascending
minima algorithm.1 Given a value vj ∈ D(xi) the set ¬Sj

of non supports of vj on |xi − xi+1| ≤ cst is partitioned in
two sequences of values: a first sequence before the small-
est support and a second sequence after the largest support.
While scanning values in D(xi) these two sequences corre-
spond also to sliding windows on which the ascending min-
ima algorithm can also be used.

The INCREASING NVALUE constraint

It is represented by SEQ BIN(N,X,=,≤). Since B is not
true, we have to take into account B when evaluating

1See http://home.tiac.net/∼cri/2001/slidingmin.html

647

minw∈D(xi+1)(s(j, w)) for each vj ∈ D(xi). Fortunately, we
can start from v0 = max(D(xi)) and consider the decreasing
order since B is ‘≤’. In this case the set of supports on B
can only increase as we scan D(xi). We follow the same idea
used for CHANGE(N,X,=), except that the quantity vmin1

now represents the values in D(xi+1) which corresponds to
the smallest minimum numbers of C-stretches only on sup-
ports of the current value vj ∈ D(xi) on B. Since the set of
supports on B only increases, vmin1 can be updated for each
new value in D(xi) in O(1).

6 Related Work

Using automata, CHANGE and SMOOTH can be represented ei-
ther by REGULAR [Pesant, 2004] or by COST-REGULAR [De-
massey et al., 2006]. In the first case this leads to a GAC
algorithm in O(n2d2) time [Beldiceanu et al., 2010a, pages
584–585, 1544–1545] (where d denotes the maximum do-
main size). In the second case the filtering algorithm of COST-
REGULAR does not achieve GAC.

Bessière et al. [Bessière et al., 2008] presented an encod-
ing of the CARDPATH constraint with SLIDE2. A similar re-
formulation can be used for encoding SEQ BIN(N,X,C,B).
Recall that SLIDEj(C, [x0, x1, . . . , xn−1]) holds if and only
if C(xij , . . . , xij+k−1) holds for 0 ≤ i ≤ n−k

j . Following a
schema similar to the one proposed in Section 4 of Bessière et
al. paper, SEQ BIN(N,X,C,B) can be represented by adding
a variable N ′ and n variables [M0, . . . ,Mn−1], with M0 = 0
and Mn−1 = N ′. SEQ BIN(N,X,C,B) is then reformlated
by SLIDE2(C

′, [M0, x0,M1, x1, . . . ,Mn−1, xn−1]) ∧ [N ′ =
N − 1], where C ′ = [¬C(xi, xi+1)∧B(xi, xi+1)∧Mi+1 =
Mi + 1] ∨ [C(xi, xi+1) ∧ B(xi, xi+1) ∧ Mi+1 = Mi]. Ac-
cording to Section 6 of Bessière et al. paper, GAC can be
achieved thanks to a reformulation of SLIDE2, provided a
complete propagation is performed on C ′, which is the case
because B(xi, xi+1) and C(xi, xi+1) involve the same vari-
ables. The reformulation requires n additional intersection
variables (one by sub-sequence [Mi, xi]), on which O(n)
compatibility constraints between pairs of intersection vari-
ables and O(n) functional channelling constraints should
hold. Arity of C ′ is k = 4 and j = 2: the domain of
an intersection variable contains O(dk−j) = O(d2) values
(corresponding to binary tuples), where d is the maximum
size of a domain. Enforcing GAC on a compatibility con-
straint takes O(d3) time, while functional channelling con-
straint take O(d2), leading to an overall time complexity
O(nd3) for enforcing arc-consistancy on the reformulation,
corresponding to GAC for SEQ BIN. To compare such a time
complexity O(nd3) with our algorithm, note that O(ΣDi) is
upper-bounded by O(nd).

At last, some ad hoc techniques can be compared to our
generic GAC algorithm, e.g., a GAC algorithm in O(n3m)
for CHANGE [Hellsten, 2004, page 57], where m is the to-
tal number of values in the domains of X . Moreover,
the GAC algorithm for SEQ BIN generalizes to a class of
counting constraints the ad-hoc GAC algorithm for INCREAS-
ING NVALUE [Beldiceanu et al., 2010b] without degrading
time and space complexity in the case where SEQ BIN rep-
resents INCREASING NVALUE.

7 Conclusion

Our contribution is a structural characterization of a class of
counting constraints for which we come up with a general
polytime GAC filtering algorithm, and a characterization of
the property which makes such an algorithm linear in the sum
of domain sizes. A still open question is whether it would
be possible or not to extend this class (e.g., considering n-ary
constraints for B and C) without degrading complexity or giv-
ing up on GAC, in order to capture more constraints.

References

[Beldiceanu et al., 2010a] N. Beldiceanu, M. Carlsson, and
J.-X. Rampon. Global Constraint Catalog, 2nd Ed. Tech-
nical Report T2010-07, SICS, 2010.

[Beldiceanu et al., 2010b] N. Beldiceanu, F. Hermenier,
X. Lorca, and T. Petit. The increasing nvalue Constraint.
In CPAIOR, volume 6140 of LNCS, pages 25–39, 2010.

[Bessière et al., 2008] C. Bessière, E. Hebrard, B. Hnich,
Z. Kızıltan, and T. Walsh. SLIDE: A useful special case of
the CARDPATH constraint. In ECAI, 2008.

[Bessière, 2006] C. Bessière. Constraint Propagation. In
F. Rossi, P. van Beek, and T. Walsh, editors, Handbook
of Constraint Programming, chapter 3. Elsevier, 2006.

[Cosytec, 1997] Cosytec. CHIP Reference Manual, release
5.1 edition, 1997.

[De Clercq, 2010] A. De Clercq. A soft constraint for cumu-
lative problems with over-loads of resource. In CP Doc-
toral Programme, pages 49–55, 2010.

[Demassey et al., 2006] S. Demassey, G. Pesant, and L.-M.
Rousseau. A cost-regular based hybrid column generation
approach. Constraints, 11(4):315–333, 2006.

[Hellsten, 2004] L. Hellsten. Consistency propagation for
stretch constraints. Master’s thesis, Waterloo, 2004.

[Pachet and Roy, 1999] F. Pachet and P. Roy. Automatic gen-
eration of music programs. In CP, volume 1713 of LNCS,
pages 331–345, 1999.

[Pesant, 2001] G. Pesant. A Filtering Algorithm for the
Stretch Constraint. In CP, volume 2239 of LNCS, pages
183–195, 2001.

[Pesant, 2004] G. Pesant. A Regular Language Membership
Constraint for Finite Sequences of Variables. In CP, vol-
ume 3258 of LNCS, pages 482–495, 2004.

[Van Hentenryck et al., 1992] P. Van Hentenryck, Y. Deville,
and C.-M. Teng. A generic arc-consistency algorithm and
its specializations. Artificial Intelligence, 57(2-3):291–
321, 1992.

648

