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Abstract

We establish complexities of the conjunctive query
entailment problem for classes of existential rules
(i.e. Tuple-Generating Dependencies or Datalog+/-
rules). Our contribution is twofold. First, we in-
troduce the class of greedy bounded treewidth sets
(gbts), which covers guarded rules, and their known
generalizations, namely (weakly) frontier-guarded
rules. We provide a generic algorithm for query en-
tailment with gbts, which is worst-case optimal for
combined complexity with bounded predicate arity,
as well as for data complexity. Second, we clas-
sify several gbts classes, whose complexity was un-
known, namely frontier-one, frontier-guarded and
weakly frontier-guarded rules, with respect to com-
bined complexity (with bounded and unbounded
predicate arity) and data complexity.

1 Introduction

First-order Horn rules (without function symbols except con-
stants) have long been used in artificial intelligence, as well as
in databases under name Datalog. We consider here an exten-
sion of these rules that allows to create existentially quanti-
fied variables. More precisely, these extended rules are of the
form Body→ Head, where Body and Head are conjunctions
of atoms, and variables occurring only in the Head are exis-
tentially quantified. E.g., ∀x(Human(x) → ∃y(Parent(y, x) ∧
Human(y))). Such rules are known in databases as Tuple-
Generating Dependencies (TGDs) and have been extensively
used, e.g. for data exchange [Fagin et al., 2005]. Recently,
the corresponding logical fragment has gained new interest
in the context of ontological knowledge representation. It
has been introduced as the Datalog+/- framework in [Calı̀
et al., 2008; Calı̀ et al., 2009; Calı̀ et al., 2010], and inde-
pendently, stemming from graph-based knowledge represen-
tation formalisms [Chein and Mugnier, 2009], as ∀∃-rules
[Baget et al., 2009; Baget et al., 2010]. This rule-based
framework is particularly well-suited to the topical ontologi-
cal query answering problem, which consists of querying data
while taking ontological knowledge into account. In partic-
ular, it generalizes the core of new description logics (DL)
tailored for conjunctive query answering [Calı̀ et al., 2009;
Baget et al., 2010].

The ability to generate existential variables, associated
with arbitrarily complex conjunctions of atoms, makes en-
tailment with these rules undecidable [Beeri and Vardi, 1981;
Chandra et al., 1981]. Since the birth of TGDs, and re-
cently within the Datalog+/- and ∀∃-rule frameworks, various
conditions of decidability have been exhibited. Three “ab-
stract” classes have been introduced in [Baget et al., 2010]
to describe known decidable behaviours: an obvious condi-
tion of decidability is the finiteness of the forward chaining
(known as the chase in the TGD framework [Johnson and
Klug, 1984]); sets of rules ensuring this condition are called
finite expansion sets (fes); a more general condition intro-
duced in [Calı̀ et al., 2008] accepts infinite forward chaining
provided that the facts generated have a bounded treewidth
(when seen as graphs); such sets of rules are called bounded
treewidth sets (bts); then decidability follows from the de-
cidability of first-order logic (FOL) classes with the bounded
treewidth model property [Courcelle, 1990]. The third con-
dition, giving rise to finite unification sets (fus), relies on the
finiteness of (a kind of) backward chaining mechanism. None
of these three abstract classes is recognizable, i.e., the associ-
ated membership problem is undecidable [Baget et al., 2010].

In this paper, we focus on the bts paradigm and its main
“concrete” classes. (Pure) Datalog rules (i.e. without exis-
tential variables) are fes (thus bts). Guarded rules [Calı̀ et al.,
2008] are inspired by the guarded fragment of FOL. Their
body has an atom (the guard) that contains all variables from
the body. Guarded rules are bts (and not fes), they are gen-
eralized by weakly guarded rules (wg), in which the guard-
ing condition is relaxed: only “affected” variables need to
be guarded; intuitively, affected variables are variables that
are possibly mapped, during the forward chaining process, to
newly created variables [Calı̀ et al., 2008]. wg-rules include
Datalog rules (in which there are no affected variables). Other
decidable classes rely on the notion of the frontier of a rule
(the set of variables shared between the body and the head of
a rule). In a frontier-one rule (fr1), the frontier is restricted
to a single variable [Baget et al., 2009]. In a frontier-guarded
rule (fg), an atom in the body guards the frontier [Baget et al.,
2010]. Hence, fg-rules generalize both guarded rules and fr1-
rules. When only affected variables from the frontier need to
be guarded, we obtain the still decidable class of weakly fron-
tier guarded rules (wfg), which generalizes both fg and wg
classes [Baget et al., 2010]. Of all known recognizable bts
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classes, wfg is the class subsuming the most of the others.

Figure 1: Complexity Boundaries. Tight bounds for gbts
and ba-fr1 are yet unknown, we conjecture 2ExpTime-
completeness and ExpTime-completeness, respectively.

Example 1 Parent(x, y),Parent(y, z) → isGdParent(x) (with
simplified syntax) is Datalog and fr1 but not guarded;
while WorksOn(x, z),WorksOn(y, z), StudentTandem(x, y)→
Grade(x, t), Grade(y, t) is fg, but is neither fr1, nor guarded,
nor Datalog.

Contrarily to fes and fus, the definition of bts does not pro-
vide a constructive entailment procedure. Some of its sub-
classes, namely guarded and wg, are provided with an al-
gorithm and their complexity is known [Calı̀ et al., 2008;
Calı̀ et al., 2009]. However, this is not the case for the fr1,
fg and wfg classes. The aim of this paper is to solve these
algorithmic and complexity issues.

Our contribution is twofold. First, by imposing a restriction
on the allowed derivation sequences, we define a subclass of
bts, namely greedy bts (gbts), which has the nice property
of covering the wfg class (thus all bts classes cited above).
We provide a generic algorithm for this class, which is worst-
case optimal for data complexity, as well as for combined
complexity in the case where predicate arity is bounded. Sec-
ond, we classify the wfg, fg and fr1 classes with respect to
both combined (with and without bound on the predicate ar-
ity) and data complexities. We also consider the case of rules
with a hypergraph-acyclic body (notation ba) and point out
that body-acyclic fg-rules coincide with guarded rules from
an expressivity and complexity perspective.

Fig. 1 shows the complexity lines for these classes of rules
with three complexity measures, i.e., combined complexity
without or with bound on the predicate arity, and data com-
plexity. Notice that data complexity and bounded-arity com-
bined complexity are not strictly layered. While fg-rules are
much easier for data complexity (PTime) than for bounded-
arity combined complexity (2ExpTime), wg-rules are in Exp-
Time for both. Precise complexity results obtained are given
in Tab. 1. New results are indicated by a star. Detailed proofs

can be found in the accompanying research report [Baget et
al., 2011].

Class arity arity Data
unbounded bounded Complexity

gbts in 3ExpTime � 2ExpTime-c � ExpTime-c�

wfg 2ExpTime-c � 2ExpTime-c � ExpTime-c�

fg 2ExpTime-c � 2ExpTime-c � PTime-c �

fr1 2ExpTime-c � 2ExpTime-c � PTime-c �

wg 2ExpTime-c ExpTime-c ExpTime-c
guarded 2ExpTime-c ExpTime-c PTime-c
ba-fg 2ExpTime-c � ExpTime-c � PTime-c �

ba-fr1 ExpTime-hard �(1) ExpTime-c � PTime-c �

(1) ExpTime-c if no constants in rules

Table 1: Combined and Data Complexities

2 Preliminaries

As usual, an atom is of the form p(t1, . . . , tk) where p is a
predicate with arity k, and the ti are terms, i.e. variables or
constants. A conjunct C[x] is a finite conjunction of atoms,
where x is the set of variables occurring in C. A fact is the
existential closure of a conjunct.1 A (boolean) conjunctive
query (CQ) has the same form as a fact, thus we identify both
notions. We also see conjuncts, facts and CQ as sets of atoms.
Given an atom or a set of atoms A, vars(A) and terms(A)
denote its set of variables and of terms, respectively. Given
conjuncts F and Q, a homomorphism π from Q to F is a sub-
stitution of vars(Q) by terms of F such that π(Q) ⊆ F (we say
that π maps Q to F). It is well-known that, given two facts F
and Q, F |= Q iff there is a homomorphism from Q to F.

Definition 1 (∀∃-Rule) A ∀∃-rule (existential rule, or simply
rule when not ambiguous) is a formula R = ∀x∀y(B[x, y] →
(∃zH[y, z])) where B = body(R) and H = head(R) are con-
juncts, resp. called the body and the head of R. The frontier of
R, noted fr(R), is the set of variables vars(B) ∩ vars(H) = y.

Definition 2 (Application of a Rule) A rule R is applicable
to a fact F if there is a homomorphism π from body(R) to
F; the result of the application of R on F w.r.t. π is a fact
α(F,R, π) = F ∪ πsafe(head(R)) where πsafe is a substitution of
head(R), which replaces each x ∈ fr(R) with π(x), and other
variables with fresh variables. As α only depends on π|fr(R)
(the restriction of π to fr(R)), we also write α(F,R, π|fr(R)).

Definition 3 (Derivation) Let F be a fact, and R be a set
of rules. An R-derivation of F is a finite sequence (F0 =
F), . . . , Fk s.t. for all 0 ≤ i < k, there is Ri ∈ R and a homo-
morphism πi from body(Ri) to Fi s.t. Fi+1 = α(Fi,Ri, πi).

Theorem 1 (Forward Chaining) Let F and Q be two facts,
and R be a set of rules. Then F,R |= Q iff there exists an
R-derivation (F0 = F), . . . , Fk such that Fk |= Q.

A knowledge base (KB)K = (F,R) is composed of a finite
set of facts (seen as a single fact) F and a finite set of rules R.
We denote by C the set of constants occurring in (F,R) and
by P the set of predicates occurring in R. The (boolean) CQ

1Note that thereby we generalize the traditional notion of a fact
in order to take existentially quantified variables into account.
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entailment problem is the following: given a KB K = (F,R)
and a (boolean) CQ Q, does F,R |= Q hold ?

We now specify some already introduced notions. A fact
can naturally be seen as a hypergraph whose nodes are the
terms in the fact and whose hyperedges encode atoms. The
primal graph of this hypergraph has the same set of nodes and
there is an edge between two nodes if they belong to the same
hyperedge. The treewidth of a fact is defined as the treewidth2

of its associated primal graph. A set of rules R is called a
bounded treewidth set (bts) if for any fact F there exists an
integer b such that, for any fact F′ that can be R-derived from
F, treewidth(F′) ≤ b. A rule R is guarded if there is an atom
a ∈ body(R) (called a guard) with vars(body(R)) ⊆ vars(a).
R is weakly guarded (wg) if there is a ∈ body(R) (called a
weak guard) that contains all affected variables from body(R).
The notion of affected variable is relative to the rule set: a
variable is affected if it occurs only in affected predicate po-
sitions, which are positions that may contain a new variable
generated by forward chaining (see [Fagin et al., 2005] for
a precise definition). The only property of affected variables
used in this paper is that a rule application necessarily maps
non-affected variables only to terms from the initial fact F. R
is frontier-one (fr1) if |fr(R)| = 1. R is frontier-guarded (fg) if
there is a ∈ body(R) with vars(fr(R)) ⊆ vars(a). R is weakly-
frontier guarded (wfg) if there is a ∈ body(R) that contains all
affected variables from fr(R).

3 Greedy Bounded-Treewidth Sets of Rules

In a greedy derivation, every rule application maps the fron-
tier of the rule into terms added by a single previous rule ap-
plication or occurring in the initial fact:

Definition 4 (Greedy Derivation) An R-derivation (F0 =
F), . . . , Fk is said to be greedy if, for all i with 0 ≤ i < k,
there is j < i such that πi(fr(Ri)) ⊆ vars(Aj) ∪ vars(F0) ∪ C,
where Aj = π

safe
j (head(Rj)).

Example 2. Let R = {R0,R1} where: R0 = r1(x, y) → r2(y, z)
and R1 = r1(x, y), r2(x, z), r2(y, t)→ r2(z, t).

Let F0 = {r1(a, b), r1(b, c)} and S = F0, . . . , F3 with F1 =
α(F0,R0, {(y, b)}), A0 = {r2(b, x1)}, F2 = α(F1,R0, {(y, c)}),
A1 = {r2(c, x2)}, F3 = α(F2,R1, π2), with π2 =
{(z, x1), (t, x2)}; there is no Aj s.t. {π2(z), π2(t)} ⊆ terms(Aj),
thus S is not greedy.

To any greedy derivation S of F can be assigned a unique
derivation tree DT(S ) built iteratively as follows: the root is
a node x0 with terms(x0) = vars(F) ∪ C and atoms(x0) =
atoms(F), and ∀0 ≤ i < k, we add a node xi+1 with
terms(xi+1) = vars(Ai+1) ∪ vars(F) ∪ C and atoms(xi+1) =
atoms(Ai+1). Since S is greedy, there is at least a j such that
πi(fr(Ri)) ⊆ terms(x j). We add an edge between xi+1 and
x j′ , j′ being the smallest having this property. The nodes of
DT(S ) are also called “bags”.

Property 2 Let S = F0 . . . , Fk be a greedy derivation. Then
DT(S ) is a tree decomposition of Fk of width bounded by
|vars(F)| + |C| + max(|vars(head(R))|R∈R).

2We assume that the reader is familiar with this notion.

Definition 5 (greedy bounded-treewidth set of rules (gbts))
R is said to be a greedy bounded-treewidth set (gbts) if (for
any fact F) any R-derivation (of F) is greedy.

The class gbts is a strict subclass of bts (e.g. in Example 2:
R is fes but not gbts). It is nevertheless an expressive subclass
of bts since it contains wfg:

Property 3 wfg-rules are gbts.

Proof: Let R be a rule from a wfg rule set R and let g be a
weak frontier guard of R. If R is applied by π and let π(g) = a,
then a ∈ F or a ∈ Ai for some i. Thus R is gbts. �

Note that gbts strictly contains wfg. Indeed, {R} is
gbts, but not wfg (nor fes), with R = r1(x, y), r2(y, z) →
r(x, x′), r(y, y′), r(z, z′), r1(x′, y′), r2(y′, z′).

4 An algorithm for gbts

Greediness ensures that, at each step of a derivation, the cur-
rent derivation tree can be extended to a bounded-width tree
decomposition of any to-be-derived fact. It follows that rule
applications create only a bounded number of “relevant pat-
terns”. When we have created all possible patterns, “large-
enough” to map Q, we can halt the derivation process. In
[Calı̀ et al., 2009], a specific notion of type is used for that
purpose. However, to take non-guarded rules into account,
we need to generalize it. We thus define the ultimate appli-
cability of a rule, and the related notion of an oracle. Sets
of oracles generalize types. To simplify the presentation, we
translate Q into a rule RQ = Q → match where match is a
fresh nullary predicate (note that fr(RQ) is empty). The ques-
tion is now R ∪ {RQ} |= match.

Definition 6 (Ultimate applicability, oracle) Let F be a
fact, R be a set of gbts rules, and S = F0(= F), . . . , Fi+1
be an R-derivation of F (with F j+1 = F j ∪ Aj,∀0 ≤ j ≤ i),
and let x j be the bag of DT (S ) associated with Aj. We say that
R ∈ R is ultimately applicable to x j if there is an R-derivation
F0(= F), . . . , F j, . . . , Fi+1, . . . , Fl with a homomorphism π
from body(R) to Fl and π(fr(R)) ⊆ vars(Aj) ∪ vars(F) ∪ C.
We say that π|fr(R) is an oracle for the ultimate applicability of
R on x j. An ultimate R-derivation is a sequence F0, . . . , Fk
where ∀0 < i < k, there is R ∈ R and an oracle πfr(R) for
the ultimate applicability of R on some x j with j < i such that
Fi = α(Fi−1,R, π|fr(R)).

Any derivation is an ultimate derivation and an ultimate
derivation F0, F1, . . . , Fk can always be extended to a deriva-
tion F0, F1

0 , . . . , F
i1
0 , F

′
1, . . . , F

′
k−1, F

1
k−1, . . . , F

ik
k−1, F

′
k, where

F′i contains Fi.
We now define an equivalence relation ∼Q on the bags

of the derivation tree with the following informal meaning:
xi ∼Q x j means that a rule body can be ultimately mapped in
xi iff if can be mapped similarly in x j.

Definition 7 (∼Q) Let T be a derivation tree, x and y two
bags of T . x ∼Q y if there is a bijective substitution ψ of
terms(x) by terms(y) s.t. ∀R ∈ R, π is an oracle for R on x iff
ψ ◦ π is an oracle of R on y.

Algorithm 1 behaves as a classical breadth-first forward
chaining (also called “chase” in databases) with two main
differences. First, instead of looking for homomorphisms to
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check the applicability of rules, it uses oracles for ultimate ap-
plicability, thus building an ultimate derivation tree. Second,
∼Q allows to prune the ultimate derivation tree.3

Algorithm 1: Ultimate Saturation
Data: Two facts F, Q,gbts rule set R
Result: yes if F,R |= Q, no otherwise.
R ← R ∪ {RQ};
T ← newTree(x0) ; // x0 is the root
terms(x0)← vars(F) ∪ C;
Continue← True; Depth← 0 ; // depth of T
while Continue do

Continue← False;
for x ∈ leavesAtDepth(T , Depth) do

for R ∈ R do

for π ∈oracles(R, x)\oracles(R, parent(x)) do

if R = RQ then

return yes;

y← newNode();
terms(y)←vars(πsafe(head(R)))∪vars(F)∪C;
if ¬∃z ∈ nodes(T ) such that y ∼Q z then

addEdge(T, (x, y));
Continue← True;

Depth++;

return no;

Theorem 4 Ultimate Saturation is sound and complete for
CQ entailment with R gbts.

Proof: (sketch). Without the ∼Q check, soundness and com-
pleteness would follow from the correspondence between
standard and ultimate derivations. To prove that the pruning
performed by the ∼Q check does not prevent completeness,
we show that: “if x ∼Q y and x parent of x′, then there is a
child y′ of y s.t. x′ ∼Q y′”. We first build y′ = copyx←y(x′)
the node obtained from y “as x′ is obtained from x”. Obvi-
ously x′′ = copyy←x(y′) ∼Q x′. It remains to prove that if π
is an oracle of R = (B,H) on x′, then it is also an oracle of
R on y′. For that, we generalize the copy notion: instead of
copying a child of a node x under a ∼Q equivalent node y, we
copy a whole subtree of x under y. We point out that if π is an
oracle of R on x′ (and not on x), then there is a finite subtree
Tx′ rooted in x′ s.t. B is mapped to the fact associated with a
minimal derivation generating Tx′ . Finally, we show that B is
also mapped to the fact associated with a minimal derivation
generating the copy of Tx′ rooted in the ∼Q equivalent node
y. The proof is by induction on the depth of Tx′ . �

Let us focus on the complexity of Algorithm 1. If
Tmax denotes the maximum number of non-equivalent
nodes that can be generated, the complexity of Algo-
rithm 1 is O(Tmax × |R| × [(cost of a call to oracles (R, x))
+ |oracles(R, x)| × (cost of checking the existence of a ∼Q
equivalent node)]).

Property 5 Let R be gbts, Q a query, F a fact.
Let q = max(|terms(body(Ri))|), b = |terms(F)| +
maxi(|terms(head(Ri))|) + |C| and w the maximum predicate
arity. Let S be an ultimate derivation of F, x a bag of
DT(S ). The cost of a call to oracles(R, x) is in the order of
poly(bb, 2bq+12|P|.qw+1

).
3This is necessary to guarantee termination, resembling the

blocking techniques applied in DL tableaux algorithms.

Proof: See [Baget et al., 2011]. �
Checking y ∼Q z has a cost O(bb × (|R| × qb)2) and Tmax is

upper-bounded by 2|R|×bq
, hence the following theorem (hard-

ness results stemming from wfg subclass):
Theorem 6 CQ entailment for gbts is in 3ExpTime for
combined complexity, 2ExpTime-complete for predicate with
bounded arity and ExpTime-complete for data complexity.

5 Weakly Frontier-Guarded Rules

First, the ExpTime-complete data complexity of wfg-rules di-
rectly follows from ExpTime membership of gbts (Sect. 4)
and ExpTime-hardness of wg-rules [Calı̀ et al., 2008].

We now prove that w(f)g-rules can be polynomially trans-
lated into (f)g-rules. In particular, this allows us to exploit the
2ExpTime membership result established in the next section
for fg-rules. W.l.o.g. we assume here that the initial fact F
does not contain any variable. Then, a homomorphism from
a rule body to a derived fact necessarily maps non-affected
variables to constants in C. Thus, by replacing non-affected
variables in rules with all possible constants, we obtain an
equivalent set of rules. However, this partial grounding pro-
duces a worst-case exponential blow-up in the number of non-
affected variables per rule. We thus provide a way to simulate
partial groundings with only polynomial blow-up.

Let nav(R) denote the non-affected variables in R ∈ R. For
convenience, we fix bijections #R : nav(R)→ {1, ..., |nav(R)|}
which for every R, assign numbers to all the non-affected
variables. Now let v1, . . . , vm and v′1, . . . , v

′
s be variable sym-

bols not used in R, where m = |C| and s = maxR∈R |nav(R)|.
We now define the function τ, mapping rules from R to fg-
rules as follows: For terms t, let τR(t) = v′#R(t) if t ∈ nav(R)
and τR(t) = t otherwise. We extend τR to atoms by letting
τR
(
p(t1, ..., tl)

)
= p(v1, ..., vm, v′1, ..., v

′
s, τR(t1), ..., τR(tl)), which

is lifted to sets of atoms in the usual way. Finally, for a rule
R : body(R)→ head(R), we let τ(R) = τR(B)→ τR(H)

Note that thereby the arity of all predicates is increased by
m + s. The first m positions will be used to permanently hold
all constants c1, . . . , cm and the next s positions will serve as
a pool for special non-affected variables which will be used
for our implicit grounding. Now we let τ(R) := {τ(R) | R ∈
R} ∪ S, where S contains for every predicate p ∈ P (let its
arity be l) the rules S p

ci �→v′j

p(v1, .., vm, v′1, .., v
′
s, x1, .., xl)→ p(v1, .., vm, v∗1, .., v

∗
s, x1, .., xl)

where v∗j = vi and v∗k = v′k for all k � j. Thereby, the rule
S ci �→v′j is used to realize the bindings of the constant ci to the
non-affected variable v′j. Now let τ(F) = {τ′(a) | a ∈ F} and
τ(Q) = {τ′(a) | a ∈ Q} where
τ′(p(e1, . . . , el)) = p(c1, . . . , cm, c1, . . . , c1︸�����︷︷�����︸

s

, e1, . . . , el).

Note that the choice of c1 at positions m + 1, . . . ,m + s
is just an arbitrary one; the rules from S allow to “put” any
combination of constants at these positions. We have arrived
at a translation that suits our needs.
Theorem 7 Any instance of CQ entailment with w(f)g-rules
can be polynomially translated into an instance of the same
problem with (f)g-rules.
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Proof: The size of τ(F) (resp. τ(R), τ(Q)) is polynomially
bounded by the combined size of F and R. By adding nav(R)
to each atom in R, τ transforms each weak guard into a guard.
The rules from S are guarded. Hence, if R is w(f)g, then τ(R)
is (f)g. It is easy to check that, given F, R (wfg) and Q, we
have that F,R |= Q iff τ(F), τ(R) |= τ(Q). �

6 Frontier-Guarded and Frontier-One Rules

In this section, we show that fg- and fr1-rules are both PTime-
complete for data complexity and 2ExpTime-complete for
combined complexity no matter whether predicate arity is
bounded or not. Bárány et al. (2010) showed that deciding
entailment of unions of boolean CQ in the guarded fragment
(GF) of FOL is 2ExpTime-complete. This result can be used
to prove the following theorem.

Theorem 8 CQ entailment for fg-rules is in 2ExpTime.

Proof: We observe that every fg-rule R can be translated into
two rules one of which is guarded and the other is Datalog.
Given the frontier guard p(t1, . . . , tn) ∈ body(R), we introduce
a new n-ary predicate pR and let separate(R) be the set con-
taining the two rules SR : body(R) → pR(t1, . . . , tn) and TR :
pR(ti, . . . , tn) → head(R). It is immediate that for any fg-rule
set R, we have F,R |= Q exactly if F,

⋃
R∈R separate(R) |= Q.

Obviously, TR is guarded (and hence also lies in GF). Now
we transform SR as follows (abbreviating (t1, . . . , tn) by t and
vars(body(R)) by x as well as introducing a new predicate p′R):

∀x(body(R)→ pR(t)) ⇔ ¬∃x(body(R) ∧ ¬pR(t))

⇔
(
¬∃x(body(R) ∧ p′R(t))

)
∧
(
∀t(p(t) ∧ ¬pR(t)→ p′R(t))

)

⇔
(
¬∃x(body(R) ∧ p′R(t))

)
︸������������������������︷︷������������������������︸

=:S ′R

∧
(
∀t(p(t)→ p′R(t) ∨ pR(t))

)
︸����������������������������︷︷����������������������������︸

=:S ′′R

Hence F,R |= Q iff

F ∪ {TR, S ′′R | R∈R} ∪ {S ′R | R∈R} |= Q (†)
where the first two sets are in GF and the third consists of
negated existentially quantified conjuncts. Hence we can con-
ceive every S ′R as a negated CQ ¬QR. Consequently we have

{S ′R | R ∈ R} ≡ {¬QR | R ∈ R} ≡
∧
R∈R
¬QR ≡ ¬

∨
R∈R

QR

which allows to rephrase (†) as

F ∪ {TR, S ′′R | R ∈ R} |= Q ∨
∨
R∈R

QR

leaving us with a GF theory on the lhs and a union of boolean
CQ on the rhs. This translation is clearly linear. �

To prove the 2ExpTime-hardness of fr1-rules we adopt and
adapt the construction used to show 2ExpTime-hardness for
CQ entailment in the DLALCI from Lutz (2007).

Theorem 9 CQ entailment for fr1-rules with bounded predi-
cate arity is 2ExpTime-hard.

Proof: (Sketch) We show that Lutz’ knowledge base represen-
tation of the halting problem for exponentially space-bounded
alternating Turing machines can be expressed by fr1-rules by

applying the following modifications: (1) the acceptance con-
dition is encoded in a “backward-manner” as in the encoding
used to prove ExpTime-hardness for Horn-FLE in [Krötzsch
et al., 2007] thus enabling to formulate acceptance for exis-
tential states without disjunction; (2) each negated concept
¬A is replaced by a concept B defined to be disjoint with A,
which is possible because the tertium non datur part of the
negation is not needed; (3) the query is modified and turned
into Horn rules: this ensures that information about config-
uration changes can be propagated forward making the use
of disjunction obsolete. We obtain a CQ entailment problem
w.r.t. a set of fr1-rules with at most binary predicates which
encodes the halting problem, therefore showing the claim. �

The proof for PTime membership for data complexity is
based on a specific locality property of derivations for fg-rules
which is established in the following lemma.

Lemma 1 For every constant-free fg-rule set R there exists a
natural number wR satisfying the following: Suppose F,R |=
a for some F and an atom a = p(z1, . . . , zl) with terms(a) ⊆
terms(F) and suppose that the corresponding derivation F =
F0, . . . , Fk is such that for every atom a′ with a′ ∈ Fk−1 and
terms(a′) ⊆ terms(F) holds a′ ∈ F. Then there is a set V ⊆
terms(F) with |V | ≤ wR such that F|V ,R |= a where F|V :=
{b | b ∈ F, terms(b) ⊆ V}.

In order to leverage the above lemma for arbitrary fg-rule
sets containing constants, we need to transform the task of de-
ciding F,R |= Q into a setting where constants are excluded.
The following definition and lemma provide for this by ap-
plying a partial grounding and subsequently shifting positions
taken by constants into predicates.

Definition 8 Let R be an arbitrary fg-rule set and let Q be
a CQ. Let A be the set of constants occurring in R and Q.
For every predicate p of arity k occurring in R and Q and
every partial mapping γ : {1, . . . , k} → A, we let pγ denote a
new (k − |dom(γ)|)-ary predicate. Let ξA map atoms from R
and Q to new atoms by projecting out positions filled by con-
stants from A.4 We lift the function ξA to conjuncts and rules
in the obvious way. Now, letting PGA(R) denote all partial
groundings of R where some universally quantified variables
are substituted by constants from A, we define the rule set
cfree(R,Q) =

{
ξA(R′) | R′ ∈ PGA(R),R ∈ R ∪ {Q→ match}

}

Lemma 2 For R (fg), cfree(R,Q) is fg and constant-free.
Given a fact F and assuming fixed R and Q, the size of ξA(F)
and the time to compute it is polynomially bounded by |F|.
Moreover F,R |= Q iff ξA(F), cfree(R,Q) |= match.

Relying on Lemma 1 we next provide a translation of
constant-free R and Q into a Datalog program. The main idea
is to “compile away” existential variables introduced in rule
heads by “precomputing” deduction sequences that finally re-
sult in a query match.

Definition 9 Given a constant-free fg-rule set R, we define
the Datalog-program P(R) as follows: Let {y1, . . . , ywR } be
a set of variable symbols. Let G denote the finite set of all
atoms with predicates from R and terms from {y1, . . . , ywR }.

4For instance ξ{a,b}(p(x, a, b, c)) = p{2�→a,3�→b}(x, c).
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Now let P(R) be the set of Datalog rules containing every
∀y1, . . . , ywR (B → h) (with B ⊆ G and h ∈ G) for which
B,R |= h.

Then coupling constant removal and the preceding Datalog
translation, we can establish the following proposition, which
gives rise to the expected theorem.

Lemma 3 For a set R of fg rules holds F,R |= Q iff
ξA(F),P(cfree(R,Q)) |= match.

Theorem 10 CQ entailment for fg- and fr1-rules is PTime-
complete for data complexity.

Proof: Thanks to Lemma 3, we have reduced the problem to
atom entailment in Datalog. Noting that P(cfree(R,Q)) is in-
dependent from F and (w.l.o.g. assuming that F contains only
constants) that ξA(F) consists only of ground atoms, PTime
data complexity membership follows from the PTime data
complexity of entailment in Datalog [Dantsin et al., 2001].
PTime-hardness for data complexity is a direct consequence
of the same result for propositional Horn logic. �

Tree-like structures often lead to lower complexity. Hence,
let us focus on fg-rules with an acyclic body (ba), in the
sense that the hypergraph associated with their body is
acyclic.5 First, note that guarded rules are trivially ba-
fg-rules. In turn, a KB with ba-fg-rules can be polyno-
mially translated into a KB with guarded rules while pre-
serving the predicate arity.6 Thus, previous complexity re-
sults on guarded rules apply to ba-fg-rules (in particular they
are ExpTime-complete for bounded-arity combined complex-
ity, while fg-rules are 2ExpTime-complete). Concerning ba-
fr1-rules, PTime-complete data complexity follows from the
proof of Th. 10; about combined complexity, ExpTime-
hardness with bounded arity (thus with unbounded arity too)
follows from the fact that standard reasoning in the weaker
DL fragment Horn-FLE is already ExpTime-hard [Krötzsch
et al., 2007]; from ExpTime membership of guarded rules
in the bounded arity case, we conclude that ba-fr1-rules are
ExpTime-complete with bounded-arity. The only remaining
question is whether they are simpler than ba-fg-rules in the
unbounded arity case. We established ExpTime membership
for the constant-free variant, but not for the general case.

7 Conclusion
We have introduced the notion of greedy bts of existential
rules that subsumes guarded rules as well as their known gen-
eralizations and gives rise to a generic algorithm for decid-
ing CQ entailment. Moreover, we have classified known gbts
subclasses w.r.t. their combined and data complexities. Some
interesting open issues remain, e.g. the exact complexity of
gbts in the unbounded predicate arity case and the recogniz-
ability of gbts. We conjecture that the latter problem is de-
cidable, however it can be shown that it is at least 2ExpTime-
hard. Future work will aim at the integration of rules express-
ing equality and other properties such as transitivity into this

5A hypergraph is acyclic if each of its connected components can
be decomposed into a “join tree” (classical notion); we slightly gen-
eralize this notion by ignoring constants in hyperedge intersections.

6Due to space restriction, this translation cannot be detailed. It
relies on the join tree decomposition of each rule body.

framework, preserving decidability, and trying to keep the de-
sirable PTime data complexity of fg-rules.
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