
Space Defragmentation Heuristic for 2D and 3D Bin Packing Problems

Zhaoyi Zhang and Songshan Guo
Zhong Shan (Sun Yat-Sen) Univ.

Guangzhou, P.R. China
zzy.sysu@gmail.com

issgssh@mail.sysu.edu.cn

Wenbin Zhu∗

HKUST and HK Poly Univ.
Clear Water Bay, HK S.A.R.

i@zhuwb.com

Wee-Chong Oon and Andrew Lim
City Univ. of HK

Kowloon Tong, HK S.A.R.
{weecoon, lim.andrew}@cityu.edu.hk

Abstract
One of main difficulties of multi-dimensional pack-
ing problems is the fragmentation of free space
into several unusable small parts after a few items
are packed. This study proposes a defragmenta-
tion technique to combine the fragmented space
into a continuous usable space, which potentially
allows the packing of additional items. We illus-
trate the effectiveness of this technique on the two-
and three-dimensional Bin Packing Problems. In
conjunction with a bin shuffling strategy for incre-
mental improvement, our resultant algorithm out-
performs all leading meta-heuristic approaches.

1 Introduction
Packing and cutting problems have wide practical applica-
tions and many variants have been extensively studied, espe-
cially the packing and cutting of rectangular two- and three-
dimensional items. They model many industrial applications,
such as the packing of cargo for shipment and the cutting of
sheets of metal, glass, paper or other materials. Although
the many variants of packing and cutting problems differ in
objectives and have their own unique challenges, the multi-
dimensional variants (i.e., greater than 1-D) share one com-
monality: denser packings tend to lead to higher quality solu-
tions. A common obstacle to obtaining a dense packing is the
fragmentation of unutilized (free) space into multiple small
parts that are too small to hold any items and are therefore
unusable.

In this study, we address the space fragmentation issue by
designing two space defragmentation operations. The opera-
tions are based on the concept of pushing loaded items along
an axis in order to leave sufficient free space for an incoming
item. The distance that a loaded item can be pushed along an
axis can be computed using a comparability graph representa-
tion of the packing pattern for each axis; we show how these
operations can be performed in O(n2) time without explicitly
constructing the graphs.

We use the three-dimensional bin packing problem (3D-
BPP) as the target problem in order to illustrate the con-
cept of space defragmentation. Our experiments on standard

∗Corresponding Author

benchmark problems show that by incorporating our space
defragmentation operations into the extreme point insertion
constructive heuristic for 3D-BPP, we can obtain solutions
that are comparable to those achieved by the leading existing
meta-heuristic approaches for the problem in a fraction of the
time. With the addition of a simple incremental improvement
procedure using bin shuffling, our algorithm outperforms all
existing techniques by a significant amount for both the two-
dimensional bin packing problem (2D-BPP) and 3D-BPP.

The 3D-BPP analyzed in this paper is defined as follows.
We are given n items that are 3D rectangular boxes, and an
unlimited number of identical bins with dimensions L×W ×
H . The dimensions of the i-th item, 1 ≤ i ≤ n, is denoted by
li ×wi ×hi, and we assume that the boxes cannot be rotated.
The aim is to load all n items into bins such that:

• Placement is orthogonal (i.e., axis-aligned)

• Every item must be completely inside a bin

• Any two items inside the same bin must be interior-
disjoint (i.e., non-overlapping)

• The number of bins used is minimized.

Bin packing problems of dimensions other than three can
be defined similarly. We assume that bins are placed in the
first octant of a Cartesian coordinate system with one corner
at the origin. The length L of the bin is parallel to the X-axis,
the height H is parallel to the Y -axis, and the width W is
parallel to the Z-axis.

2 Space Defragmentation
A primary objective for bin packing problems (and packing
problems in general) is to identify dense packing patterns so
that the utilization of space within each bin is high. When this
is achieved, the number of bins required is naturally reduced.
The main obstacle against achieving a dense packing of items
is the fragmentation of usable space as items are loaded into
bins. For example, Figure 1(a) shows the situation inside a
bin after two items are loaded. The usable space in the bin is
divided into two disconnected parts, and even though the to-
tal area of usable space in the bin is sufficient to load item 3,
neither part is large enough to accommodate the item. How-
ever, by pushing item 1 upwards, we can make enough room
to load item 3 (Figure 1(b)).

699

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence



3

1

2

(a) Usable space is fragmented, item 3
cannot be packed

1

2
3

(b) Item 1 is pushed up-
wards to make room for
item 3

Figure 1: Example of space defragmentation

Figure 2: A packing pattern and its X-comparability graph

This is the basis for our space defragmentation operations.
In particular, when attempting to place an item i at some po-
sition p (i.e., the corner of item i that is closest to the origin
is at point p) and there is not enough space to accommodate
the item due to the presence of existing items, we can attempt
to push all items that overlap with i away from the origin in
order to make room for the new item.

There are two tasks to perform when implementing this
concept. Firstly, we must determine if there is sufficient space
to accommodate item i after pushing the items away from p;
secondly, the item i must be loaded at p. In this section, we
present an O(n2) algorithm that utilizes the space defragmen-
tation concept by efficiently determining the distance that an
item can be pushed along an axis, using the concept of a com-
parability graph for an axis.

For any item i in a bin, its projection onto the X-axis is an
interval that we denote by [xi, xi]. Therefore, the length of an
item i is li = xi − xi. We can construct the X-comparability
graph GX = (VX , EX) for the set of intervals corresponding
to the items in a bin as follows:

• Every item i corresponds to a vertex vi ∈ VX ;
• Each vertex vi is assigned a weight equal to li;
• There is a directed edge (vi, vj) ∈ EX from vertex vi to

vj if and only if xi ≤ xj , i.e., item i lies entirely to the
left of item j.

GX is a directed acyclic graph; similar graphs can be con-
structed for the other axes in the same manner. Figure 2
shows an example of a packing in a bin along with the corre-
sponding X-comparability graph. We define the length of a
path as the sum of the weights of all vertices in the path.

Given a packing with X-comparability graph GX , we can
right-justify all items along the X-axis such that [xr

i , x
r
i ] is

the projection of item i on the X-axis after right-justification,
where

xr
i =

{
min

(vi,vj)∈EX

{xr
j} : ∃(vi, vj) ∈ EX

L : otherwise
(1)

Note that a feasible packing with X-comparability graph
GX remains feasible after all items are right-justified along
the X-axis. Furthermore, the comparability graphs for the
other axes for the resultant packing are unchanged.

For any given point x on the X-axis, we call the set of
items whose right endpoint lies to the right of x the right set
at x, denoted by Rx = {i : xi > x}. The set of all other
items in the bin is called the left set at x, denoted by Lx =
{i : xi ≤ x}. We define an operator PUSH(GX , x), which
right-justifies every item i ∈ Rx along the X-axis.

For three-dimensional packing problems, we define a
composite operator PUSH-OUT(b, (x, y, z)), which attempts
to collate usable space in bin b around a reference point
(x, y, z) by performing PUSH(GX , x); PUSH(GY , y); and
PUSH(GZ , z). The three PUSH operations can be performed
in any order, and the resultant packing will be the same.

We now describe how xr
i can be computed in Θ(n log n)

time for all items without explicitly constructing the X-
comparability graph GX , where n is the number of items
in the bin. This is done by computing the value of ΔXi =
xr
i − xi for each item i. The computation is similar for the

other dimensions.
First, sort the 2n endpoints of the n intervals correspond-

ing to the projections of the items on the X-axis; left end-
points take precedence in a tie. We explain the procedure by
imagining a vertical line sweeping from right to left along the
X-axis. The vertical line serves two purposes:

1) It defines the set of intervals that lie completely to the
left of the vertical line, i.e., Lx = {i|xi ≤ x}, where x
is the location of the vertical line;

2) It maintains a boundary x0 that marks the greatest value
for the right endpoint of any interval in Lx; conceptu-
ally, we can simultaneously translate all intervals in Lx

to the right until the right endpoint of some interval in
Lx coincides with the boundary. If i is the interval with
largest xi in Lx, then ΔXi = x0 − xi

At the beginning, we set the boundary x0 = L. When
the vertical line encounters a right endpoint xi, we update
ΔXi = x0 − xi. When the vertical line encounters a left
endpoint xi, we update the boundary x0 = min{x0, xi +
ΔXi}. This correctly updates the invariant x0 because for
any interval j ∈ Lx, j lies to the left of [xi, xi]. By the
construction of the comparability graph, there is an edge from
j to i; hence, i lies on some path passing through j. If i in
fact lies on the longest path P (j) involving vj , then xi +
ΔXi is the effective right boundary for j. The pseudocode is
provided in Algorithm 1.

Finally, we show that once the values of xr
i ; yri ; and

zri are computed for all items i, then determining if
PUSH-OUT(b, (x, y, z)) produces sufficient space to accomo-
date an item can be done in O(n) time.

700



Algorithm 1 Compute xr
i for each item i in bin b

COMPUTE-RJPOS-X(b)

1 P = list of endpoints xi and xi for all items i ∈ b
2 sort P by X-coordinate in descending order;

left endpoints take precedence in a tie
3 x0 = L
4 for each point x ∈ P
5 if x is a left endpoint xi for some i
6 x0 = min(x0,ΔXi + xi)
7 if x is a right endpoint xi for some i
8 ΔXi = x0 − xi

9 for all items i
10 xr

i = xi +ΔXi

Let S(p) be the set of items that overlap with the current
item i when i is placed at a position p (i.e., p = (xi, yi, zi)).
For every item j ∈ S(p), we right-justify it along the respec-
tive axes. Let S′(p) denote the set of items after translation.
The operation PUSH-OUT(b, p) will produce sufficient space
to allow the current item i to be placed at p if and only if no
items in S′(p) overlap with item i when item i is placed at p.

We can therefore determine if item i can be placed at p by
checking the resultant position of all items j that overlap with
i after right-justification on axes. Since the number of over-
lapping items is O(n), and assuming there are O(n) possible
positions, this procedure takes O(n2) time per item. In fact,
the worst case scenario seldom occurs in practice, and our ex-
periments show that this operation runs in close to linear time
on standard 3D-BPP test cases.

3 A Constructive Heuristic
The extreme point insertion heuristic [Crainic et al., 2008] is
a constructive heuristic that loads items one at a time based on
a given sequence until all items are loaded, and is the best ex-
isting constructive heuristic for the 3D-BPP. It represents the
state of a bin by a list of extreme points, where every extreme
point is a candidate position to load a new item. An empty
bin is represented by one extreme point (0, 0, 0). When a new
item is loaded, it occupies one extreme point and introduces
a constant number of new extreme points. Figures 3(a) and
3(b) illustrate how the loading of a new item will introduce up
to 2 and 6 new points in the 2D and 3D cases, respectively.

Given a sequence of items, the extreme point insertion
heuristic attempts to load the current item at an extreme point
in an existing bin. If no such point exists, a new empty bin
is instantiated and the item is loaded into that bin at (0,0,0).
This continues until all items are loaded. We employed the
first fit strategy when selecting the extreme point for the cur-
rent item: the current item is loaded into the first bin that can
accommodate it at the first feasible extreme point.

We introduce two space defragmentation enhancements to
the extreme point insertion algorithm; the resultant algorithm
is given in Algorithm 2. The first enhancement is a straight-
forward application of the technique described in Section 2,
i.e., rather than checking if the current item i can be placed

C1 C

BA

B1

O
X

Y

(a) 2 extreme points for 2D

C2

C1

D1

D2

B2

B1

O
A B

C

D

(b) 6 extreme points for 3D

Figure 3: Extreme Points

at p into the bin b given the current packing, the algorithm
checks if it can be placed at p after the PUSH-OUT(b, p) pro-
cedure (line 6). This involves calculating the values of xr

i , yri
and zri for the items in the bin using Algorithm 1, and then
determining if the insertion at p is feasible in O(n) time. If
the insertion is feasible, then PUSH-OUT(b, p) is performed,
the item is loaded, and then the bin is normalized (i.e., all
items are pushed towards the origin as far as possible).

Algorithm 2 Extreme Point Insertion with Space Defragmen-
tation

EP-INSERT-SD(I, B)

1 for each item i ∈ I
2 placed = FALSE
3 for each bin b ∈ B
4 if volume of i is less than remaining space in b
5 for each point p ∈ b.EP -list
6 if i can be placed at p after PUSH-OUT
7 placed = TRUE
8 PUSH-OUT(b, p)
9 place item i at p

10 NORMALIZE(b)
11 update extreme points b.EP -list
12 update xr

i , yri , zri for all items in b
13 break and try to load the next item
14 if placed == FALSE
15 for each bin b ∈ B
16 for each item j ∈ b
17 if INFLATE-REPLACE(b, i, j) == TRUE
18 placed = TRUE
19 NORMALIZE(b)
20 update extreme points b.EP -list
21 update xr

i , yri , zri for all items in b
22 insert j to the front of I
23 break and try to load the next item
24 if placed == FALSE
25 add an empty bin b′ to the end of B
26 place item i into b′ at (0, 0, 0)
27 append new extreme points to b′.EP -list

We describe the second enhancement with the conceptual
example given in Figure 4, where three items have previously
been loaded into a bin; as a result, item 4 cannot be loaded.

701



However, suppose we inflate item 3 as much as possible (by
pushing other items away from the origin if neccessary), re-
sulting in the inflated item 3’. If item 3’ is large enough to
encompass item 4, then we could replace item 3’ by item 4
(Figure 4(c)). As long as the volume of item 3 is smaller than
the volume of item 4, then performing this Inflate-Replace
operation will increase the space utilization of the bin.

The maximum amount of inflation for an item j along an
axis is the same as the maximum distance that the item can
be translated along that axis. Hence, we can inflate an item
j along the X-; Y -; and Z-axes such that its right endpoints
become xr

j ; yrj ; and zrj , respectively. This procedure is de-
noted by INFLATE-REPLACE(b, i, j), which attempts to in-
flate j and replace it by i if i is larger than j.

We employ the second enhancement when all existing
non-empty bins are unable to accommodate the current
item (line 14). At this point, we consider all loaded
items j in each existing bin b in turn, and attempt the
INFLATE-REPLACE(b, i, j) procedure. A new empty bin is
added only if this strategy is unsuccessful (line 24).

The procedure NORMALIZE moves all items as close to the
origin as possible, resulting in a normalized packing. We use
a standard normalization procedure for this purpose, which
translates all items in the bin as far as possible towards the
origin along the X-axis, then the Y -axis, then the Z-axis,
and repeats until none of the items can be further translated
towards the origin along all three axes. After normalization,
we recompute all the extreme points in the bin, which takes
O(n2) time where n is the number of items in the bin.

4 Bin Shuffling
To further improve the performance of our algorithm, we im-
plemented a simple bin shuffling strategy that employs our
EP-INSERT-SD procedure as a subroutine. As items are
loaded when constructing a solution, their sequence of in-
sertion into each bin is recorded. We then permute the bins
while preserving the insertion sequences for each bin to ob-
tain a new sequence of items; this sequence can then be used
as a new input for EP-INSERT-SD to produce a new solution.

Given a current solution, we can use Algorithm 3 to search
for an improved solution. First, the algorithm identifies the
bin with the lowest volume utilization and unloads all items
from this bin (line 2); this results in a list of non-empty bins
B and a list of items U to be loaded. We shuffle the bins in B
to obtain a new sequence of items I ′ (line 6). Then, we insert
the largest item u ∈ U at a random position in I ′ and in-
voke the EP-INSERT-SD procedure on I ′ to obtain a solution
B′. If B′ has an equal number or fewer bins than B (line 9),
then we have successfully loaded u into existing bins. This
successful insertion suggests that the current sequence I ′ pro-
duces a good solution using EP-INSERT-SD, so we proceed
to attempt to insert all other items in U (in decreasing order of
volume) into B′ using the same sequence (line 12). However,
if B′ has more bins than B, then we repeat the bin shuffling
operation up to K times; this is essentially a local search.
After K consecutive unsuccessful attempts, we randomly re-
move an item from B (line 15), insert it into U and restart the
procedure. This continues until U = ∅, whereupon we have

Algorithm 3 Solution Improvement using Bin Shuffling

BIN-SHUFFLE-IMPROVE(B)

1 b = the bin with lowest volume utilization in B
2 U = all items in bin b sorted by decreasing volume
3 remove b from B
4 while U is not empty
5 for k = 1 to K
6 I ′ = Shuffle(B)
7 randomly insert first item u from U into I ′
8 EP-INSERT-SD(I ′, B′)
9 if B′ has equal number or fewer bins than B

10 B = B′
11 remove u from U
12 load as many items from U as possible

into B using EP-INSERT-SD
13 break
14 if k > K
15 randomly remove an item from B and

insert it into U
16 return B

found a solution that uses one fewer bin.
In our implementation, we initially set K to 200. When-

ever a new search state is accepted, we update the value of K
dynamically: if the number of items in U is the lowest found
so far, then we set K = 200; otherwise, we set K = 50.

Our overall approach is as follows. We first sort all items in
descending order of volume, breaking ties by descending or-
der of height (as suggested by [Crainic et al., 2008]), and then
invoke the EP-INSERT-SD procedure to construct an initial
solution. While the time limit is not exceeded, we iteratively
improve the solution using Algorithm 3. We refer to our al-
gorithm as Bin Shuffling using Extreme Point insertion with
Space Defragmentation (BS-EPSD). It can be employed on
d-dimensional bin packing problems for d ≥ 2.

5 Computational Experiments
We compared our BS-EPSD algorithm with the leading algo-
rithms for the 2D and 3D bin packing problems. The exper-
iments were conducted on a rack mounted server with Intel
Xeon E5520 Quad-Core CPUs running at 2.26GHz. The op-
erating system is SuSE Linux Enterprise Server 10 SP2. The
64-bit Java Development Kit 1.6.0 from Sun Microsystems
was used to implement the algorithm.

For the 2D-BPP, we considered two sets of standard
benchmark instances. The first set was generated by [Berkey
and Wang, 1987] and consists of 6 classes, which we number
1-6; the second set was generated by [Martello and Vigo,
1998] and consists of 4 classes, which we number 7-10. Each
class of instances is further divided into 5 groups, where
every group consists of 10 instances with same number of
items; the number of items per instance in the five groups are
20, 40, 60, 80 and 100, respectively. All 500 instances and
their corresponding best known solution values are available
at http://www.or.deis.unibo.it/research_
pages/ORinstances/ORinstances.htm.

702



1

2
3

4

(a) Item 4 cannot be loaded

1

2
3’ 4

(b) Inflating item 3

1

2 3
4

(c) Replacing item 3 by item 4

Figure 4: Inflate-Replace Operation

For the 3D-BPP, we used the 320 instances generated by
[Martello et al., 2000]. This set of instances consists of 8
classes, and each class is further divided into 4 groups. Every
group consists of 10 instances with same number of items; the
number of items per instance in the 4 groups are 50, 100, 150
and 200, respectively. This set of instances can be reproduced
by the instance generator available at http://www.diku.
dk/˜pisinger/codes.html.

Our computational results are summarized in Table 1. Each
entry is the sum of the average number of bins required for
each group. A dash (‘-’) indicates that the results for that class
of instances were not reported in the corresponding publica-
tion. Columns 3 to 8 correspond to the leading meta-heuristic
algorithms in existing literature:

• GRASP: hybrid GRASP/VND [Parreño et al., 2008]

• SCH: Set Cover Heuristic [Monaci and Toth, 2006]

• GLS: Guided Local Search [Faroe et al., 2003]

• TS3: Tabu Search [Lodi et al., 1999] for 2D bin packing;
[Lodi et al., 2002] for 3D bin packing

• HBP: HBP heuristic [Boschetti and Mingozzi, 2003]

• TS2Pack: Two-level Tabu Search [Crainic et al., 2009]

The column Init gives the statistics of the initial solutions
constructed by EP-INSERT-SD, where the items are sorted
in descending order of volume, while the column BS-EPSD
corresponds to the final results produced by our algorithm.
The time limit is set to 10 seconds of CPU time for each 2D
instance, and 30 seconds of CPU time for each 3D instance,
which are considerably stricter time limits than those imposed
by existing approaches; this is to address the possibility that
the improvement in our results compared to older techniques
is due to the increased processing speeds of our modern ma-
chines. The row All classes gives the sum of the values for all
test instances. However, for the 3D instances, classes 2 and 3
have been omitted by many of the existing techniques; hence,
we also report the sum of the values over classes 1 and 4-8.

An inspection of the Init column shows that the quality of
the initial solution constructed by EP-INSERT-SD is compa-
rable to the solutions produced by the leading meta-heuristic
algorithms; the gap between our initial solution and the best
algorithms for 2D instances are within 2%, and for 3D in-
stances they are within 3%. This is remarkable because EP-
INSERT-SD is a simple constructive heuristic, and prior to
this work meta-heuristics have outperformed simple heuris-
tics by large margins [Crainic et al., 2008]. With the inclusion

of bin shuffling, column BS-EPSD shows that our technique
is superior to all existing algorithms for both 2D and 3D in-
stances.

Detailed results show that the BS-EPSD algorithm
achieved equal or superior solutions compared to the lead-
ing meta-heuristic approaches for all 50 groups of 2D in-
stances, and it found equivalent or superior solutions com-
pared to the leading meta-heuristic approaches for all but
7 out of the 32 groups of 3D instances. The detailed re-
sults and other supplementary materials (including experi-
ments performed on newly generated test data) can be found
at http://www.zhuwb.com/3d-bpp.

6 Conclusion
Space defragmentation is a natural concept that has not been
employed in existing approaches to packing problems. When
packing items manually, humans often move existing items
in order to allow an extra item to be loaded, and also replace
a smaller item with a larger one; this paper presents algo-
rithms that mimic these operations. By incorporating space
defragmentation into the extreme point insertion constructive
heuristic along with a bin-shuffling improvement strategy, the
resultant algorithm outperformed all existing approaches for
both the 2- and 3-dimensional bin packing problem.

The concept of space defragmentation introduces a new
class of operators that is readily applied to a wide range of d-
dimensional cutting and packing problems. Other operators
that employ the space defragmentation concept can be de-
vised. For instance, a PUSH-AND-REPLACE operator might
first perform PUSH-OUT, and then replace the items that over-
lap with the target item when placed at position p if the total
volume utilization is increased as a result.

Note that the comparability graph computation of the max-
imum translation distance is conservative, i.e., it may be pos-
sible for an item i to be translated along the X-axis further
than xr

i . In order to compute the actual maximum translation
distance, conceptually we can instead use a visibility graph.
Unfortunately, we are currently unable to find an efficient vis-
ibility graph implementation of space defragmentation better
than O(n3), and experiments show that using the comparabil-
ity graph implementation is distinctly superior for 3D-BPP.
Also note that unlike for comparability graphs, the visibility
graph version of the PUSH operation along an axis may al-
ter the visibility graphs for other axes, which must therefore
be recomputed after each execution of PUSH. Furthermore,

703



Table 1: Summarized results for standard test cases
Class GRASP SCH GLS TS3 HBP TS2Pack Init BS-EPSD

1 99.7 99.7 100.2 101.5 99.9 - 100.9 99.7
2 12.4 12.4 12.4 13.0 12.4 - 12.9 12.4
3 69.6 69.6 70.2 72.6 70.3 - 72.2 69.5
4 12.3 12.4 12.5 12.8 12.5 - 12.6 12.3

2D 5 89.3 89.3 90.2 91.3 89.9 - 91.4 89.2
6 11.2 11.2 11.4 11.5 11.3 - 11.5 11.1
7 82.8 82.7 83.4 84.0 83.2 - 85.0 82.7
8 83.4 83.6 84.1 84.4 83.9 - 85.1 83.4
9 213.0 213.0 213.0 213.1 213.0 - 213.7 213.0

10 50.4 50.4 51.0 51.8 51.1 - 51.5 50.3
All classes 724.1 724.3 728.4 736.0 727.5 - 736.8 723.6

1 127.3 - 128.3 127.9 - 128.2 132.2 127.4
2 125.8 - - 126.8 - - 130.3 125.8
3 126.9 - - 127.5 - - 131.3 126.8

3D 4 294.0 - 294.2 294.0 - 293.9 296.0 294.0
5 70.5 - 70.8 71.4 - 71.0 73.0 70.5
6 95.4 - 96.0 96.1 - 95.8 97.9 95.6
7 59.4 - 59.0 60.0 - 59.0 61.1 58.5
8 82.0 - 81.9 82.6 - 81.9 84.8 81.3

All classes 981.3 - - 986.3 - - 1006.6 979.9
Class 1, 4-8 728.6 - 730.2 732.0 - 729.8 745.0 727.3

the order of the axes chosen is not independent, e.g., translat-
ing along the X-axis followed by the Y -axis may result in a
different packing from translating along the Y -axis first.

Acknowledgments
We would like to thank Ramon Alvarez-Valdes and Fran-
cisco Parreño Torres, the co-authors of the GRASP/VND al-
gorithm, for so graciously providing a binary executable of
their approach for our additional experiments.

References
[Berkey and Wang, 1987] J. O. Berkey and P. Y. Wang. Two-

Dimensional Finite Bin-Packing Algorithms. The Jour-
nal of the Operational Research Society, 38(5):423–429,
1987.

[Boschetti and Mingozzi, 2003] Marco A. Boschetti and
Aristide Mingozzi. The Two-Dimensional Finite Bin
Packing Problem. Part II: New lower and upper bounds.
4OR: A Quarterly Journal of Operations Research,
1(2):135–147, June 2003.

[Crainic et al., 2008] Teodor G. Crainic, Guido Perboli, and
Roberto Tadei. Extreme Point-Based Heuristics for Three-
Dimensional Bin Packing. INFORMS Journal on Comput-
ing, 20(3):368–384, June 2008.

[Crainic et al., 2009] Teodor G. Crainic, Guido Perboli, and
Roberto Tadei. TS2PACK: A two-level tabu search for the
three-dimensional bin packing problem. European Journal
of Operational Research, 195(3):744–760, June 2009.

[Faroe et al., 2003] Oluf Faroe, David Pisinger, and Mar-
tin Zachariasen. Guided Local Search for the Three-

Dimensional Bin-Packing Problem. INFORMS Journal on
Computing, 15(3):267–283, January 2003.

[Lodi et al., 1999] Andrea Lodi, Silvano Martello, and
Daniele Vigo. Heuristic and Metaheuristic Approaches for
a Class of Two-Dimensional Bin Packing Problems. IN-
FORMS Journal on Computing, 11(4):345–357, January
1999.

[Lodi et al., 2002] Andrea Lodi, Silvano Martello, and
Daniele Vigo. Heuristic algorithms for the three-
dimensional bin packing problem. European Journal of
Operational Research, 141(2):410–420, September 2002.

[Martello and Vigo, 1998] Silvano Martello and Daniele
Vigo. Exact Solution of the Two-Dimensional Finite Bin
Packing Problem. Management Science, 44(3):388–399,
March 1998.

[Martello et al., 2000] Silvano Martello, David Pisinger, and
Daniele Vigo. The Three-Dimensional Bin Packing Prob-
lem. Operations Research, 48(2):256–267, March 2000.

[Monaci and Toth, 2006] Michele Monaci and Paolo Toth. A
Set-Covering-Based Heuristic Approach for Bin-Packing
Problems. INFORMS Journal on Computing, 18(1):71–
85, January 2006.

[Parreño et al., 2008] F. Parreño, R. Alvarez-Valdes, J. F.
Oliveira, and J. M. Tamarit. Ahybrid GRASP/VND algo-
rithm fortwo-andthree-dimensional bin packing. Annals of
Operations Research, 179(1):203–220, October 2008.

704




