Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence

A Generalized Arc-Consistency Algorithm
for a Class of Counting Constraints

Thierry Petit and Nicolas Beldiceanu and Xavier Lorca
Mines-Nantes, LINA UMR CNRS 6241,
4, rue Alfred Kastler, FR-44307 Nantes, France.
{Thierry.Petit, Nicolas.Beldiceanu, Xavier.Lorca} @mines-nantes.fr

Abstract

This paper introduces the SEQ_BIN meta-constraint
with a polytime algorithm achieving generalized
arc-consistency. SEQ-BIN can be used for encod-
ing counting constraints such as CHANGE, SMOOTH,
or INCREASING_NVALUE. For all of them the time
and space complexity is linear in the sum of domain
sizes, which improves or equals the best known re-
sults of the literature.

1 Introduction

Many constraints are such that a counting variable is equal
to the number of times a given property is satisfied in a se-
quence of variables. To represent some of these constraints in
a generic way, we introduce the SEQ_BIN(NN, X, C, B) meta-
constraint, where N is an integer variable, X is a sequence of
integer variables and C' and B are two binary constraints.

Based on the notion C-stretch, a generalization of
stretch [Pesant, 2001] where the equality constraint is made
explicit and is replaced by C, SEQ_BIN holds if and only if two
conditions are both satisfied: (1) NV is equal to the number of
C-stretches in the sequence X, and (2) B holds on any pair
of consecutive variables in X.

Among the constraints that can be expressed thanks to
SEQ_BIN, many were introduced for solving real-world prob-
lems, e.g., CHANGE [Cosytec, 1997] (time tabling problems),
SMooTH [Beldiceanu et al., 2010a] (time tabling and schedul-
ing), or INCREASING_NVALUE [Beldiceanu et al., 2010b]
(symmetry breaking for resource allocation problems).

The main contribution of this paper is a generic poly-
time filtering algorithm for SEQ_BIN, achieving generalized
arc-consistency (GAC) when the constraint B is mono-
tonic [Van Hentenryck er al., 1992]. This algorithm can be
seen as a generalization of the INCREASING_NVALUE filtering
algorithm [Beldiceanu et al., 2010b]. Given n the size of
X, d the maximum domain size, and Y p; the sum of domain
sizes, we characterize properties on C' and B which lead to a
time and space complexity in O(Xp;). These properties are
satisfied when SEQ_BIN represents CHANGE, SMOOTH and IN-
CREASING_NVALUE. For all these constraints, our technique
improves or equals the best known results.

Section 2 provides the definitions used in this paper. Sec-
tion 3 defines SEQ_BIN and shows how to express well-known

643

constraints with SEQ_BIN. Section 4 provides a necessary and
sufficient condition for achieving GAC. Section 5 details the
corresponding GAC filtering algorithm. Finally, Section 6
discusses about related works and Section 7 concludes.

2 Background

A Constraint Network is defined by a sequence of variables
X = [zo,%1,...,Zn-1], @ sequence of domains D, where
each D(x;) € D is the finite set of values that variable x;
can take, and a set of constraints C that specifies the allowed
combinations of values for given subsets of variables. min(z)
(resp. max(z)) is the minimum (resp. maximum) value of
D(z). A sequence of variables X' = [z;,2iy1,...,%;),
0<i<j<n—1(resp.? > 0ori < n—1),isasubsequence
(resp. a strict subsequence) of X and is denoted by X’ C X
(resp. X' C X). A[X] denotes an assignment of values to
variables in X. Given z € X, A[z] is the value of x in A[X].
A[X] is valid if and only if Vz; € X, A[z;] € D(x;). An
instantiation I|X] is a valid assignment of X . Given z € X,
I[z] is the value of x in I[X]. Given the sequence X and i,
J two integers such that 0 < ¢ < j < n —1, I[z;,..., 2]
is the projection of I[X] on [z, Zi11,,...,2;]. A constraint
C(X) € C specifies the allowed combinations of values for
X. We also use the simple notation C. C'(X) defines a subset
R (D) of the cartesian product of the domains I1,;, ¢ x D(z;).
If X is a pair of variables, then C(X) is binary. We denote by
vCw a pair of values (v, w) that satisfies a binary constraint
C. —C is the opposite of C, that is, —C' defines the relation
R-c(D)=1,,exD(x;) \ Re(D). A feasible instantiation
I[X] of C[X] is an instantiation which is in R¢ (D). We say
that I[X] satisfies C(X), or that I[X] is a support on C'(X).
Otherwise, I[X] violates C(X). If C is a binary constraint
on X = {z;,z;y1} and v € D(x;) then the set of supports
such that z; = v can be considered as a set of values (a subset
of D(x;41)). A solution of a constraint network is an instan-
tiation of all the variables satisfying all the constraints.

Value v € D(z;), x; € X, is (generalized) arc-consistent
(GAC) with respect to C'(X) if and only if v belongs to a
support of C(X). A domain D(x;), x; € X, is GAC with
respect to C(X) if and only if Vv € D(x;), v is GAC with
respect to C(X). C(X) is GAC if and only if Vz; € X,
D(z;) is GAC with respect to C(X). A constraint network
is GAC if and only if it is closed for GAC [Bessiere, 2006]:
Vz; € X all values in D(z;) that are not GAC with respect

to a constraint in C have been removed.

3 The seQ_BIN Meta-Constraint

We first generalize the notion of stretches [Pesant, 2001] to
characterize a sequence of consecutive variables where the
same binary constraint is satisfied.

Definition 1 (C-stretch). Let I[X] be an instantiation of the
variable sequence X = [xg,21,...,2n_1] and C a binary
constraint. The C-sequence constraint C(I[X],C) holds if
and only if:

e Eithern =1,

e orn>1landVk € [0,n — 2] C(I|zy], I[zgi1]) holds.

A C-stretch of I[X] is a subsequence X' C X such that the
two following conditions are both satisfied:

1. The C-sequence C(I[X'],C) holds,

2. VX7 such that X' C X7
C(I[X7],C) does not hold.

The intuition behind Definition 1 is to consider the max-
imum length subsequences where the binary constraint C' is
satisfied between consecutive variables. Thanks to this gener-
alized definition of stretches we can now introduce SEQ_BIN.

Definition 2. The meta-constraint SEQBIN(N, X, C, B) is
defined by a variable N, a sequence of n variables
X [z0,21,...,2Zn_1] and two binary constraints C
and B. Given an instantiation I[N,xq,21,...,2Zp_1),
SEQ-BIN(N, X, C| B) is satisfied if and only if for any i €
[0,n — 2], I[x;] BI[zx;+1] holds, and I[N] is equal to the
number of C-stretches in I[X].

The constraint CHANGE was introduced in the context of
timetabling problems [Cosytec, 19971, in order to put an up-
per limit on the number of changes of job types during a
given period. The relation between classical stretches and
CHANGE was initially stressed in [Hellsten, 2004, page 64].
CHANGE is defined on a variable N, a sequence of variables
X = [xo,%1,...,Zn_1], and a binary constraint C' € {=,#
,<,>,<,>}. Itis satisfied if and only if N is equal to the
number of times the constraint C' holds on consecutive vari-
ables of X. Without hindering propagation (the constraint
network is Berge-acyclic), CHANGE can be reformulated as
SEQBIN(N', X, =C\true) A [N = N’ — 1], where true is
the universal constraint.

SMooTH(N, X) is a variant of CHANGE(N, X, C'), where
x; C ;41 is defined by |z; — ;41| > cst, est € N. Itis use-
ful to limit the number of drastic variations on a cumulative
profile [Beldiceanu er al., 2010a; De Clercq, 2010].

As a last example, consider the INCREASING_NVALUE con-
straint, which is a specialized version of NVALUE [Pa-
chet and Roy, 1999]. It was introduced for breaking vari-
able symmetry in the context of resource allocation prob-
lems [Beldiceanu et al., 2010b]. INCREASING_NVALUE is
defined on a variable N and on a sequence of variables
X = [zo,%1,...,2Z,—1]. Given an instantiation, INCREAS-
ING_NVALUE(V, X)) is satisfied if and only if N is equal to
the number of distinct values assigned to variables in X, and
forany i € [0,n — 2], z; < x;41. We reformulate INCREAS-
ING_NVALUE(V, X) as sEQ_BIN(N, X, =, <).

C X the C-sequence

644

4 Consistency of SEQ BIN

We first present how to compute, for any value in a given
domain of a variable z; € X, the minimum and maximum
number of C-stretches within the suffix of X starting at x;
(resp. the prefix of X ending at z;) satisfying a chain of bi-
nary constraints of type B. Then, we introduce several prop-
erties useful to obtain a feasibility condition for SEQ_BIN, and
a necessary and sufficient condition for filtering which leads
to the GAC filtering algorithm presented in Section 5.

4.1 Computing of the Number of C-stretches

According to Definition 2, we have to ensure that the chain
of B constraints are satisfied along the sequence of vari-
ables X = [xg,21,...,Zn—1]. An instantiation I[X] is said
B-coherent if and only if either n = 1 or for any i € [0,n—2],
we have I[x;] BI[x;41]. A value v € D(x;) is said to be
B-coherent with respect to x; if and only if it can be part of
at least one B-coherent instantiation. Then, given an integer
i € [0,n —2],if v € D(x;) is B-coherent with respect to x;
then there exists w € D(x;11) such that v B w.
Consequently, within a given domain D(z;), values that
are not B-coherent can be removed since they cannot be part
of any solution of SEQ_BIN. Our aim is now to compute for
each B-coherent value v in the domain of any variable x; the
minimum and maximum number of C-stretches on X.

Notation 1. s(z;,v) (resp. §(x;,v)) is the minimum
(resp. maximum) number of C-stretches within the se-
quence of variables [x;,x;ii1,...,%n_1] under the hypoth-
esis that ©; = v. p(x;,v) (resp. D(x;,v)) is the minimum
(resp. maximum) number of C-stretches within the sequence
[x0, 21, ..., x;] under the hypothesis that ©; = v. Given
X = [xo, %1, Tn-1], (X)) (resp. 3(X)) denotes the min-
imum (resp. maximum) value of s(xg,v) (resp. 3(xo,v)).

Lemma 1. Given seQBIN(N,X,C,B) with X
[0, @1, ... Tn_1], assume the domains in X contain only
B-coherent values. Given i € [0,n — 1] and v € D(z;),

o Ifi=n—1:s(xp_1,v) =1L
e FElse:

min['qu]/\['uC’w] (§(£Ei+1 ; ’LU)),

§($i, U) - wegl(112+1) <min[va]/\[v—~Cw] (§(x'i+17 ’LU)) +1

)

Proof. By induction. From Definition 1, for any v €
D(x,—1), we have s(z,_1,v) = 1 (ie., a C-stretch of
length 1). Consider now z; € X with ¢ < n — 1, and
a value v € D(z;). Consider the set of instantiations
Ixi41,%i42,...,2Zn—1] that are B-coherent, and that min-
imize the number of C-stretches in [T;i1, Tit2, ..., Tn_1]-
We denote this minimum number of C-stretches by mins. At
least one B-coherent instantiation exists since all values in
the domains of [z;41,%;t2,...,Z,—1] are B-coherent. For
each such instantiation, let us denote by w the value associ-
ated with I[z;;1]. Either there exists such an instantiation
with mins C-stretches with the conjunction B A C' satis-
fied by (I[z;], I[zi+1]). Then, s(z;,v) = s(x;41,w) since
the first C-stretch of I[x;y1,Zi12,...,2n—_1] is extended
when augmenting I[x; 1, Z;42,...,Tn—1] With value v for
x;. Or all instantiations I[x;41, Zit2,...,Tp—1] With mins

C'-stretches are such that C' is violated by (I[x;], I[z;41]):
(Ixs], I[x;41]) satisfies BA—C. By construction, any instan-
tiation I[x;, i1, .. ., Tp—1] With I[z;] = v has a number of
C-stretches strictly greater than mins. Consequently, given
Ixig1, Tita, .. Ty—1] With mins C-stretches, the number
of C'-stretches obtained by augmenting this instantiation with
value v for x; is exactly mins + 1. O

Lemma 2. Given SEQBIN(N,X,C,B) with X
[xo, 21, ... ,Zn_1], assume the domains in X contain only
B-coherent values. Given i € [0,n — 1] and v € D(z;):

e [fi=n—1:5®,-1,0) =1
o Else:
5(zi,v) = max MAaX[y Bl A[wCw] (3(Tit1,w)),
weD(zi41) \MAX [y Bu]A[p-~Cw] (3(Tit1, w)) +1

Given a sequence of variables [zg, 21, . . ., Z,—_1] such that
their domains contain only B-coherent values, for any z; in
the sequence and any v € D(z;), computing p(z;,v) (resp.
P(z4,v)) is symmetrical to s(z;,v) (resp. 3(z;,v)). We sub-
stitute min by max (resp. max by min), x;4+1 by z;_1, and
vRw by wRwv forany R € {B,C,—~C}.

4.2 Properties on the Number of C'-stretches

This section provides the properties linking the values in
a domain D(z;) with the minimum and maximum number
of C-stretches in X. We consider only B-coherent values,
which may be part of a feasible instantiation of SEQ_BIN. Next
property is a direct consequence of Lemmas 1 and 2.

Property 1. For any B-coherent value v in D(x;), with re-
spect to ;, s(x;,v) < 5(24,0).

Property 2. Consider seQ_BIN(N, X, C, B), a variable x; €
X (0 <1t < n—1) and two B-coherent values vi,vy €
D(xz;). If i = n — 1 or if there exists a B-coherent w €
D(z;11) such that vi Bw and vo Bw, then 3(z;,v1) + 1 >
s(wi,v2).

Proof. Obviously, if i = n — 1. If v;y = v, by Property 1
the property holds. Otherwise, assume there exist two values
vy and ve such that 3w € D(x;y1) for which vy Bw and
voBw, and 5(x;,v1) + 1 < s(x;,vs) (hypothesis H). By
Lemma 2, 5(z;,v1) > S(x;41,w). By Lemma 1, s(2;, v2) <
s(x;41,w)+ 1. From hypothesis H, this entails 5(x; 1, w) +

1 < s(®iy1,w)~+ 1, which leads to 3(z;41, w) < s(x;41, w)
which is, by Property 1, not possible.

Property 3. Consider seQ BIN(N, X, C, B), a variable x; €
X (0 <t < n—1) and two B-coherent values vi,vy €
D(xz;). If either i = n — 1 or there exists B-coherent
w € D(xz;41) such that vi Bw and ve Bw then, for any
k € [min(s(z;, v1), s(xs, v2)), max(3(z;, v1),5(x4,v2))], €i-
ther k € [s(x;,v1),5(x;, v1)] or k € [s(x;,v2),3(xi,v2)].

Proof. Obviously, if i n — 1 or v vy . If
[s(zi,v1),8(xs,v1)] N [s(zi,v2),5(x;,v2)] is not empty,
then the property holds. Assume [s(x;,v1),3(z;,v1)]
and [s(x;,v2),3(w;,vz)] are disjoint. W.l.o.g., assume
5(xzs,v1) < s(wg,v2). By Property 2, 5(xj,v1) + 1 >
s(xi,v2), thus S(x;,v1) = s(zi,ve) — 1. Either k €

645

5(x;,v2)] (there is no
O

[ﬁ(x’h v1)7§($i7 'Ul)] ork € [(:Eu UQ)
hole in the range formed by the union of these intervals).

4.3 Properties on Binary Constraints

Property 3 is central for providing a GAC filtering algorithm
based on the count, for each B-coherent value in a domain, of
the minimum and maximum number of C-stretches in com-
plete instantiations. Given sEQ_BIN(N, X, C, B), we focus on
binary constraints B which guarantee that Property 3 holds.

Definition 3. [Van Hentenryck et al., 19921 A binary con-
straint F' is monotonic if and only if there exists a total order-
ing < of values in domains such that: for any value v and any
value w, vFw holds implies v' Fw' holds for all valid tuple
such that v' < v and w=< w'.

Binary constraints <, >, < and > are monotonic, as well
as the universal constraint t rue.

Property 4. Consider seQ_BIN(N, X, C, B) such that all non
B-coherent values have been removed from domains of vari-
ables in X. B is monotonic if and only if for any variable
x; € X, 0<i<n-—1,foranyvalues vi,vs € D(x;), there
exists w € D(x;41) such that vi Bw and vy Bw.

Proof. (=) From Definition 3 and since we consider only B-
coherent values, each value has at least one support on B.
Moreover, from Definition 3, {w | v2Cw} C {w | v1Cw}
or {w | vyCw} C {w | voCw}. The property holds.
(<) Suppose that the second proposition is true and B is
not monotonic. From Definition 3, if B is not monotonic
then Jv; and vy in the domain of a variable z; € X such
that, by considering the constraint B on the pair of vari-
ables (x;, x;y1), neither {w | voCw} C {w | v1Cw} nor
{w | v1Cw} C {w | vo2Cw}. Thus, there exists a support
v1 Bw such that (vy, w) is not a support on B, and a support
vo Bw' such that (vy,w’) is not a support on B. We can have
D(z;11) = {w,w'}, which leads to a contradiction with the
second proposition. The property holds. O

4.4 Feasibility

From Property 4, this section provides an equivalence rela-
tion between the existence of a solution for SEQ_BIN and the
current variable domains of X and N. Without loss of gen-
erality, in this section we consider that all non B-coherent
values have been removed from domains of variables in X.
First, Definition 2 entails the following necessary condition
for feasibility.

Proposition 1. Given seQBIN(N,X,C,B), if s(X) >
max(D(N)) or 5(X) < min(D(N)) then SEQ-BIN fails.
D(N) can be restricted to [s(X),3(X)], but D(N) may

have holes or may be strictly included in [s(X),35(X)]. We
have the following proposition.

Proposition 2. Consider sEQ_BIN(N, X, C, B) such that B
is monotonic, with X = [zg,21,...,Zp—1). For any in-
teger k in [s(X),s(X)] there exists v in D(xq) such that
k € [s(zg,v),5(x0,v)].

Proof. Let vy € D(xg) a value such that s(xg,v1) = s(X)
Let v3 € D(z0) a value such that 5(zo,v2) = §(X). By

Property 4, either n = 1 or 3w € D(x1) such that v; Bw
and v Bw. Thus, from Property 3, Vk € [s(X), s(X)], either

k € [s(zo,v1),3(z0,v1)] or k € [s(z0,v2), (w0, v2)].

)N [s(X),5(X

)
(X

Thus, any value for N in D(N
ized arc-consistent.

)] is general-

Proposition 3. Given an instance of sEQBIN(N, X, C, B)
such that B is monotonic, SEQ_BIN(N, X, C| B) has a solu-
tion if and only if [s(X),5(X)] N D(N) # 0.

Proof. (=) Assume sEQ_BIN(N, X, C, B) has a solution. Let
I{N} U X] be such a solution. By Lemmas 1 and 2, the
number of C-stretches I[N] belongs to [s(X),3(X)]. (<)
Let k € [s(X),s(X)] N D(N) (not empty). From Proposi-
tion 2, for any value k in [s(X),3(X)], Jv € D(x) such that
k € [s(x0,v),3(x0,v)]. By Definition 2 and since Lemmas 1
and 2 consider only B-coherent values, there is a solution of
SEQBIN(N, X, C, B) with k C-stretches. O

4.5 Necessary and Sufficient Filtering Condition

Given seQ_BIN(N, X, C, B), Proposition 3 can be used to fil-
ter the variable N from variables in X. Propositions 1 and 2
ensure that every remaining value in [s(X),3(X)] N D(N)
is involved in at least one solution satisfying SEQ_BIN. We
consider now the filtering of variables in X.

Proposition 4. Given sEQBIN(N, X, C, B) such that B is
monotonic, let v be a value in D(x;), i € [0,n — 1]. The two
following propositions are equivalent:

1. v is B-coherent and v is GAC with respect to SEQ_BIN

B+ S} 1) NP0 0

Proof. 1If v is not B-coherent then, by Definition 2, v is not
GAC. Otherwise, p(z;,v) (resp. s(x;,v)) is the exact min-
imum number of C-stretches among B-coherent instantia-
tions I[xg, x1, ..., x;] (resp. I[x;, Tiy1,...,2n—1]) such that
I[z;] = v. Thus, by Lemma 1 (and its symmetrical for pre-
fixes), the exact minimum number of C'-stretches among B-
coherent instantiations I[xg, z1, ..., Z,—1] such that I[x;] =
v is p(ws,v) + s(x;,v) — 1. Let Dy;,y € D such that all
domains in D(; ,,) are equal to domains in D except D(x;)
which is reduced to {v}. We call X;, the sequence of
variables associated with domains in D(; ,,). By construction
p(zi,v) + s(xs,v) — 1 = 5(X(5,)). By a symmetrical rea-
soning, p(, v) +5(xs,v) — 1 = 5(X(;,.,)). By Proposition 3,
the proposition holds. U

The “— 1” in expressions p(x;,v) + s(z;,v) — 1 and
p(zi,v) + 5(z;,v) — 1 prevents us from counting twice
a C-stretch at an extremity z; of the two sequences
[Zo, Tlyeo- ,.’L‘i] and [in, Lid1y--- ,xn_1].

5 GAC Filtering Algorithm

Based on the necessary and sufficient filtering condition of
Proposition 4, this section provides an implementation of
the GAC filtering algorithm for seQ_BIN(N, X, C, B) with a
monotonic constraint .

646

If B ¢ {<,> <,>true} then the total ordering <
entailing monotonicity of B is not the natural order of in-
tegers. In this case, if < is not known, it is necessary
to compute such an ordering with respect to all values
in Ujejo,n—1](D(x;)), once before the first propagation of
SEQ-BIN. Consider that the two variables of B can take any
value in Ujc[o,,—1](D(2;)): Due to the inclusion of sets of
supports of values (see Definition 3), the order remains the
same when the domains of the variables constrained by B do
not contain all values in U;c[g,,,—17(D(2))-

To compute <, the following procedure can be used:
Count the number of supports of each value, in O(d?) time
(recall d is the maximum domain size of a variable in X),
and sort values according to the number of supports, in

O(| Yicjo,n—1) (D(4))llog(] Uigpo,n—1) (D(x:))])) time.

Then, given the sequence of variables X, the algorithm is
decomposed into four phases:

@® Remove all non B-coherent values in the domains of X.

@ For all values in the domains of X, compute the mini-
mum and maximum number of C'-stretches of prefixes
and suffixes.

® Adjust the minimum and maximum value of N with
respect to the minimum and maximum number of
C-stretches of X.

@ Using the result phase @ and Proposition 4, prune the
remaining B-coherent values.

With respect to phase @, recall that B is monotonic: Ac-
cording to <, for any pair of variables (z;,x;+1), Jvg in
D(x;) such that Yv; € D(z;), v; # v, v; has a set of
supports on B(z;,2;4+1) included in the supports of vy on
B(x;, z;+1). By removing from D(z;41) non supports of v
on B(x;, zi+1) in O(|D(x;+1)|), all non B-coherent values
of D(x;41) with respect to B(x;, x;11) are removed. By re-
peating such a process in the two directions (starting from
the pair (z,,—2, ,—1) and from the pair (z¢, 1)), all non B-
-coherent values can be removed from domains in O(Xp;)
time complexity.

To achieve phase @ we use Lemmas 1 and 2 and their sym-
metrical formulations for prefixes. Without loss of generality,
we focus on the minimum number of C-stretches of a value v;
in the domain of a variable x;, ¢ < n — 1, thanks to Lemma 1.
Assume that for all w € D(z;4+1), s(x;+1,w) has been com-
puted. If there is no particular property on C, the supports
Sj S D($i+1) of v; on C(I’i,l’H_l) AN B(I“ zi—&-l) and the
subset ~.S; € D(x;41) of non-supports of v; on C(z;, Zi+1)
which satisfy B have to be scanned, in order to determine for
each set a value w € S; minimizing s(2i41,w) and a value
w’ € —S; minimizing s(z;11,w’) + 1. This process takes
O(|D(x;11)]|) for each value, leading to O(d?) for the whole
domain. Since all the variables need to be scanned and for all
the values in domains the quantities are stored, phase @ takes
O(nd?) in time, and O(3p;) in space.

Phases ® and @ take O(Xp;) time each since all the
domains have to be scanned. By Proposition 4, all the
non-GAC values have been removed after this last phase.

If B € {<,>,<,>,true}, < is known. The worst-case
time and space results come from Phase @. The bottleneck
stems from the fact that, when a domain D(x;) is scanned, the
minimum and maximum number of C-stretches of each value
are computed from scratch, while an incremental computa-
tion would avoid to scan D(x;11) for each value in D(z;).
This observation leads to Property 5. Again, we focus on the
minimum number of C-stretches on suffixes. Other cases are
symmetrical.

Notation 2. Given SEQ BIN(N, X, C,B), z; € X,0<i<n
and a value v; € D(x;), if i <n — 1, let V; denote the set of
integer values such that a value s(vj, w) € V; corresponds to
eachw € D(x;11) and is equal to:

o s(z;y1,w) ifand only if w € S,
o s(xit1,w) + lifand only if w € =5,
Within notation 2, the set V; corresponds to the minimum

number of stretches of values in D(x;1) increased by one if
they are non supports of value v; with respect to C.

Property 5. Given seQBIN(N, X, C, B) such that B € {<
, >, <, > truetandxz; € X,0 <1 <n—1,if the compu-
tation of Miny,ep(s,,,)(s(v;, w)) for all v; € D(x;) can be
performed in O(|D(x;41)|) time then GAC can be achieved
on SEQ_BIN in O(Xp;) time and space complexity.

Proof. Applying Lemma 1 to the whole domain D(x;)
takes O(|D(x;41)|) time. Storing the minimum number of
stretches for each value in D(x;) requires O(|D(x;)|) space.
Phase @ takes O(Xp;) space and O(Xp;) time.

When they are represented by SEQ_BIN, all the practical
constraints mentioned in the introduction satisfy a condition
that entails Property 5: Given z;, it is possible to compute
in O(|D(x;41)|) the quantity min,ep(s, ., ,)(s(vo,w)) for a
first value vg € D(z;) and then, following the natural order of
integers, to derive with a constant or amortized time complex-
ity the quantity for the next value v, and then the quantity for
the next value vy, and so on. Thus, to obtain GAC in O(Xp;)
for all these constraints, we specialize Phase @ in order to
exploit such a property. We now detail how to proceed.

When SEQ_BIN represents CHANGE, SMOOTH Or INCREAS-
ING_NVALUE, computing minep(a,,,)(s(vo,w)) for the
minimum value vg min(D(x;)) (respectively the max-
imum value) can be performed by scanning the minimum
number of C-stretches of values in D (z;41).

We now study for CHANGE, SMOOTH and INCREAS-
ING.NVALUE how to efficiently compute the value
Miny,ep(e,.,)(s(vk, w)) of vy € D(x;), either directly
or from the previous value min,ep(s,,,)(s(ve—1,w)), in
order to compute Min,e p(z,,,)(s(vj, w)) forall v; € D(x;)
in O(|D(z;)|) time and therefore achieve Phase @ in
O(Zp;).

The CHANGE constraint
Section 3 showed a reformulation of CHANGE(N, X, CTR)
as SEQBIN(N', X, C,true) A [N = N’ — 1], where C is the
opposite of CTR.

— If C'is ‘=’ then for each v; € D(z;) there is a unique
potential support for C' on x;11, the value v;. Therefore,

647

by memorizing once the value vming in D(x;11) which
corresponds to the smallest minimum numbers of C'-stretches
on the suffix starting at x;,1: Yv;, mingepz,,,)(s(v;, w))
min(s(zit+1,v;), s(xit1, vming) + 1), assuming
§(£Ci+1,’Uj) = 400 when Vj ¢ D(I’H_l).

— If C is ‘% then for each v; € D(x;) there is
a single non support. By memorizing the two values
vminy and vming which minimize the minimum numbers of
C-stretches on the suffix starting at z;41, for any value v;
Miny,ep(z,,,)(5(v;,w)) is equal to: min(s(z;41, vming) +
1, s(x;41, vming)) when vmin, = v;, and s(x;41, vming)
otherwise.

— If C'is “>’ (the principle is similar for ‘<’,’>" and *<’),
we introduce two quantities It(v;,xz;11) and geq(v;, Tit1)
respectively equal t0 Miny e (min(D(x;)),v,[(8(Ti+1,w)) and
MiNy, e[y, max(D ()] (8(Tit1,w)). The computation is per-
formed in three steps:

1. Starting from vy = min(D(z;)), that is, the value hav-
ing the smallest number of supports for C' on x;41,
compute l¢(v;,;41) in increasing order of v;. Tak-
ing advantage that, given a value v;_y € D(z;) and
the next value v; € D(x;), [min(D(z;)),v;—1[is in-
cluded in [min(D(z;)), v;[. Therefore, the computation
of all minwE[min(D(l‘i))mj[(§(xi+law)) can be amor-
tized over D(x;41). The time complexity for comput-
ing lt(vj, z;11) for all v; € D(x;) is in O(|D(x;)| +
|D(zit1)l).
Similarly starting from vy = max(D(«;)), compute in-
crementally geq(v;,2;41) in decreasing order of v;, in
O(ID(z:)| + [D(wiy1)]).

3. Finally, for each v; € D(x;), minyepa,,,)(s(vj, w))

is equal to min(lt(v;, ;11), geq(vj, xiy1) + 1).

Since step 3. takes O(D(x;)), we get an overall time com-
plexity for Phase @ in O(3p;).

The SMOOTH constraint

It is a variant of CHANGE(N, X, CTR), where x; CTR x; 41
is |z; — ;41| > cst, cst € N that can be reformulated
as SEQBIN(N', X,Citrue) A [N = N’ — 1], where C is
|2; — zi41| < cst. Assume vy = min(D(z;)) and we scan
values in increasing order. Supports of values in D(x;) for
|x; — xip1] < cst define a set of sliding windows for which
both the starts and the ends are increasing sequences (not nec-
essarily strictly). Thus, min,cs; (s(v;, w)) can be computed
for all v; in D(x;) in O(]D(z;)|) thanks to the ascending
minima algorithm." Given a value v; € D(z;) the set —.S;
of non supports of v; on |z; — x;41| < cst is partitioned in
two sequences of values: a first sequence before the small-
est support and a second sequence after the largest support.
While scanning values in D(z;) these two sequences corre-
spond also to sliding windows on which the ascending min-
ima algorithm can also be used.

The INCREASING_NVALUE constraint
It is represented by sEQBIN(N, X,=,<). Since B is not
true, we have to take into account B when evaluating

!See http://home.tiac.net/~cri/2001/slidingmin.html

minye p(g,,,)(8(j, w)) foreachv; € D(x;). Fortunately, we
can start from vy = max(D(x;)) and consider the decreasing
order since B is ‘<’. In this case the set of supports on B
can only increase as we scan D(z;). We follow the same idea
used for CHANGE(N, X, =), except that the quantity vmin;
now represents the values in D(z;41) which corresponds to
the smallest minimum numbers of C'-stretches only on sup-
ports of the current value v; € D(z;) on B. Since the set of
supports on B only increases, vmin; can be updated for each
new value in D(z;) in O(1).

6 Related Work

Using automata, CHANGE and SMOOTH can be represented ei-
ther by REGULAR [Pesant, 2004] or by COST-REGULAR [De-
massey et al., 2006]. In the first case this leads to a GAC
algorithm in O(n?d?) time [Beldiceanu et al., 2010a, pages
584-585, 1544-1545] (where d denotes the maximum do-
main size). In the second case the filtering algorithm of CosT-
REGULAR does not achieve GAC.

Bessiere et al. [Bessiere et al., 2008] presented an encod-
ing of the CARDPATH constraint with SLIDEy. A similar re-
formulation can be used for encoding sEQ_BIN(N, X, C, B).
Recall that SLIDE;(C, [0, 21, ..., Z,—1]) holds if and only
if C(2j, ..., &ij4x-1) holds for 0 < i < 2=F. Following a
schema similar to the one proposed in Section 4 of Bessiere ef
al. paper, SEQ_BIN(N, X, C, B) can be represented by adding
a variable N’ and n variables [My, ..., M,,_1], with My = 0
and M,,_1 = N’. seQ.BIN(N, X, C, B) is then reformlated
by SLIDEQ(CH7 []\40,.%()7 M17 Llyeony Mnflwrnfl]) AN [N/ =
N — 1], where C' = [—\C(l‘i, xi—i—l) N B(JZZ‘, $i+1) A Mi+1 =
Mi + 1] \% [C((Ei,xi+1) A B((Ei,xi+1) A Mﬁ,l = Mi] Ac-
cording to Section 6 of Bessiere et al. paper, GAC can be
achieved thanks to a reformulation of SLIDEs, provided a
complete propagation is performed on C’, which is the case
because B(z;, x;+1) and C(z;,x;41) involve the same vari-
ables. The reformulation requires n additional intersection
variables (one by sub-sequence [M;,z;]), on which O(n)
compatibility constraints between pairs of intersection vari-
ables and O(n) functional channelling constraints should
hold. Arity of C' is k = 4 and j = 2: the domain of
an intersection variable contains O(d*~7) = O(d?) values
(corresponding to binary tuples), where d is the maximum
size of a domain. Enforcing GAC on a compatibility con-
straint takes O(d?) time, while functional channelling con-
straint take O(d?), leading to an overall time complexity
O(nd?) for enforcing arc-consistancy on the reformulation,
corresponding to GAC for SEQ_BIN. To compare such a time
complexity O(nd?) with our algorithm, note that O(Xp;) is
upper-bounded by O(nd).

At last, some ad hoc techniques can be compared to our
generic GAC algorithm, e.g., a GAC algorithm in O(n3m)
for CHANGE [Hellsten, 2004, page 571, where m is the to-
tal number of values in the domains of X. Moreover,
the GAC algorithm for SEQ_BIN generalizes to a class of
counting constraints the ad-hoc GAC algorithm for INCREAS-
ING_NVALUE [Beldiceanu et al., 2010b] without degrading
time and space complexity in the case where SEQ_BIN rep-
resents INCREASING_NVALUE.

648

7 Conclusion

Our contribution is a structural characterization of a class of
counting constraints for which we come up with a general
polytime GAC filtering algorithm, and a characterization of
the property which makes such an algorithm linear in the sum
of domain sizes. A still open question is whether it would
be possible or not to extend this class (e.g., considering n-ary
constraints for B and C) without degrading complexity or giv-
ing up on GAC, in order to capture more constraints.

References

[Beldiceanu et al., 2010a] N. Beldiceanu, M. Carlsson, and
J.-X. Rampon. Global Constraint Catalog, 2nd Ed. Tech-
nical Report T2010-07, SICS, 2010.

[Beldiceanu et al., 2010b] N. Beldiceanu, F. Hermenier,
X. Lorca, and T. Petit. The increasing nvalue Constraint.
In CPAIOR, volume 6140 of LNCS, pages 25-39, 2010.

[Bessiere et al., 2008] C. Bessiere, E. Hebrard, B. Hnich,
Z. Kiziltan, and T. Walsh. SLIDE: A useful special case of
the CARDPATH constraint. In ECAI, 2008.

[Bessiére, 2006] C. Bessiére. Constraint Propagation. In
F. Rossi, P. van Beek, and T. Walsh, editors, Handbook
of Constraint Programming, chapter 3. Elsevier, 2006.

[Cosytec, 1997] Cosytec. CHIP Reference Manual, release
5.1 edition, 1997.

[De Clercq, 2010] A. De Clercq. A soft constraint for cumu-
lative problems with over-loads of resource. In CP Doc-
toral Programme, pages 49-55, 2010.

[Demassey er al., 2006] S. Demassey, G. Pesant, and L.-M.
Rousseau. A cost-regular based hybrid column generation
approach. Constraints, 11(4):315-333, 2006.

[Hellsten, 2004] L. Hellsten. Consistency propagation for
stretch constraints. Master’s thesis, Waterloo, 2004.

[Pachet and Roy, 1999] F.Pachet and P. Roy. Automatic gen-
eration of music programs. In CP, volume 1713 of LNCS,
pages 331-345, 1999.

[Pesant, 2001] G. Pesant. A Filtering Algorithm for the
Stretch Constraint. In CP, volume 2239 of LNCS, pages
183-195, 2001.

[Pesant, 2004] G. Pesant. A Regular Language Membership
Constraint for Finite Sequences of Variables. In CP, vol-
ume 3258 of LNCS, pages 482—-495, 2004.

[Van Hentenryck er al., 1992] P. Van Hentenryck, Y. Deville,
and C.-M. Teng. A generic arc-consistency algorithm and
its specializations. Artificial Intelligence, 57(2-3):291—
321, 1992.

