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Abstract

Recent years have seen a lot of work towards ex-
tending the established AGM belief revision the-
ory with respect to iterating revision, preserving
conditional beliefs, and handling sets of proposi-
tions as new information. In particular, novel pos-
tulates like independence and evidence retainment
have been brought forth as new standards for re-
vising epistemic states by (sets of) propositional
information. In this paper, we propose a con-
structive approach for revising epistemic states by
sets of (propositional and conditional) beliefs that
combines ideas from nonmonotonic reasoning with
conditional belief revision. We also propose a novel
principle called enforcement that covers both inde-
pendence and evidence retainment, and we show
our revision operator to comply with major postu-
lates from the literature. Moreover, we point out the
relevance of our approach for default reasoning.

1 Introduction

Belief revision theory provides methods and axiomatic pos-
tulates for changing the minds of intelligent agents in a ratio-
nal way, in particular, when the new information is in con-
flict with previously held beliefs. The seminal AGM theory
[Alchourrón et al., 1985] studied belief revision in a purely
propositional scenario. Since then, various approaches have
been proposed to extend this framework, going for iterated
revision of more complex epistemic states and studying re-
vision strategies given by conditionals (cf., e.g., [Darwiche
and Pearl, 1997]). Recently, in particular the demand for
independence of syntax which is responsible for consider-
ing information sets like {A,B} and {A ∧ B} as equiva-
lent has been questioned since in the context of iterated re-
vision, unwanted effects may occur (cf., e.g., [Delgrande and
Jin, 2008]). This has raised interest in investigating multiple
[Zhang, 2004], parallel [Delgrande and Jin, 2008] or simul-
taneous [Kern-Isberner, 2008] revision in which the new in-
formation is given by sets of propositions resp. conditionals.
However, no consensus has been reached yet, and each new
approach seems to set up a new framework.

This paper aims at providing some common ground for
the theory of revising epistemic states by general informa-

tion sets, i.e., sets of (conditional or propositional) sentences.
So, given some prior epistemic state and some general infor-
mation set, we will propose postulates that are mainly based
on a principle of conditional preservation as stated in [Kern-
Isberner, 2004], and on enforcing conditional beliefs in the
posterior epistemic state. As a consequence of the principle
of conditional preservation, each element of the information
set is dealt with separately, thus distinguishing easily revi-
sions by, e.g., {A,B} from those by {A ∧B}. The postulate
of enforcing conditional beliefs exploits ideas from [Kern-
Isberner, 2002] originally proposed for default reasoning and
generalizes postulates like independence [Jin and Thielscher,
2007] and evidence retainment [Delgrande and Jin, 2008] for
the task of revising by conditionals. Both principles make
use of the theory of conditional structures that has been pro-
posed as a fundamental algebraic approach to guide belief
revision and default reasoning [Kern-Isberner, 2004; 2001].
Despite its complex theoretical underpinning, the simple ra-
tionale behind this theory is to make interactions between
different conditionals (and propositions) visible on possible
worlds, and manageable for information processing. More-
over, conditional structures provide schemata for revisions
from which a constructive method for revising epistemic
states by general information sets is obtained which satisfies
the above mentioned principle of conditional preservation,
the novel enforcement postulate, and success. We will show
that this is enough to cover all major postulates from related
works [Darwiche and Pearl, 1997; Jin and Thielscher, 2007;
Delgrande and Jin, 2008] thus achieving a concise but, at the
same time, broad and general picture.

Taking also conditionals as inputs to the revision proce-
dure into regard allows for a more general and realistic view
on belief revision. Propositions can be taken as a special case
of conditionals, so methods for revising by conditionals can
also be used for revising by plausible propositions. Moreover,
agents often change contexts in their environment which may
change their conditional beliefs. For instance, when passing
the border of a country we will usually adopt new traffic rules
without forgetting how to drive a car. So, it must be empha-
sized here that the approach to be presented in this paper is
also applicable to propositional, or parallel [Delgrande and
Jin, 2008] belief revision tasks, as propositions are consid-
ered as conditionals with tautological antecedent here. We
will also establish the connection between our approach to
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belief revision and nonmonotonic reasoning.
This paper is structured as follows: Section 2 recalls ba-

sic facts about the logical setting of our approach. The con-
structive approach is developed in section 3; this section also
presents the novel enforcement postulate and its semantical
characterization. Section 4 elaborates on general links to re-
lated work and goes into more detail for the connection to
parallel belief revision. We conclude in section 5.

2 Preliminaries on logic and conditionals

Let L be a finitely generated propositional language, with
atoms a, b, c, . . ., and with formulas A,B,C, . . .. For con-
ciseness of notation, we will omit the logical and-connector,
writing AB instead of A ∧ B, and overlining formulas will
indicate negation, i.e. A means ¬A. Let Ω denote the set of
possible worlds over L; Ω will be taken here simply as the set
of all propositional interpretations over L. ω |= A means that
the propositional formula A ∈ L holds in the possible world
ω ∈ Ω. By slight abuse of notation, we will use ω both for
the model and the corresponding conjunction of all positive
or negated atoms.

By introducing a new binary operator |, we obtain the set
(L | L) = {(B|A) | A,B ∈ L} of conditionals over L.
(B|A) formalizes “if A then B” and establishes a plausible
connection between the antecedent A and the consequent B.
Here, conditionals are supposed not to be nested, that is, an-
tecedent and consequent of a conditional will be propositional
formulas from L. Conditionals with tautological antecedents
are taken as plausible statements about the world. Following
De Finetti [DeFinetti, 1974], a conditional (B|A) can be ver-
ified (falsified) by a possible world ω iff ω |= AB (ω |= AB).
If ω �|= A, then the conditional is not applicable to ω. A con-
ditional (B|A) is said to be non-trivial if neither AB nor AB
is contradictory.

A conditional (D|C) is a subconditional of (B|A), written
as (D|C) � (B|A), iff CD |= AB and CD |= AB, i.e., iff
verification resp. falsification of (D|C) implies verification
resp. falsification of (B|A). A weak subconditional of (B|A)
is a subconditional of (A ⇒ B|�) where ⇒ means material
implication. It is straightforward to show that subconditionals
are also weak subconditionals of the respective conditional.
For different worlds ω1, ω2 ∈ Ω, (ω1|ω1 ∨ ω2) is called a
basic conditional that is verified by ω1 and falsified by ω2.

Following [Katsuno and Mendelzon, 1991] and [Darwiche
and Pearl, 1997], AGM revisions of epistemic states can be
ensured by assuming faithful rankings (i.e., total preorders)
that underly the epistemic states such that the revised be-
liefs can be computed from minimal models according to
the ranking. In this paper, we take ordinal conditional func-
tions as representations of such faithful rankings, resp., as
representations of epistemic states: Ordinal conditional func-
tions, OCFs, (also called ranking functions) are functions
κ : Ω → N ∪ {∞} with κ−1(0) �= ∅, expressing degrees
of plausibility of propositional formulas A by specifying de-
grees of disbeliefs of their negations A (cf. [Spohn, 1988]).
More formally, we have κ(A) := min{κ(ω) | ω |= A}. A
proposition A is believed, in symbols κ |= A, iff κ(A) > 0.
Degrees of plausibility can also be assigned to condition-

als by setting κ(B|A) = κ(AB) − κ(A). A conditional
(B|A) is accepted in the epistemic state represented by κ,
written as κ |= (B|A), iff κ(AB) < κ(AB), i.e. iff AB is
more plausible than AB. In particular, for a basic conditional
(ω1|ω1 ∨ω2), we have κ |= (ω1|ω1 ∨ω2) iff κ(ω1) < κ(ω2).
A set R = {(B1|A1), . . . , (Bn|An)} ⊆ (L | L) is consistent
iff it has an OCF model, i.e. iff there is an OCF κ such that
κ |= (Bi|Ai) for all i, 1 � i � n. κu is the uniform OCF
with κu(ω) = 0 for all ω ∈ Ω. OCF’s are semi-qualitative
counterparts of probability distributions. Their plausibility
degrees may be taken as order-of-magnitude abstractions of
probabilities (cf. [Goldszmidt and Pearl, 1996]). Condition-
als, epistemic states and AGM revision operators ∗ can be
related by the Ramsey test [Ramsey, 1950]: κ |= (B|A) iff
κ ∗A |= B.

3 Enforcing revision based on conditional

structures

The main contribution of this paper will be the proposal of
(iterative) revision operators that take epistemic states (repre-
sented by ranking functions κ) and general information sets
(consisting of plausible propositions and conditionals) and re-
turn revised epistemic states that accept all new pieces of in-
formation specified by the general information set and sat-
isfy all major postulates (AGM [Alchourrón et al., 1985],
DP-postulates [Darwiche and Pearl, 1997], Independence [Jin
and Thielscher, 2007], and Evidence Retainment [Delgrande
and Jin, 2008]), when applied to the respective restricted
framework (i.e., a single proposition, a single conditional, and
sets of propositions).

Since plausible statements can be considered as condition-
als with tautological antecedents, the formal specification of
the basic technical revision task is given as follows:

Let R = {(B1|A1), . . . , (Bn|An)} ⊆ (L | L) be a
finite set of conditionals, let κ be a prior epistemic
state represented by an OCF. Specify revision oper-
ators ∗ that compute a revised OCF κ∗ = κ ∗ R by
taking (somehow, to be further specified by postu-
lates) prior and new information into account.

We will focus on consistent sets R, since revising by an
inconsistent set of information should result in an inconsis-
tent state of belief, if no aspects of consolidation or merging
are taken into regard which we leave for future work. The
crucial points with this task are, first, to take into account
that conditionals are logically more complex than proposi-
tions and hence may require more sophisticated methods not
provided by ideas from propositional revision, and, second,
to treat each element of the general information set as an
independent piece of information. For both requirements,
the theory of conditional structures [Kern-Isberner, 2001;
2004] provides a suitable basis. Conditional structures are
kind of footprints that sets of conditionals leave on possible
worlds. They base on the three-valued approach to condition-
als by De Finetti [DeFinetti, 1974], representing verification,
falsification, and non-applicability by abstract symbols that
are assigned to conditionals (or propositions) in a general in-
formation set. Since different conditionals are assigned dif-
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ferent symbols, each conditional is treated as an independent
piece of information.

More formally, let R = {(B1|A1), . . . , (Bn|An)} ⊆
(L | L) be a finite set of conditionals, and let
a+1 ,a

−
1 , . . . ,a

+
n ,a

−
n be distinct algebraic symbols that

are used as generators of a (free abelian1) group [Fine
and Rosenberger, 1999] FR = 〈a+1 ,a−1 , . . . ,a+n ,a−n 〉. In
short, this group structure provides us with a multiplication
(written as juxtaposition) that we can relate to the summation
of κ-values, and with a 1 that symbolizes neutrality (i.e.
non-applicability). Furthermore, free abelian ensures a
parallel handling of the conditionals (without any order
of application assumed) as well as independence between
different conditionals (by forbidding cancellations between
different symbols). For each i, 1 � i � n, we define a
function σi = σ(Bi|Ai) : Ω → FR by setting

σi(ω) :=

⎧⎨
⎩

a+i if ω |= AiBi (verification)
a−i if ω |= AiBi (falsification)
1 if ω |= Ai (non-applicability)

σi(ω) represents the manner in which the conditional (Bi|Ai)
applies to the possible world ω. The function σR : Ω → FR,

σR(ω) :=
∏

1�i�n

σi(ω) =
∏

1�i�n
ω|=AiBi

a+i
∏

1�i�n

ω|=AiBi

a−i

describes the all-over effect of R on ω. σR(ω) is called the
conditional structure of ω with respect to R. Since FR is a
free (abelian) group, the conditional structures of worlds are
uniquely determined by their σi-components and hence by
their logical relation to each conditional: For any two worlds
ω1, ω2, we have
σR(ω1) = σR(ω2) iff σi(ω1) = σi(ω2) ∀ 1 � i � n. (1)

Conditional structures also work for propositions Ai ≡
(Ai|�) ∈ R. Propositions can only be verified resp. satis-
fied, or falsified. There is no non-applicability in this case,
so σi(ω) ∈ {a−i ,a+i } for each ω. Nevertheless, conditional
structures are helpful to distinguish between the effects of dif-
ferent pieces of information also in this case.
Example 1 Consider the following scenario described by the
set R = {r1, . . . , r9}, where penguins (p), kiwis (k), and
doves (d) are modelled as disjoint classes of birds (b) which
usually fly (f ), and typically have wings (w) and eyes (e) :
r1: (b|p) r2: (f |p) r3: (w|b)
r4: (f |w) r5: (b|k) r6: (b|d)
r7: (w|k) r8: (w|f) r9: (e|b)

Assigning symbols a+i ,a
−
i to any ri, we compute the follow-

ing conditional structures for possible worlds:
σR(pk dbfwe) = a+1 a

−
2 a

+
3 a

+
4 a

+
8 a

+
9

σR(pk dbfwe) = a+1 a
−
2 a
−
3 a
−
8 a

+
9

σR(pkd b fwe) = a+4 a
−
5 a
−
7 a

+
8 a
−
9 .

Based on conditional structures, a principle of conditional
preservation was proposed in [Kern-Isberner, 2004]. It con-
trols conditional belief revision by claiming a balance be-
tween conserving conditional relationships in the prior epis-
temic state and establishing conditional relationships from the

1Free abelian groups have no relations except for those induced
by commutativity.

information set. To illustrate this, we state a simple conse-
quence of this principle as the following property which will
prove to be useful here:
(SCondPres) If for ω1, ω2 ∈ Ω, it holds that σR(ω1) =

σR(ω2), then κ∗(ω1)− κ(ω1) = κ∗(ω2)− κ(ω2).
(SCondPres) claims that the relative amount of change be-
tween prior and posterior epistemic state only depends on the
conditional structure of the respective world. As a general
consequence of the principle of conditional preservation, the
revised epistemic state follows a structure that assigns to each
conditional in the new information set a constant parameter
that represents the impact of each conditional in the revision
process. When revising an ordinal conditional function κ by
a set of conditionals R, it is proved in [Kern-Isberner, 2004]
that revisions κ∗ = κ ∗ R of the form

κ∗(ω) = κ0 + κ(ω) +
∑

1�i�n

ω|=AiBi

κ−i (2)

with non-negative, integral parameters κ−i and a normal-
ization constant κ0, satisfy the full principle of conditional
preservation and hence also (SCondPres). Revisions of this
kind are called c-revisions in [Kern-Isberner, 2004]. The pa-
rameters κ−i are numerical counterparts of the abstract sym-
bols a−i whereas the a+i have no numerical impact by implic-
itly setting κ+

i = 0. They have to be set according to general
constraints on the outcome of the revision process, i.e. pos-
tulates in the spirit of the AGM-theory. A constraint that is
typically applied in revision scenarios and will be used here
to determine these parameters is success on the level of the
conditionals in R:
(Success) κ∗R |= R, i.e., κ∗R |= (B|A) for all (B|A) ∈ R.
For c-revisions κ∗ of the form (2), (Success) is satisfied iff for
all i, 1 � i � n,

κ−i > minω|=AiBi
(κ(ω) +

∑
j �=i

ω|=AjBj

κ−j )

−minω|=AiBi
(κ(ω) +

∑
j �=i

ω|=AjBj

κ−j ).
(3)

We will now follow ideas from [Kern-Isberner, 2002]
and claim that, ceteris paribus and generally, falsifica-
tion of conditionals should have a penalizing effect. To
implement this, a partial ordering > between condi-
tional structures of worlds is defined in the following
way: For any possible worlds ω1, ω2 ∈ Ω, we define

σR(ω1) > σR(ω2)
iff for each i, 1 � i � n, σi(ω1) = a−i implies σi(ω2) = a−i ,
and there is at least one i, 1 � i � n, such that σi(ω1) ∈
{a+i , 1} and σi(ω2) = a−i . That is, σR(ω1) > σR(ω2) iff ω2

falsifies more conditionals than ω1. So, for instance, in ex-
ample 1, we have σR(pk dbfwe) = a+1 a

−
2 a

+
3 a

+
4 a

+
8 a

+
9 >

a+1 a
−
2 a
−
3 a
−
8 a

+
9 = σR(pk dbfwe), but σR(pk dbfwe) and

σR(pkd b fwe) are not comparable with respect to >.
Now, both conditional information from the prior epistemic

state κ and the new information set R are used to enforce
conditional beliefs in the revised epistemic state κ∗ = κ ∗ R:
(Enf) If for ω1, ω2 ∈ Ω, it holds that σR(ω1) > σR(ω2),

then κ(ω1) � κ(ω2) implies κ∗(ω1) < κ∗(ω2).
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This enforcement postulate claims that if ω2 falsifies more
conditionals in R than ω1 (ceteris paribus and with respect to
set inclusion) and is not more plausible than ω1 in the prior
epistemic state, then it should definitely be less plausible than
ω1 in the revised epistemic state.

We will illustrate how the concept of c-revisions together
with the postulates of (Success) and (Enf) yield elaborate re-
visions in the scenario of example 1. We will also show how
the machinery that has been developed so far can be used for
inductive default reasoning.
Example 2 We continue example 1, so let R be given as
above. First, we use the method of successful and enforcing
c-revision for inductive nonmonotonic reasoning. Let ∗ be
a c-revision operator yielding revisions as in (2) and satisfy-
ing (Success) and (Enf). Then κ1 = κu ∗ R is a new epis-
temic state of the form (2) that accepts all conditionals in R.
The κ−i for this example have been calculated as the minimal
non-negative integers that satisfy (3) (so that (Success) is en-
sured) and (Enf) (note that κu(ω) = 0 for all ω, so the partial
order > on conditional structures can be implemented when-
ever applicable). For instance, we find that κ−3 = κ−4 = 1,
and κ−1 = κ−2 = 2. In κ1, among others, the following con-
ditionals are accepted: (f |k) (kiwis do not fly), (f |d), (w|d)
(doves fly and have wings). Please note that no immediate
connection between birds and the ability to fly is encoded in
R, but just an indirect link via having wings. In particular,
κ1 is undecided concerning penguins having wings, neither
(w|p) nor (w|p) can be derived because wings are deemed
crucial for flying, and penguins can not fly. However, from
κ1 the agent can derive the beliefs that all birds – in particu-
lar kiwis and penguins – usually have eyes.

Now, we revise κ1 by the set S = {s1 = (w|d), s2 =
(f |p)} after the fictitious observations that doves have no
wings, and that penguins can fly. We compute κ2 = κ1 ∗ S
in the same way as above. Based on this new epistemic
state, the agent believes now that doves can not fly any more
(κ2 |= (f |d)), but that penguins have wings (κ2 |= (w|p)).
No belief concerning kiwis is affected by the revision, so the
agent still holds the same beliefs about kiwis as in κ1.

The following theorem characterizes the semantic (Enf)
postulate by exploiting the prior epistemic state and the ex-
plicitly given new conditional information:

Theorem 3 Let R = {(B1|A1), . . . , (Bn|An)} ⊆ (L | L)
be a finite set of conditionals, let κ be an OCF. Let the revision
operator ∗ be compatible with propositional AGM revision.
Then the revision κ∗ = κ ∗ R satisfies (Enf) iff it satisfies the
postulate of conditional enforcement:

(CondEnf) For any weak subconditional (B′i|A′i) of one of
the conditionals in R (i.e. (B′i|A′i) � (Ai ⇒ Bi|�) for
some i) such that

1. no non-trivial subconditional (B′′i |A′′i ) of (B′i|A′i) is re-
jected by κ, i.e., κ �|= (B′′i |A′′i ) for all (B′′i |A′′i ) �
(B′i|A′i), and

2. for all other conditionals (Bj |Aj) in R, verification of
(B′i|A′i) implies satisfaction of (Bj |Aj), or falsification
of (B′i|A′i) implies falsification of (Bj |Aj), i.e., for all

j �= i, it holds that A′iB
′
i |= Aj ⇒ Bj or A′iB′i |=

AjBj ,
it holds that κ ∗ R |= (B′i|A′i).
The conditional enforcement postulate claims that any weak
subconditional of any (Bi|Ai) ∈ R (and hence any subcondi-
tional obtained by strengthening the antedent) is enforced in
the revised epistemic state κ∗R iff there is no evidence to the
contrary neither due to the prior epistemic state κ (as speci-
fied by condition (1)) nor from the other conditionals in R
(as specified by (2)). Note that Theorem 3 holds for general
condtional revision operators, not only for c-revisions.
Proof of Theorem 3. First, we assume that (Enf) holds. Let
(B′i|A′i) be a weak subconditional of (Bi|Ai) ∈ R as spec-
ified in the theorem. We have to show κ ∗ R |= (B′i|A′i),
i.e., κ ∗ R(A′iB

′
i) < κ ∗ R(A′iB′i). Let ω1, ω2 ∈ Ω be such

that ω1 |= A′iB
′
i and ω2 |= A′iB′i. Then (ω1|ω1 ∨ ω2) is a

(non-trivial) subconditional of (B′i|A′i). By condition (1) of
(CondEnf), we have κ �|= (ω1|ω1 ∨ ω2) which is equivalent
to κ(ω1) � κ(ω2). Consider now σR(ω1) and σR(ω2). Due
to ω1 |= A′iB

′
i and ω2 |= A′iB′i, we have σi(ω1) = a+i and

σi(ω2) = a−i . For all other j �= i, if A′iB
′
i |= Aj ⇒ Bj , then

σi(ω1) �= a−i . If A′iB
′
i �|= Aj ⇒ Bj , then A′iB′i |= AjBj by

condition (2) of (CondEnf). In this latter case, σi(ω2) = a−i .
So, σR(ω1) > σR(ω2). Together with κ(ω1) � κ(ω2),
(Enf) now implies κ ∗ R(ω1) � κ ∗ R(ω2), and therefore
κ ∗ R(A′iB

′
i) < κ ∗ R(A′iB′i).

For the other direction, we presuppose that (CondEnf)
holds, and we have to show the validity of (Enf). So, let
ω1, ω2 ∈ Ω such that σR(ω1) > σR(ω2) and κ(ω1) � κ(ω2).
In order to show κ∗(ω1) < κ∗(ω2), we prove the equivalent
statement κ∗ |= (ω1|ω1 ∨ ω2). By exploiting the prereq-
uisite σR(ω1) > σR(ω2), we find in particular, that there
must be an index i such that σR(ω1) must be a+i or 1, and
σR(ω2) = a−i . Hence ω1 |= Ai ⇒ Bi and ω2 |= AiBi,
so (ω1|ω1 ∨ ω2) is a weak subconditional of (Bi|Ai) ∈ R.
Since (ω1|ω1 ∨ ω2) has no non-trivial subconditionals except
for itself, and κ �|= (ω1|ω1 ∨ ω2) due to κ(ω1) � κ(ω2), (1)
of (CondEnf) is satisfied. Next, let j �= i. Again thanks to
σR(ω1) > σR(ω2), we have that whenever σj(ω1) = a−j (in
which case ω1 �|= Aj ⇒ Bj), then σj(ω2) = a−j must also
hold, i.e., ω2 |= AjBj is ensured by σR(ω1) > σR(ω2) in
this case. So, (ω1|ω1 ∨ ω2) is a conditional that fulfills all
requirements specified in the prerequisites of (CondEnf), and
so (CondEnf) postulates κ∗ |= (ω1|ω1 ∨ ω2). �

In summary, as a powerful set of postulates that should
guide the revision of epistemic states (given by ordinal con-
ditional functions) by sets of (propositional and conditional)
beliefs, we propose a principle of conditional preservation,
as specified in [Kern-Isberner, 2004] and implemented by c-
revisions of the form (2), together with (Success) and (Enf)
(resp. (CondEnf)). A straightforward consequence of Theo-
rem 3 is the following proposition:
Proposition 4 Let R = {(B1|A1), . . . , (Bn|An)} ⊆
(L | L) be a finite set of conditionals, let κ be an OCF. If
the revision κ∗ = κ ∗ R satisfies (Enf) then for any condi-
tional (Bi|Ai) in R, and for any strengthening A |= Ai of its
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antecedent such that κ ∗A′ �|= Bi for any further strengthen-
ing A′ |= A, and such that for all j �= i, ABi |= Aj ⇒ Bj

or ABi |= AjBj , it holds that (κ ∗ R) ∗A |= Bi.

This proposition has interesting consequences for investi-
gating monotonicity in nonmonotonic reasoning. Applying
a successful, enforcing c-revision operator ∗ to the uniform
OCF κu (with κu(ω) = 0 for all ω ∈ Ω) and to a set of con-
ditionals R gives rise to an inductive default inference rela-
tion similar to system Z [Goldszmidt and Pearl, 1996], setting
C |∼R D iff (κu∗R)∗C |= D, or (κu∗R) |= (D|C), respec-
tively (see example 2). In particular, (Success) ensures that
Ai |∼R Bi for all conditionals (Bi|Ai) ∈ R. Since κu does
not accept any nontrivial conditional beliefs, the first presup-
position in proposition 4 which a strengthening A of Ai has
to satisfy is vacuous (since R is assumed to be consistent).
So only the second presupposition applies, stating that also
A |∼RBi for A |= Ai if for all j �= i, ABi |= Aj ⇒ Bj ,
or ABi |= AjBj . For instance, in example 2, the inference
dbwe |∼R f (dove birds with wings and eyes can also fly)
can be directly derived from the knowledge base R. Note
that the inference relation |∼R also complies with system
P and rational monotonicity [Goldszmidt and Pearl, 1996],
since it is based on an ordinal conditional function, and satis-
fies advanced postulates like specificity, irrelevance, property
inheritance (hence drowning problems are avoided), ambi-
guity preservation, and duplication stability, since it imple-
ments reasoning based on conditional structures (for further
information, please see [Kern-Isberner, 2002]).

4 Related work

As one of the first and most important approaches to extend
AGM-theory towards epistemic states Ψ and iterated revision
operators ∗, and to also take issues of conditional preservation
into regard, [Darwiche and Pearl, 1997] proposed four new
postulates (DP-postulates) for iterated revision. In [Kern-
Isberner, 2004] it is proved that c-revisions are AGM revi-
sions (when applied to a single proposition) and satisfy all
DP-postulates.

Three of these DP-postulates have been widely accepted
but the second one (C2) has been intensely debated:

(C2) If B |= ¬A then (Ψ ∗A) ∗B ≡ Ψ ∗B.

For instance, Delgrande and Jin [Delgrande and Jin, 2008]
found this postulate to be the culprit for so-called “drowning
problems” which are caused by the suppression of effects of
some pieces of information by other pieces of information so
that they can not have a proper impact on the resulting belief
state. In particular, these authors argue that the generaliza-
tion of (C2) for sets of propositions, as proposed by [Zhang,
2004] is completely inappropriate. However, exploring (C2)
for conditional beliefs, its relevance becomes apparent: (C2)
claims that if B |= ¬A then (Ψ∗A)∗B |= C iff Ψ∗B |= C,
so using the connection between revision and conditionals via
the Ramsey test, we have (Ψ ∗ A) |= (C|B) iff Ψ |= (C|B)
– revising by A should leave conditional beliefs intact the an-
tecedent of which is disjoint from A, which makes perfect
sense. (C2) has been generalized to revision by a single con-
ditional belief in [Kern-Isberner, 2001].

The problems that Delgrande and Jin encountered in [Del-
grande and Jin, 2008] are principally caused by taking the
information sets {A,B} and {A∧B} to be equivalent, ignor-
ing the independence of each piece of information. So, they
propose an approach to revise epistemic states K by sets of
propositional formulas S, called parallel belief revision and
denoted by K ⊗ S. The aim of their framework is to allow
for the explicit representation of individual items of new in-
formation. For instance, in K ⊗ {α, β}, α and β represent
individual items of information while in K ⊗ {α ∧ β}, their
coincidence is taken as one piece of information. This means
that in that framework, b ∈ Bel(K ⊗ {a, b} ⊗ {¬a}) but
b �∈ Bel(K ⊗ {a ∧ b} ⊗ {¬a}). Delgrande and Jin demand
that all formulas of S should be established individually such
that in case of further revision all items in S against which no
evidence exists should be retained. This demand is formal-
ized by their postulate of evidence retainment, the equivalent
semantical condition of which on a faithful ranking �K is
given as follows:
(Ret⊗R) If S|ω2⊂S|ω1 then ω1�Kω2 implies ω1 ≺K⊗S ω2

with S|ω = {α ∈ S | ω |= α}. The independence postu-
late of [Jin and Thielscher, 2007] covers the case |S| = 1.
In addition to (Ret⊗R), Delgrande and Jin extend two of the
DP-postulates, (C3) and (C4) [Darwiche and Pearl, 1997], for
parallel belief revision in the following semantical character-
ization:
(PC3⊗R) If S|ω2⊆S|ω1 then ω1≺Kω2 implies ω1 ≺K⊗S ω2

(PC4⊗R) If S|ω2⊆S|ω1 then ω1�Kω2 implies ω1 �K⊗S ω2

Delgrande and Jin conclude that an adequate operator for par-
allel belief revision should satisfy the AGM postulates gener-
alized to sets, (Ret⊗R), (PC3⊗R) and (PC4⊗R).

To match the framework of Delgrande and Jin, we con-
sider the propositional case of our proposed conditional re-
vision operator. Thus, let R = {(A1|�), . . . , (An|�)} with
Ai ≡ (Ai|�). In this restricted setting we have σi(ω) = a+i
if ω |= Ai and σi(ω) = a−i if ω |= Ai. In the notation of Del-
grande and Jin, the correspondence to our framework is easily
seen by σR(ω) =

∏
Ai∈R|ω a+i

∏
Ai∈R\R|ω a−i , so that we

have σR(ω1) > σR(ω2) iff R|ω2 ⊂ R|ω1. With this direct
connection to the approach of Delgrande and Jin we obtain
the following result.

Proposition 5 Let R = {(A1|�), . . . , (An|�)} be a finite
set of propositional conditionals, let κ be an OCF, and let
κ ∗R be a c-revision that satisfies (Enf). Then κ ∗R satisfies
(Ret⊗R), (PC3⊗R) and (PC4⊗R).

Proof of Proposition 5. The satisfaction of (Ret⊗R) and
the proper subset case for the precondition of (PC3⊗R) and
(PC4⊗R) follow directly from (Enf). For the case of R|ω1 =
R|ω2 for (PC3⊗R) and (PC4⊗R) it follows from the satisfac-
tion of (SCondPres) by c-revisions that κ∗(ω1) − κ(ω1) =
κ∗(ω2) − κ(ω2) and especially that κ(ω1) � κ(ω2) implies
κ∗(ω1) � κ∗(ω2) and κ(ω1) < κ(ω2) implies κ∗(ω1) <
κ∗(ω2). Hence (PC3⊗R) and (PC4⊗R) are satisfied. �

The approach we present in this paper is therefore a con-
structive approach and a conditional generalization of a par-
allel, and iterated, belief revision operator that satisfies all
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desirable properties of parallel belief revision. Actually, both
evidence retainment and independence postulate more than
simple independence: They claim that each piece of infor-
mation should have a noticeable impact on the resulting epis-
temic state (that is largely independent of the impact of other
pieces of information). So, they are both in conflict with a
postulate called stability that has been considered in [Kern-
Isberner, 2001], requiring that Ψ∗A = Ψ if Ψ |= A. Stability
claims that no difference should be made between implicitly
derived and explicitly stated beliefs. Hence, the postulate of
independence [Jin and Thielscher, 2007] rather addresses the
difference between these two types of belief, stating that one
expects the explicit beliefs to be enforced if there is no rea-
son against it. Evidence retainment does exactly the same
for pieces of information that are independent in that they are
given by different propositions. Conditional structures repre-
sent each piece of explicitly given information by algebraic
symbols, therefore implementing both independence and ex-
plicitness of information, but leaving the exploration of log-
ical and numerical (or preferential) constraints to the princi-
ple of conditional preservation (which is able to handle much
more complicated relationships between conditional struc-
tures than those shown in (SCondPres)). The enforcement
postulate (CondEnf) comes on top of that, as an independent
postulate, claiming the thorough establishing of conditional
beliefs with respect to subconditionals. It is immediately seen
from its semantical characterization in (Enf) that (CondEnf)
generalizes independence and evidence retainment for condi-
tional beliefs. Analogous to independence and evidence re-
tainment, this principle makes a strong difference between
explicit and implicit beliefs.

5 Conclusion

In this paper, we present principles and a constructive ap-
proach to iterative belief revision of epistemic states by sets
of (propositional or conditional) sentences. In more detail,
exploiting ideas from [Kern-Isberner, 2002] concerning de-
fault reasoning for the tasks of belief revision gives rise to
an enforcement postulate that demands for establishing con-
ditional beliefs also for strengthenings of the antecedents.
We combine this with a principle of conditional preservation
that has been proposed in [Kern-Isberner, 2004] and yields
a schema for revision operations as the basis for our con-
structive approach. In this way, our approach implements
both an in-depth control of conditional dependencies, due to
the principle of conditional preservation, and an in-depth en-
forcement of conditional dependencies. Actually, it is this
latter principle that underlies the ideas of independence [Jin
and Thielscher, 2007] and evidence retainment [Delgrande
and Jin, 2008] set up for revising by (sets of) propositions.
Together with the success postulate, the postulates of con-
ditional preservation and enforcement are shown to cover
also the advanced postulates for iterated revision proposed
in [Darwiche and Pearl, 1997; Jin and Thielscher, 2007;
Delgrande and Jin, 2008]. As part of our future work, we
will extend the proposed framework by considering inconsis-
tent sets of information that will be consolidated by merging
operations before revision.
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