
Belief Management for High-Level Robot Programs

Stephan Gspandl, Ingo Pill, Michael Reip, Gerald Steinbauer

Institute for Software Technology
Graz University of Technology

Graz, Austria
{sgspandl,ipill,mreip,steinbauer}@ist.tugraz.at

Alexander Ferrein∗

Knowledge-Based Systems Group
RWTH Aachen University

Aachen, Germany
ferrein@cs.rwth-aachen.de

Abstract

The robot programming and plan language In-
diGolog allows for on-line execution of actions
and offline projections of programs in dynamic and
partly unknown environments. Basic assumptions
are that the outcomes of primitive and sensing ac-
tions are correctly modeled, and that the agent is in-
formed about all exogenous events beyond its con-
trol. In real-world applications, however, such as-
sumptions do not hold. In fact, an action’s outcome
is error-prone and sensing results are noisy. In this
paper, we present a belief management system in
IndiGolog that is able to detect inconsistencies be-
tween a robot’s modeled belief and what happened
in reality. The system furthermore derives explana-
tions and maintains a consistent belief. Our main
contributions are (1) a belief management system
following a history-based diagnosis approach that
allows an agent to actively cope with faulty actions
and the occurrence of exogenous events; and (2) an
implementation in IndiGolog and experimental re-
sults from a delivery domain.

1 Introduction

High-level control is a serious challenge in autonomous sys-
tems design, especially for complex and dynamic domains.
In the cognitive robotics domain, the framework around the
logic-based robot programming and plan language IndiGolog
[Giacomo et al., 2009] (an on-line variant of the Golog fam-
ily [Levesque et al., 1997]) provides the means for state-of-
the-art high-level control. However, basic assumptions in In-
diGolog are that an action’s outcome is correctly modeled,
and that all exogenous events beyond the system’s control

∗Part of the presented work was done while A. Ferrein was affil-
iated with the Robotics and Agent Research Lab at the University of
Cape Town, South Africa.

are known. Such assumptions are in conflict with reality, as
actions and their models are error-prone and sensing results
might be noisy and incomplete. Dismissing such details neg-
atively affects a robot’s effectiveness in situations where the
control system reasons with belief that contradicts reality.

Consider, for instance, some office delivery robot that is to
deliver a letter to office C. Assume that the robot believes to
have delivered the letter to office C, while in reality it moved
to room A instead (and is unaware of that). Besides the failed
task, all future courses of actions will be based on this very
wrong belief. As a first step, execution monitoring and a
strong background model could enable the detection of such
inconsistencies, say, when an object would be considered to
be in two rooms simultaneously. For such encountered in-
consistencies, there might be more than one explanation (fail-
ing actions, sensing faults, or exogenous events). Hence, the
robot has to reason about such explanations, demanding for
belief management over multiple hypotheses.

In this paper, we present an approach of such a belief man-
agement system in IndiGolog that follows the history-based
diagnosis approach by Iwan [Iwan, 2002]. Both, IndiGolog
and history-based diagnosis, are based on the situation calcu-
lus [McCarthy, 1963]. Instead of addressing “what is wrong”,
the type of diagnoses is along the lines of explaining “what
happened”[McIlraith, 1999]. Our system allows the agent to
detect inconsistencies between the modeled belief and real
sensor values, and generates a number of hypotheses to ex-
plain the mismatch. While we adopt the most likely hypoth-
esis for immediate operation, we keep a pool of alternatives
in case future data prove the favored one to be wrong. We
limit the pool size in order to keep the number of explana-
tions manageable. Experimental results from a delivery do-
main show the capabilities of our approach.

The remainder of this paper is organized as follows. First,
we introduce IndiGolog and Iwan’s history-based diagnosis
approach. In Section 3 we formalize our belief management
system and show its integration into IndiGolog. Further, we
introduce a pool of possible hypotheses and constitute a min-

900

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence

imum pool size to still be able to explain a maximum number
of k faults. Experimental results can be found in Section 4.
We conclude with a discussion of related work and an outlook
to our future research.

2 Background

2.1 The Situation Calculus

The situation calculus [McCarthy, 1963] is a sorted second
order logical language with equality that allows one to reason
about actions and their effects. Starting in the initial situation
S0 (when no actions have occurred yet), action sequences
(histories) can be evaluated to define the current situation
s. For this purpose, there is a special function symbol do :
action × situation → situation that denotes the situation s
after performing action α in situation s (s′ = do(α, s)). Prop-
erties holding in a situation are represented by so-called flu-
ents, where fluents are functions or relations with a situation
term as last argument. Action precondition axioms Dap of
the form Poss(α(�x), s) ≡ Πα(�x) and effect axioms describe
the validity of an action in a situation s and the effects re-
garding s′. In Reiter’s variant of the situation calculus, action
effects are axiomatized by so-called successor state axioms
Dssa of the form: F (�x, do(α, s)) ≡ ϕ+(α, �x, s) ∨ F (�x, s) ∧
¬ϕ−(α, �x, s), with formulas ϕ+/−(α, �x, s) evaluating F to
true or false respectively.1 In combination with foundational
axioms Σ, unique name axioms for actions Duna, and some
axioms about the initial situation DS0 , Dssa and Dap form the
so-called basic action theory D = Σ∪Dssa∪Dap∪Duna∪DS0 .
For more details, we refer the reader to [Reiter, 2001].

2.2 History-based Diagnosis

We follow the approach of [Iwan, 2002], denoting histories
with σ, δ̄ or ᾱ, situation terms with σ or s. Sometimes, we
use both terms synonymously, but it will be evident from the
context. Iwan distinguishes between action variations and ex-
ogenous action insertions as explanations for inconsistencies
between an observation φ (a sensor value) and an action his-
tory δ̄ (a situation term). All possible variations and inser-
tions are completely modeled in terms of predicates Var and
Ins , where Var(α,A(�x), σ) ≡ ΘA(α, �x, σ) and Ins(α, σ) ≡
Θ(α, σ) state under which conditions ΘA and Θ respectively,
action A is a variation of action α and some action α is a
valid insertion into the action history. We use the notion
of executable action histories Exec(do([α1, . . . , αn], S0))

.
=∧

j∈{1,...,n} Poss(αj , do([α1, . . . , αj−1], S0))
2 and the notion

of extended variations, which is inductively defined as:
1. EVar(ε, ε)

.
= �,

2. EVar(ε, ᾱ.α)
.
= ⊥,

3. EVar(δ̄.δ, ε)
.
= Ins(δ, do(δ̄, S0)) ∧ EVar(δ̄, ε),

1For space reasons, we only show relational fluents here. Further
note that, as usual, all free variables in formulas are meant to be
implicitly universally quantified. We abbreviate the list of variables
x1, . . . , xn with �x.

2ΘA(a,A(�x), s) and Θ(a, s) are similar to formulas
Πa(�x) in the right-hand side of action precondition ax-
ioms. do([α1, . . . , αn], σ) is an abbreviation for the term
do(αn, do(αn−1, · · · do(α1, σ) · · ·)).

4. EVar(δ̄.δ, ᾱ.α)
.
= (Var(δ, α, do(δ̄, S0)∧EVar(δ̄, ᾱ))∨

(Ins(δ, do(δ̄, S0)) ∧ EVar(δ̄, ᾱ.α))

meaning that δ̄.δ is an extended variation of ᾱ.α (or ε as
in case 3) if δ is a valid variation (or insertion, resp.) of
α in situation do(δ̄, S0) and δ̄ is an extended variation of
ᾱ. The notion δ̄.δ refers to the history of actions in δ̄ plus
the single action δ. The equivalent notation as a situation
term is do([δ̄, δ], s). We denote the empty history with ε.
In the introductory robot example, going to office A is a
variation of going to office C, while adding an exogenous
event stating that the robot was robbed of the letter repre-
sents an insertion. A ground action sequence δ̄ is an explana-
tory history-based diagnosis for an observation φ and a his-
tory η̄ iff D |= ExplDiag(δ̄, φ, η̄) with ExplDiag(δ̄, φ, η̄)

.
=

EVar(δ̄, η̄) ∧ Exec(δ̄) ∧ φ[δ̄]. Note that we assume a finite
limit to the number of insertions and variations, which is rea-
sonable as during one execution step usually only a limited
number of faults occur. Given a complete model consider-
ing all possible faults, all possible inconsistencies can be ex-
plained. For ranking diagnoses, we define a preference value,
as is discussed in Section 3.1.

2.3 IndiGolog

IndiGolog [Giacomo et al., 2009] is an online variant of
Golog [Levesque et al., 1997] accounting for offline projec-
tions and sensing. It is a robot programming language where
the semantic of its constructs is defined in the situation cal-
culus. To this end, a one-step transition semantic with pred-
icates Trans and Final is defined. A program configuration
is a tuple 〈γ, s〉, where γ is a program and s a situation. The
special predicate Trans(γ, s, γ′, s′) transforms program γ in
the situation s into the program γ′ resulting in the situation
s′. To denote final (terminating) configurations, a predicate
Final(γ, s) exists. For example, to transform a primitive ac-
tion, the following Trans and Final predicates are required:

1. Trans(nil, s, γ′, s′) ≡ ⊥;

2. Trans(α, s, γ′, s′) ≡ Poss(α, s) ∧ γ′ = nil∧
s′ = do(α, s)

3. Final(nil, s) ≡ �
4. Final(α, s) ≡ ⊥.

The transition for a primitive action is: 〈α, s〉 →
〈nil, do(α, s)〉. The latter is a final configuration as the pred-
icate Final(nil, do(α, s)) holds. Loops, conditionals, and re-
cursive procedures are defined in a similar way (see [Giacomo
et al., 2009] for a complete overview).

To account for sensing results, a number of sensing axioms
SF (α(�x), s) ≡ F (�x, do(α(�x), s)) which relate sensing ac-
tions with fluents are introduced. For each non-sensing action
αi, one adds an axiom SF (αi, s) ≡ �.

To give an example, consider that our robot wants to sense
whether a door is open: SF (senseDoor(d), s) ≡ Open(d, s)
where senseDoor is a primitive action and Open is a flu-
ent. All sensing axioms are collected in the set {Senses}.
In IndiGolog, one further needs a set C that contains ax-
ioms for reifying programs as terms. See [Giacomo et al.,
2009] for a detailed discussion. Throughout the rest of the

901

paper, we hence use an extended basic action theory D∗ =
D ∪ C ∪ {Sensed}.

Having all preliminaries in place, we will show the inte-
gration of history-based diagnosis into IndiGolog in the next
section.

3 Belief Management in IndiGolog

Our belief management is based on a pool of diagnoses ex-
plaining an agent’s sensory inputs. In our system, an agent’s
belief is the set of all fluents’ truth values in the current situ-
ation, as derived by D∗. For encountered inconsistencies, the
agent computes a number of possible hypotheses that explain
them. In order to control the space of possible hypotheses,
the agent keeps the most preferred hypothesis to explain the
just occurred inconsistency. This is very much in the spirit of
IndiGolog, where the agent also commits to the next action
by directly executing it. In this section, we formally define
history-based diagnosis and show the integration into the In-
diGolog interpreter.

3.1 History-based Diagnosis with Invariants

Let us start with the notion of consistency. In this con-
text, for one, we need to check whether the current situ-
ation is consistent with additional domain related environ-
ment invariants. Invariants are represented by the predi-
cate Invaria(s)

.
=

∧
i ιi(s), a conjunction of invariants sen-

tences ι(s) over fluents formulas. An example for an in-
variant is ιn(s) ≡ [carry something ⊃ ∃o.has object(o)]
stating that if the pressure sensor detects some weight, then
the robot is carrying some object. Such invariants are re-
quired to detect inconsistencies within not directly accessi-
ble fluents. For another, we need to detect inconsistencies
between modeled belief and the real world w.r.t. our sen-
sors. We have to compare the modeled belief which is repre-
sented by the sense fluent axioms SF with values that come
directly from our sensors. To this end, we introduce a helper
predicate RealSense(α, s). It is true if the sensor for flu-
ent F connected via the sensing action α returns the value
� (similarly as a sense fluent axiom); and false otherwise. If
SF (α, s)
≡ RealSense(alpha, s), then the real sensor value
contradicts the predicted one, and we have an inconsistency.
Due to limited space, we do not introduce RealSense for-
mally, and refer the reader to e.g. [Ferrein, 2008] on how real
sensor values can be integrated into IndiGolog.

Definition 1. A history σ is consistent iff D∗ |= Cons(σ)
with Cons(·) inductively defined as:

1. Cons(ε)
.
= Invaria(S0)

2. Cons(δ̄.α)
.
= Cons(δ̄) ∧ Invaria(δ̄.α)∧

[SF (α, δ̄) ∧ RealSense(α, δ̄.α)∨
¬SF (α, δ̄) ∧ ¬RealSense(α, δ̄.α)]

Before we introduce our diagnosis approach, we need to de-
fine a difference measure on action histories.

Definition 2. Let cv : situation × situation → IR+,
cv(δ̄, ᾱ) = v with v ≥ 0 evaluate the difference between a
diagnosis δ̄ and a history ᾱ. cv is called the change value
and is inductively defined as:

1. cv(δ̄, δ̄) = 0

2. cv(δ̄.δ, ᾱ) = cv(δ̄, ᾱ) + val(Ins(δ, δ̄))

3. cv(δ̄.δ, ᾱ.α) = cv(δ̄, ᾱ) + val(Var(δ, α, δ̄))

Ins and Var are as in Section 2.2. We assume standard ax-
iomatization of integers together with their standard opera-
tions.

The cost function val assigns a positive value that reflects
the impact of repair to each single action insertion and varia-
tion. The lump sum of total costs for all variations and inser-
tions yields the final difference value between a diagnosis and
a history, and therefore defines the diagnosis’ change value.
Thus the higher the value, the less plausible a diagnosis is.
The assumption that diagnoses representing a lower cardinal-
ity of faults are more plausible is commonly used in ranking
diagnoses [de Kleer and Williams, 1987].

A history-based diagnosis is an executable extended varia-
tion that is consistent with the current sensing history.

Definition 3. Let δ̄ and σ be histories. Let Diag(δ̄, σ, v)
.
=

EVar(δ̄, σ) ∧ Exec(δ̄) ∧ Cons(δ̄) ∧ v = cv(δ̄, σ), denoting
that δ̄ is an extended variation of σ that is executable and
consistent. δ̄ is a proper history-based diagnosis (or diagno-
sis for short) based on σ iff D∗ |= Diag(δ̄, σ, v).

To illustrate this, we come back to our introductory
robot example. Assume the robot performed the fol-
lowing consistent action history σ = [pickup(letter),
goto(room1), drop(letter)]. It now performs a sensing ac-
tion sense(letter) with

RealSense(sense(letter), σ)
≡ SF(sense(letter), σ)

which is inconsistent. Possible explanations are: (1) the
robot failed to pick it up: δ̄ = [pickupFail , goto(room1),
dropNothing]); (2) the sensing result was wrong:
RealSense(sense(letter), σ2) ≡ SF(sense(letter), σ2); or
(3) somebody snatched the letter: δ̄′ = [pickup(letter),
snatch(letter), goto(room1), dropNothing].

We can estimate an upper bound for the size of the diag-
nosis space w.r.t the number of variations and insertions that
happened between two consecutive actions.

Theorem 1. Let l be the length of the history σ, n be the
number of different possible exogenous events, k be the max-
imum number of insertions between two actions of σ, and m
be the maximum number of variations of an action. Then,
the number H of potential diagnosis candidates is H =

((m+ 1) ·∑k
i=0 n

i)l.

Proof (Sketch). For every action there are m variations plus
the action itself. Every action can be followed by 0 to k in-
sertions. The number of insertions is exponential in i. The
whole term is exponential in the history length l.

To accommodate a possible state-space explosion, in our
implementation we keep a fixed-sized pool Pool of diagnoses

902

together with their respective change values. As we assume a
finite number of insertions and variations, we can define the
pool of diagnoses as a formula over all possible diagnoses in
case the current history is not consistent with our observa-
tions of what happened in the real world. Otherwise, the pool
consists of the history itself.

Definition 4. Let σ be a history. Then Pool is defined as

Pool(σ) = ((δ̄1, v1), · · · , (δ̄n, vn)) .
=

Cons(σ) ∧ δ̄1 = σ ∧ v1 = 0 ∧ · · · ∧ δ̄n = σ ∧ vn = 0 ∨
¬Cons(σ) ∧Diag(δ̄1, σ, v1) ∧ · · · ∧Diag(δ̄n, σ, vn)

The implementation of our belief management system
evaluates the pool of hypotheses in a lazy fashion. It focuses
therefore on (one of) the simplest explanation(s) for an incon-
sistency first, that is a hypothesis with the smallest preference
value.

Definition 5. Let σ be a history. The preferred diagnosis
prefDiag is defined as:

prefDiag(σ) = δ̄
.
=

∃δ̄1, v1, . . . , δ̄n, vn.Pool(σ) = ((δ̄1, v1), · · · , (δ̄n, vn)) ∧
[δ̄ = δ̄1 ∧ v1 ≤ v2 ∧ · · · ∧ v1 ≤ vn ∨
δ̄ = δ̄2 ∧ v2 ≤ v1 ∧ v2 ≤ v3 ∧ · · · ∧ v2 ≤ vn ∨

...
δ̄ = δn ∧ vn ≤ v1 ∧ · · · ∧ vn ≤ vn−1]

For a specific number c of faults we can determine a nec-
essary minimum pool size (i.e. the length of the formula) en-
suring the completeness of our approach. We can show that
w.r.t. a fixed maximum number of changes c to a given his-
tory, the required pool size is much smaller than the number
H established in Theorem 1.

Theorem 2. Let σ be a history and p be number of di-
agnoses of Pool(σ). Let c be the maximum number of
all insertions i and variations v to a history σ and let
k, l, m and n be as in Theorem 1. Further, let τ =∑c

c′=1

∑c′

i=0,v=c′−i

(
l
v

)
mv

(
i+l−1

i

)
ni. If c ≤ k, l then τ is

the exact amount of possible hypotheses. τ is an upper bound
for c > k, l. With p ≥ τ we can guarantee that our approach
is complete.

Proof (Sketch). We investigate variations v and insertions i
separately, where the product of the corresponding options
determines the total amount of diagnoses. For each of the

(
l
v

)

possibly faulty action combinations we have mv instances.
Regarding insertions, after adding i elements to σ we get
|σ′| = i+ |σ| = i+ l. As the first element is fixed, similarly
as with the variations we have for each of the

(
i+l−1

i

)
com-

binations ni instances. Consequently, we have to sum over
all different distributions of variations and insertions and fi-
nally sum over all c′ ≤ c. If the pool size is greater or equal
to this maximum number of hypotheses, then obviously all
hypotheses can be considered to be in the pool.

Algorithm 1: Extended mainloop of the Prolog Imple-
mentation of IndiGolog.

1. Exogenous events

indigo(E,H) :- exog_occurs(Act),
exog_action(Act),!,indigo(E,[Act|H]).

2. Transition of the program

indigo(E,H):-
readPool(PrefD,H),
transBM(E,H,E1,H1,PrefD),
storePool(PrefD,H1),
indixeq(H,H1,H2),!,indigo(E1,H2).

3. Final condition check

indigo(E,H) :- final(E,H), length(H,N),
write(N), write(’ actions.’), nl.

3.2 Integrating the Diagnosis Step into IndiGolog

Now, we show the integration of our diagnosis step into In-
diGolog. The Prolog implementation of the mainloop of our
extended IndiGolog interpreter (cf. [Giacomo et al., 2009]
for a complete description of the implementation) is shown
in Alg. 1. First it is checked, whether an exogenous event oc-
curred. If so, it is entered up front in the action history. Step 3
of the mainloop checks, if the program reached a final config-
uration and if so, the interpreter terminates. Step 2 of Alg. 1
performs a single-step transitions of the program. Here, we
integrated the diagnosis step. Therefore, we exchanged the
original Trans predicate with a predicate TransBM that is
introduced below; it extends Step 2 with a consistency check
and the pool update (as described in the previous section).
Before we can check for consistency, we need to get the
pool of diagnoses from Prolog’s database (via the predicate
readPool); after our consistency check, the pool is stored
again (storePool). In our implementation, we incremen-
tally generate the different hypotheses. This means that we
do not compute all possible hypotheses after the execution
of each action. Only in case of an inconsistency, we extend
invalid hypotheses in the pool. This is done for run-time ef-
ficiency. The predicate indixeq is also used in the original
version of the interpreter and provides the interface to execute
actions in the real world. Now, we come to the consistency
check step and define TransBM formally:

TransBM (γ, s, γ′, s′) ≡
∃γ′′.Trans(γ, s, γ′′, s′) ∧ ∃δ̄.prefDiag(s′) = δ̄ ∧
∃γ′′′.align(δ̄, γ′′′) ∧ γ′ = γ′′.γ′′′

TransBM takes a program γ in situation s and transforms
it to program γ′ in situation s′. First, the Trans predicate,
which is defined as usual (cf. [Giacomo et al., 2009]) per-
forms a single step transition. prefDiag identifies the new
preferred diagnosis δ̄, which is used to generate a new pro-
gram consisting of necessary actions to retrieve a consistent
situation.

Assuming a correct model and a sufficient pool size, now
we have at least one consistent diagnosis that explains the
current world state. However, the situation s′ could still be

903

inconsistent, and future program transitions might not be pos-
sible or will lead to more inconsistencies. Therefore, we need
to generate a consistent world state. One possibility could be
to just go on with the program execution on history δ̄. But as
this is only a hypothesis, it does not seem advisable to do so.
Instead, we decided to introduce a predicate align that takes
the preferred diagnosis δ̄ and generates a program γ′′′ whose
world state agrees with δ̄. This is achieved by a special ac-
tion set val(F (�x, ψF)) that sets the value of fluent F to the
value ψF explicitly (see [Ferrein, 2008] for details on how to
define such an action in IndiGolog). align(δ̄, γ) generates a
sequence of “set” actions, one for each fluent in the domain
description. To this end, we need a number of macros of the
form ψF1

(�x1, s)
.
= F1(�x1, s), . . . , ψFn

(�xn, s)
.
= Fn(�xn, s),

one for each fluent. align is defined as:

align(δ̄, γ)
.
=

γ = set val(F1(�x1), ψF1
(�x1, δ̄)); . . . ;

set val(Fn(�xn), ψFn
(�xn, δ̄)).

The execution of this sequence of set val actions leads to a
world state that agrees with δ̄∗. In the next section we show
the results of our belief management.

4 Experimental Results

In order to evaluate our approach, we simulated and analyzed
two robot control systems for delivery robots. We compared
one system (BM) equipped with our belief management sys-
tem against a plain one (P) that lacks it. The contestants were
to move 3 objects in an office environment consisting of 59
rooms and 12 hallway segments (resembling our department).
The robots’ set of actions allowed them to pickup an object,
move between connected rooms, and drop an object.

For our tests, we defined three action fault types and
one exogenous one: The robot might (1) fail to pick up
an object Var(pickup(·), pickupNothing , s), (2) pick up the
wrong object Var(pickup(o1), pickup(o2), s) ≡ obj(o1) ∧
obj(o2)∧o1
= o2), with obj(o) = o

.
= letter∨o = box∨ . . .

defining a finite set of objects; and (3) fail to release an ob-
ject Var(drop(o), dropNothing , s) ≡ has obj(o, s). These
faults resemble issues that frequently occur in reality. As ex-
ogenous issue, mean agents snatch objects currently carried
by the robots Ins(snatchObject(o), s) ≡ has obj(o, s)).

Our four fault scenarios F1 to F4 define the following fault
probabilities: In F1 the probability for picking up the wrong
object is 0.2 and 0.4 for it to fail entirely. Additionally, in
F2 a 0.3 probability for a failing drop action is defined. In
F3 we add a probability of 0.05 that a sensing action fails,
extended by mean agents snatching objects with a probability
of 0.2 in F4. In order to model real robots more closely, we
implemented continuous passive sensing in IndiGolog3, and
defined three sensing rates S1 to S3: S1 refers to the avail-
ability of sensor data after every action. For S2 sensor data is
available after every second action and for S3 after every third
one. The sensing rates represent the fact that due to resource

3It is quite common in real robot systems that they automatically
provide sensing information after each action execution without ac-
tively triggering special sensing actions.

limitations (e.g. bandwidth, power, or computation time), in
reality sensing might not be available at high rates.

For the results given in Table 1(a), the contestants P and
BM had to prove themselves in the context of 50 different
missions (plans). For any scenario and sensing rate they had
to solve these missions 10 times with varying seeds. In order
to exclude any impact of planning issues on the results, both
agents used a simple control program generating a trace of
typical 40 actions in the absence of faults. The table reports
the rate of successfully completed missions. A mission is
failed if its execution is aborted or exceeds a timeout of 120
minutes, or if the 3 objects are not at the desired locations.

The results in Table 1(a) show that the agent BM clearly
outperforms the plain one with a significance level of 1%.
Though the success rate decreases along decreasing sensor
and increasing fault rates, in contrast to the plain agent, BM is
still able to finish most of its missions. Especially the impact
of sensing rates can be minimized using the agent BM instead
of the plain one.

In Table 1(b) we report the average runtime for BM for all
twelve scenarios4. The average runtime of the plain agent is
almost constant at 29.4 seconds over all scenarios. Whereas
there is just a very small overhead of the BM agent in F1, F2
and F3 the overhead in F4 increases exponentially.

5 Discussion

In this paper we presented a belief management system that
allows an agent or robot to detect inconsistencies between its
internal representation of the world and reality. In order to
be able to cope with such inconsistencies, the system pro-
vides explanations about what has happened in terms of the
occurrence of wrong outcomes of primitive and sensing ac-
tion and exogenous events the agent is not aware of. This
is in contrast to diagnoses that answer the question of “what
is wrong” and was first addressed in the situation calculus
by [McIlraith, 1999] (later also by [Sohrabi et al., 2010]).
McIlraith addresses explanatory diagnoses which are contin-
uations of a given history of actions. It is shown that find-
ing such diagnoses is analogous to planning. [Grastien et al.,
2007] established the connection to satisfiability problems.

The main contributions of this paper are a formalization of
the belief management system based on the situation calculus
and history-based diagnosis, and the integration of the sys-
tem into an existing IndiGolog interpreter. Besides a formal
proof that the system (under some assumptions) is capable
to find the right explanation for an inconsistency, we present
experimental results from a simulated delivery robot domain.
These show that an agent equipped with the proposed system
is able to finish more tasks successfully under the occurrence
of faults and exogenous events. We integrated the diagnosis
step in a fashion similar to the work of De Giacomo et al. [de
Giacomo et al., 1998; de Leoni et al., 2007] about execution
monitoring. While they show how to integrate a monitoring
step in the IndiGolog interpreter, they do not use a sophisti-
cated diagnosis mechanism. Other related works on execu-
tion monitoring in Golog is e.g. [Lespérance and Ng, 2000;
Ferrein et al., 2004].

4On an Intel quad-core CPU with 2.40GHz and 4GB of RAM

904

Scenario

F1 F2 F3 F4

P BM P BM P BM P BM

S1 100 / 0 100 / 0 51 / 15 100 / 0 18 / 10 96 / 7 6 / 11 77 / 14

S2 38 / 27 100 / 0 24 / 13 100 / 0 15 / 7 80 / 15 4 / 5 65 / 17

S3 31 / 20 99 / 5 20 / 10 99 / 2 17 / 9 71 / 14 3 / 5 52 / 22

(a) Percentage of successfully finished missions plus standard deviations.

Scenario

F1 F2 F3 F4

S1 38 / 7 44 / 8 75 / 25 845 / 444

S2 48 / 10 56 / 11 83 / 22 644 / 190

S3 57 / 27 67 / 16 87 / 21 771 / 237

(b) Average runtime in seconds (BM) and standard deviations.

Table 1: Results for scenarios F1 - F4 and sensing rates S1 - S3 for a robot using belief management (BM) and a plain one (P).

A drawback of the approach is its current high complex-
ity, as the number of potential explanations to be considered
is double exponential in the number of faults considered and
the length of the action history. Even if pruning techniques
help to control this number, this potentially limits the appli-
cability to more complex domains. In future work we will in-
vestigate whether our proposed system can benefit from more
compact representations already used in the planning, diag-
nosis or model checking domain. Another important issue is
that all potential faults and their effects have to be modeled. It
is still questionable if and how such models can be generated
automatically in an efficient way, and if there is a way to cope
with non-modeled faults.

Acknowledgments

This work has been partly funded by the Austrian Science
Fund (FWF) under grants P22690 and P22959. A. Ferrein is
supported by a grant of the Alexander von Humboldt foun-
dation as a Feodor Lynen fellow. We would like to thank
the anonymous reviewers for their helpful comments and M.
Thielscher for his help to revise an earlier version of this pa-
per.

References

[de Giacomo et al., 1998] G. de Giacomo, R. Reiter, and
M. Soutchanski. Execution monitoring of high-level robot
programs. In Proc. KR, pages 453–465, 1998.

[de Kleer and Williams, 1987] Johan de Kleer and Brian C.
Williams. Diagnosing multiple faults. Artificial Intelligence,
32(1):97–130, 1987.

[de Leoni et al., 2007] M. de Leoni, M. Mecella, and G. de Gia-
como. Highly dynamic adaptation in process management sys-
tems through execution monitoring. In Proc. BPM’2007, pages
182–197. Springer, 2007.

[Ferrein et al., 2004] A. Ferrein, Ch. Fritz, and G. Lakemeyer. On-
line decision-theoretic golog for unpredictable domains. In Proc.
KI-2004, LNCS, pages 322–336. Springer, 2004.

[Ferrein, 2008] A. Ferrein. Robot Controllers for Highly Dy-
namic Environments with Real-time Constraints. PhD thesis,
Knowledge-based Systems Group, RWTH Aachen University,
Aachen Germany, 2008.

[Giacomo et al., 2009] G. De Giacomo, Y. Lespérance, H. J.
Levesque, and S. Sardina. Multi-Agent Programming: Lan-
guages, Tools and Applications, chapter IndiGolog: A High-
Level Programming Language for Embedded Reasoning Agents,
pages 31–72. Springer, 2009.

[Grastien et al., 2007] Al. Grastien, Anbulagan, J. Rintanen, and
E. Kelareva. Diagnosis of discrete-event systems using satisfi-
ability algorithms. In Proc. AAAI-07, 2007.

[Iwan, 2002] G. Iwan. History-based diagnosis templates in the
framework of the situation calculus. AI Communications,
15(1):31–45, 2002.

[Lespérance and Ng, 2000] Y. Lespérance and H.-K. Ng. Integrat-
ing planning into reactive high-level robot programs. In Proc.
CogRob, pages 49–54, 2000.

[Levesque et al., 1997] H. J. Levesque, R. Reiter, Y. Lespérance,
F. Lin, and R. B. Scherl. GOLOG: A logic programming lan-
guage for dynamic domains. The Journal of Logic Programming,
31(1-3):59 – 83, 1997.

[McCarthy, 1963] J. McCarthy. Situations, Actions and Causal
Laws. Technical report, Stanford University, 1963.

[McIlraith, 1999] S. McIlraith. Explanatory diagnosis: Conjectur-
ing actions to explain observations. In Logical Foundations for
Cognitive Agents: Papers in Honour of Ray Reiter, pages 155–
172. Springer, 1999.

[Reiter, 2001] R. Reiter. Knowledge in Action. Logical Foundations
for Specifying and Implementing Dynamical Systems. MIT Press,
2001.

[Sohrabi et al., 2010] S. Sohrabi, J. A. Baier, and S. A. McIlraith.
Diagnosis as planning revisited. In Proc. KR, pages 26–36, 2010.

905

