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Abstract

Despite the importance of propositional logic in ar-
tificial intelligence, the notion of language indepen-
dence in the propositional setting (not to be con-
found with syntax independence) has not received
much attention so far. In this paper, we define
language independence for a propositional opera-
tor as robustness w.r.t. symbol translation. We
provide a number of characterizations results for
such translations. We motivate the need to focus on
symbol translations of restricted types, and iden-
tify several families of interest. We identify the
computational complexity of recognizing symbol
translations from those families. Finally, as a case
study, we investigate the robustness of belief re-
vision/merging operators w.r.t. translations of dif-
ferent types. It turns out that rational belief revi-
sion/merging operators are not guaranteed to offer
the most basic (yet non-trivial) form of language in-
dependence; operators based on the Hamming dis-
tance do not suffer from this drawback but are less
robust than operators based on the drastic distance.

1 Introduction

In propositional logic, propositional symbols are the formal
counterparts of propositions which are not analyzed (i.e., de-
composed) within the language of the logic but can be arbi-
trarily sophisticated nevertheless. For instance, an (informal)
proposition like ”John’s house is located northern to the sta-
tion” can be represented by a propositional symbol like p.
This symbol p is atomic in the logic, which implies that, from
p alone, one cannot infer that concepts like ”John”, ”house”,
”station”, ”being northern to” are used to define its actual
meaning. Alternatively, the same informal proposition can
be represented by slightly more complex formulae, like r⊕ s
where r means ”John’s house is located northern and western
to the station” and s means ”John’s house is located northern
and eastern to the station”.

The problem of which informal propositions of interest
should be associated with propositional symbols is not ruled
by logic since this is mainly a domain-dependent modeling
issue. What is important from a logical point of view is to

make a representation choice so that every proposition of in-
terest can be represented as a formula based on the chosen
propositional symbols (otherwise the corresponding proposi-
tional language is not expressive enough w.r.t. the proposi-
tions of interest.) Several choices for propositional symbols
are usually possible without questioning such an expressive-
ness issue.

In artificial intelligence, propositional formulae are used to
build propositional structures which represent propositional
information. In applications where propositional logic is
enough from a representation perspective, information pro-
cessing can be modeled as a combination of queries (e.g., de-
ducing some facts from the available beliefs or inferring some
plausible conclusions from them) and transformations (e.g.,
forgetting some facts, revising some beliefs.) Propositional
queries and propositional transformations can be formalized
as propositional operators, which are mappings from propo-
sitional structures to propositional structures.

In this paper, we address the language independence issue
for propositional operators. Intuitively, a propositional opera-
tor Ω is language-independent iff whenever the representation
language is modified in such a way that symbols in the origi-
nal language correspond to formulae in the target language, if
the input of Ω is modified so as to reflect the language change,
then the output of Ω should be modified accordingly. Thus,
language change can be modeled by symbol translations (i.e.,
substitutions), and language independence for a propositional
operator is the faculty for it to be robust w.r.t. symbol trans-
lations.

For instance, assume that t represents the fact that ”Mary’s
house is located northern to the station”. If it is known that
”John’s house is located northern to the station” (p) and that
”John’s house is located northern to the station” if and only
if ”Mary’s house is located northern to the station” (p ⇔ t)
since Mary and John live together, then one can deduce that
”Mary’s house is located northern to the station”: t holds.
If we consider another representation choice, where ”John’s
house is located northern to the station” is represented by r⊕
s, then the same conclusion follows: from r⊕s and (r⊕s) ⇔
t, t can still be deduced. Accordingly, the deduction operator
is robust when the symbol translation σ such that σ(p) = r⊕s
is applied to the given belief base.

Clearly, such a notion of language independence should
not be confused with notions of syntax independence, which
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reflects the ability to be robust w.r.t. substitution of formulae
(or sets of formulae) by equivalent formulae (or sets), a topic
which got much attention in artificial intelligence. Quite sur-
prisingly, the language independence issue in propositional
logic did not receive so far a systematic investigation, despite
the fundamental nature of the issue and the significance of
propositional languages in artificial intelligence.

This paper is intended to fill the gap. After some formal
preliminaries (Section 2), we point out the notion of symbol
translation, define the notion of language independence as ro-
bustness w.r.t. symbol translations, and present several refine-
ments of it in Section 3. We provide some complexity results
in Section 4. As a case study, in Section 5, we put some be-
lief revision/merging operators in the setting and identify the
level of language independence achieved by those operators.
We discuss some related work in Section 6, before conclud-
ing. An extended version (including proofs) is available at
http://www.cril.fr/∼marquis/ijcai11b.pdf

2 Formal Preliminaries

We consider a countably infinite set PS of propositional sym-
bols. For any finite subset X of PS , PROPX denotes the
propositional language over X defined in the usual way. For
every formula α, α0 is equivalent to α and α1 is equivalent to
¬α. For every formula α, Var(α) is the set of propositional
symbols occurring in α.

An interpretation ω over X is a mapping from X to {0, 1},
an associated canonical term is a term over X (i.e., a conjunc-
tion of literals over X) such that for each x ∈ X , x occurs in
it if ω(x) = 1, else ¬x occurs in it. The notion of satisfaction
of a formula is the usual one. |= denotes logical entailment
and ≡ denotes logical equivalence.

A formula α is said to be generated from a set C of con-
nectives and a set Σ of formulae iff α ∈ Σ or there exists a
connective c ∈ C of arity n > 0 such that α ≡ c(α1, . . . , αn)
where each αi (i ∈ 1, . . . , n) is generated from C and Σ. A
set C of connectives is said to be functionally complete w.r.t.
a set of variables X given a set Σ of formulae iff for every
propositional formula α generated from C and X , there ex-
ists a propositional formula β generated from C and Σ such
that β ≡ α.

In the following, we are interested in the robustness to
symbol translations offered by propositional operators over
propositional structures:

Definition 1 (propositional structure) A propositional st-
ructure Σ over a finite set X of propositional symbols is a
vector of sets of propositional formulae from PROPX (only
finite vectors and finite sets are considered.) If n is the dimen-
sion of the vector, Σ is an n-propositional structure.

Sets are interpreted conjunctively, so that two sets of for-
mulae α and β are equivalent, noted α ≡ β, when the con-
junction of formulae of α is equivalent to the conjunction of
formulae of β.

Two n-propositional structures Σ = 〈α1, . . . , αn〉 and
Σ′ = 〈α′

1, . . . , α
′
n〉 are equivalent, noted Σ ≡ Σ′ iff ∀i ∈

1, . . . , n, we have αi ≡ α′
i.

Definition 2 (propositional operator) A propositional oper-
ator Ω is a mapping associating an m-propositional structure
with an n-propositional structure.

Many propositional queries and transformations can be
viewed as propositional operators; here are a few examples:
Example 1

• DED (deduction) : 〈{α1, . . . , αn}, {β}〉 
→ 〈{�}〉 if β
is a logical consequence of {α1, . . . , αn}, and 〈{⊥}〉
otherwise;

• ◦ (belief revision) : 〈{α1, . . . , αn}, {β}〉 
→ 〈{β1, . . . ,
βm}〉 where {β1, . . . , βm} is the belief base resulting
from revising {α1, . . . , αn} by β using the belief revision
operator ◦;

• Δ (belief merging) : 〈{α1
1, . . . , α1

n(1)}, . . . , {αp
1,

. . . , αp
n(p)}, {μ}〉 
→ 〈{β1, . . . , βm}〉 where {β1, . . . ,

βm} is the belief base resulting from merging the profile
〈{α1

1, . . . , α
1
n(1)}, . . . , {αp

1, . . . , α
p
n(p)}〉 using the belief

merging operator Δ when μ is the integrity constraint.

3 On Language Independence

3.1 Translations

The key notion for defining notions of language independence
is that of translation; let X and Y be two finite subsets of PS :
Definition 3 (translation) A (symbol) translation σ is a
mapping from X to PROPY , which is extended to a mor-
phism (also noted σ) from propositional structures over X to
propositional structures over Y , defined inductively by (for
any n):
• for every connective c of arity k, σ(c(α1, . . . , αk)) =
c(σ(α1), . . . , σ(αk)),

• σ({α1, . . . , αn}) = {σ(α1), . . . , σ(αn)},
• σ(〈α1, . . . , αn〉) = 〈σ(α1), . . . , σ(αn)〉.
There is no need to assume any connection between X and

Y , i.e., we may have X ∩ Y = ∅, but, conversely, this is
not forbidden (e.g., we may have X = Y .) For instance, if
σ : {x, y} → PROP{y,z} such that σ(x) = y and σ(y) =

¬y ∨ z,1 we have σ(x ∧ ¬y) = y ∧ ¬(¬y ∨ z) ≡ y ∧ ¬z.
A fundamental result in propositional logic when dealing

with such symbol translations is the well-known substitution
theorem:
Proposition 1 (substitution theorem) Let α, β be formulae
from PROPX . If α ≡ β then for every symbol translation σ
from X to PROPY , we have σ(α) ≡ σ(β).

The following properties are direct consequences of this
theorem:
Corollary 1

1. Let {α1, . . . , αn} be a finite set of formulae from
PROPX , and let β be a formula from PROPX . We
have {α1, . . . , αn} |= β if and only if for every
symbol translation σ from X to PROPY , we have
σ({α1, . . . , αn}) |= σ(β).

1We also note σ : x �→ y; y �→ ¬y ∨ z.
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2. |= α if and only if for every symbol translation σ from
X to PROPY , we have |= σ(α). Similarly, |= ¬α if
and only if for every symbol translation σ from X to
PROPY , we have |= ¬σ(α).

Let us illustrate point 1. of Corollary 1 by considering the
example provided in the introduction. We have p ∧ (p ⇔
t) |= t. Let σ : p 
→ (r ⊕ s). Then σ(p ∧ (p ⇔ t)) =
(r ⊕ s) ∧ ((r ⊕ s) ⇔ t) implies σ(t) = t.

Obviously enough, in the general case, there is no direct
logical connections between a formula α and the associated
translated formula σ(α). They can be logically independent,
like α = p and σ(α) = q when σ : p 
→ q is considered. It
can also be the case that one of them implies the other one
(consider α = p, σ1 : p 
→ p ∧ q and σ2 : p 
→ p ∨ q)
or that the formulae are jointly inconsistent (consider α = p
and σ : p 
→ ¬p.) Actually, the only direct logical connec-
tions between α and σ(α) are obtained in the specific case α
is valid or α is contradictory (and are given by point 2. of
Corollary 1.) See also the forthcoming Proposition 3.

Nevertheless, some indirect logical connections between α
and σ(α) exist, as stated by the following proposition:

Proposition 2 Let α be a formula from PROPX . Let σ be a
symbol translation from X to PROPY . We have

∧
x∈X(x ⇔

σ(x)) |= α ⇔ σ(α).

This proposition shows that α and σ(α) are equivalent
modulo the theory where each symbol in X is equivalent to
its image by σ.

3.2 Language independence based on translations

We are now ready to define language independence as robust-
ness w.r.t. symbol translations satisfying some properties:

Definition 4 (language independence) Let P be a property
on translations. A propositional operator Ω associating an
m-propositional structure with an n-propositional structure
is P -language independent if and only if for every translation
σ satisfying P , for every n-propositional structure Σ, for ev-
ery m-propositional structure Σ′ such that Ω(Σ) ≡ Σ′, we
have Ω(σ(Σ)) ≡ σ(Σ′).

P characterizes what should be preserved (or dually what
can be lost) when a symbol translation is applied. Indeed,
replacing in a uniform way propositional symbols by formu-
lae may lead to question a number of properties which hold
for propositional symbols but can be lost when formulae are
considered. For instance, unlike formulae, propositional sym-
bols are neither inconsistent nor valid, conjunction of pos-
sibly negated but distinct propositional symbols are always
consistent, propositional symbols are enough to generate a
full propositional language over them whenever a function-
ally complete set of connectives is considered.

Formally, we focus on the following properties:

Definition 5 (properties on symbol translations) A symbol
translation σ from X = {x1, . . . , xn} to PROPY satisfies:

• UNI (universality);

• SIN (symbol insensitivity) if and only if σ is a bijection
from X to Y ;

• TPR (triviality prevention) if and only if ∀x ∈ X , σ(x)
is consistent but not valid;

• AIP (atom independence preservation) if and only if
∀s1, . . . , sn ∈ {0, 1},

∧
xi∈X σ(xi)

si is consistent;

• FCP (functional completeness preservation) if
and only if {¬,∧} is functionally complete w.r.t.⋃

x∈X Var(σ(x)) given {σ(x) | x ∈ X};

• REV (reversibility) if and only if there exists a symbol
translation θ such that ∀x ∈ X , θ(σ(x)) ≡ x.

UNI (universality) is when no constraints at all are im-
posed on the admissible translations. UNI -language inde-
pendence is hard to be satisfied since it leads to consider as
admissible translations which do not preserve anything from
the input propositional structure, except trivialities (tautolo-
gies and contradictions) which are always kept. Indeed, we
have the following result:

Proposition 3 Let α be a formula of PROPX and β a for-
mula of PROPY . If α is neither valid nor inconsistent, then
there exists a symbol substitution σ such that σ(α) ≡ β.

This motivates the need to restrict the set of admissible
translations.

SIN -language independence asks the choice of the sym-
bols names to be non-significant. This independence property
is highly expected. However, as we will see in the following,
it is not always guaranteed for revision/merging operators.

The rationale for TPR is to set aside translations which
leads to replace a symbol, which is in essence neither valid
nor inconsistent, by a formula which would be valid or in-
consistent.

The rationale for AIP -language independence is as fol-
lows: at start (i.e., in the language PROPX ), all the sym-
bols of X are logically independent, which means that
∀s1, . . . , sn ∈ {0, 1},

∧
xi∈X xsi

i is consistent; if another rep-
resentation choice is made, such an independence should be
preserved. Thus, for instance, x 
→ p ∨ q; y 
→ ¬p ∨ q does
not satisfy AIP since ¬(p ∨ q) ∧ ¬(¬p ∨ q) is inconsistent;
contrastingly, x 
→ p ⇔ q; y 
→ p satisfies AIP .

FCP -language independence asks for the preservation of
functional completeness. In the language PROPX consid-
ered at start taking any fully expressive set of connectives
(like {¬,∧}) proves enough to represent every Boolean func-
tion over X . In the target language PROPY , it is expected
that any functionally complete set of connectives proves
enough to represent every Boolean function over Y given that
the set of “atoms” is now {σ(x) | x ∈ X}. As an example,
consider again x 
→ p∨q; y 
→ ¬p∨q; this symbol translation
does not satisfy FCP since p cannot be defined using {¬,∧}
when the set of “atoms” is {p∨ q,¬p∨ q}; on the other hand,
x 
→ p ⇔ q; y 
→ p satisfies FCP : both p and q can be de-
fined using {¬,∧} when the set of atoms is {p ⇔ q, p}; this
is obvious for p, and for q, we have q ≡ (p ⇔ q) ⇔ p.

Finally, the idea underlying REV -language independence
is the one of reversibility. The intuition is that nothing im-
portant is lost in a symbol translation when the translation
can be reversed. For instance, x 
→ p ∨ q; y 
→ ¬p ∨ q
does not satisfy REV since {p ∨ q ≡ x,¬p ∨ q ≡ y} with
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variables p and q has no solution over PROP{x,y}. Con-
trastingly, σ : x 
→ p ⇔ q; y 
→ p satisfies REV since
θ : p 
→ y, q 
→ y ⇔ x is such that θ(σ(x)) ≡ x and
θ(σ(y)) ≡ y.

3.3 Connections between notions of language
independence

Clearly enough, none of the properties above is trivial in the
sense that it would be satisfied by every (or by no) symbol
translation when the choice of Y is free. Thus, the identity
translation σ : X → PROPX such that σ : x 
→ x satisfies
all the properties above, while σ : {x, y} → PROP{p,q}
such that σ : x 
→ ⊥; y 
→ p ∨ q satisfies none of them
(except UNI of course.)
FCP appears as logically independent of all the proper-

ties, except SIN (which implies FCP , and UNI which is
obviously implied by FCP ):

• SIN implies FCP since any set of connectives which is
functionally complete w.r.t. X given X is functionally
complete w.r.t. any set of variables Y given Y ;

• x 
→ ⊥ satisfies FCP (since
⋃

x∈X Var(σ(x)) is
empty) but does not satisfy TPR;

• x 
→ x ∨ y satisfies TPR and REV but does not satisfy
FCP .

While based on quite different intuitions, it turns out that
REV and AIP are the same property:

Proposition 4 REV and AIP are equivalent.

The remaining properties are not logically independent, but
connected as follows:

• SIN implies REV : when σ is a bijection from X to
Y , θ = σ−1 from Y to X such that for any y ∈ Y ,
θ(y) = x iff σ(x) = y is such that for all x ∈ X ,
θ(σ(x)) ≡ x. The implication is strict: let X = {x, y},
Y = {p, q}, σ : x 
→ p; y 
→ p ⇔ q. Clearly, σ does
not satisfy SIN . However, it satisfies REV : θ such that
θ : p 
→ x; q 
→ x ⇔ y satisfies θ(σ(x)) ≡ x and
θ(σ(y)) ≡ y.

• AIP implies TPR: it is obvious that if there is an xi

such that σ(xi) is valid or inconsistent, then there is also
a
∧

xi∈X σ(xi)
si that is inconsistent. The implication is

strict: let X = {x, y}, Y = {p}, σ : x 
→ p; y 
→ ¬p. σ
satisfies TPR but does not satisfy AIP .

• TPR implies UNI since UNI is always satisfied. The
implication is strict: let X = {x}, Y = {}, σ : x 
→ ⊥.
σ satisfies UNI but does not satisfy TPR.

The logical dependencies between properties of language
independence are given by the implication graph at Figure 1.

Finally, it is easy to check that language inde-
pendence (whatever P among the choices we consid-
ered) is logically independent from syntax independence,
where a propositional operator Ω which associates a
m-propositional structure with a given n-propositional
structure is said to be syntax-independent iff whenever
〈α1, . . . , αn〉 ≡ 〈α′

1, . . . , α
′
n〉, we also have Ω(〈α1, . . . , αn〉)

≡ Ω(〈α′
1, . . . , α

′
n〉).

4 The Complexity of Recognizing

Translations

In this section, we consider the problem of determining
whether a given symbol translation is admissible, where ad-
missible means that it satisfies one of the properties consid-
ered in the previous section. Such an issue has to be addressed
each time a representation change is expected, given a propo-
sitional operator which is known as P -language independent.
Indeed, a symbol translation is acceptable in this case only if
it satisfies P .

First, we show that FCP amounts to a definability issue
(see [Lang and Marquis, 2008] for details):

Proposition 5 σ : {x1, . . . , xn} → PROPY satisfies FCP
if and only if

∧n
i=1(zi ⇔ σ(xi)) defines

⋃
x∈X Var(σ(x)) in

terms of {z1, . . . , zn}, where {z1, . . . , zn} ∩ Y = ∅.

We have also derived the following results (symbol trans-
lations σ : X → PROPY are supposed to be represented
extensionally as {(x, σ(x)) | x ∈ X}):

Proposition 6

1. Determining whether a given symbol translation σ :
X → PROPY satisfies SIN is in P.

2. Determining whether a given symbol translation σ :
X → PROPY satisfies TRP is NP-complete.

3. Determining whether a given symbol translation σ :
X → PROPY satisfies FCP is coNP-complete.

4. Determining whether a given symbol translation σ :
X → PROPY satisfies REV (or, equivalently, AIP )
is Πp

2-complete.

Interestingly, the problem of determining whether a given
symbol translation σ : X → PROPY satisfies REV is a spe-
cific case of the following problem of propositional matching
(given 2n formulae α1, β1, . . ., αn, βn, determining whether
there exists a substitution θ from X =

⋃n
i=1 Var(αi) to

PROPY with Y =
⋃n

i=1 Var(βi) such that for i ∈ 1, . . . , n,
θ(αi) ≡ βi.) Hence, Point 4. of Proposition 6 shows that the
problem of propositional matching is at least as hard as prob-
lem of Boolean unification with constants [Baader, 1998],
which was an open problem issue, as far as we know.

5 Language Independence for Belief Merging

and Belief Revision

As a case study, we have investigated how some belief re-
vision/merging operators from the literature are language-
independent. Belief merging operators aim at defining a be-
lief base (the merged base) which represents the beliefs of a

SIN

FCP

REV AIP

TPRUNI

Figure 1: Implication graph of properties on symbol transla-
tions.
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group of agents given their individual belief bases, and some
integrity constraints. Formally, a base K denotes the set of
beliefs of an agent, it is a finite set of propositional formulae,
interpreted conjunctively. A profile E = 〈K1, . . . ,Kn〉 is
a vector of consistent bases representing the beliefs from the
group of n agents involved in the merging process. A merging
operator Δ is a mapping associating a formula μ (represent-
ing the integrity constraints) and a profile E with a new base
Δμ(E).

KP rationality postulates [Konieczny and Pino Pérez,
2002] are expected properties for belief merging operators.
For space reasons, we only recall two of them:

(IC1) If μ is consistent, then Δμ(E) is consistent;

(IC2) If
∧{Ki | Ki ∈ E} ∧ μ is consistent,

then Δμ(E) ≡ ∧{Ki | Ki ∈ E} ∧ μ.

Distance-based merging operators are characterized by a
distance2 between worlds and an aggregation function f (a
mapping associating with a tuple of non-negative real num-
bers a non-negative real number) [Konieczny et al., 2004]:

Definition 6 (Distance-based merging operator) Let d be
a distance between worlds and f be an aggregation function.
The merging operator Δd,f is defined for every profile E and
every formula μ by mod(Δd,f

μ (E)) = min(mod(μ),≤E)
where the total preorder ≤E over worlds induced by E is
defined by:

• ω ≤E ω′ if and only if d(ω,E) ≤ d(ω′, E),

• d(ω,E) = fK∈E(d(ω,K)),

• d(ω,K) = minω′|=Kd(ω, ω′).

Usual distances are dD, the drastic distance (dD(ω, ω′) =
0 if ω = ω′ and 1 otherwise), and dH the Hamming distance
(dD(ω, ω′) = n if ω and ω′ differ on n variables.)

Belief revision operators can be viewed as belief merging
operators restricted to singleton profiles, so that AGM/KM
postulates [Alchourrón et al., 1985; Katsuno and Mendelzon,
1991] for belief revision are direct counterparts of KP pos-
tulates for singleton profiles; for instance, the KM postulate
(R2) (resp. (R3)) for belief revision corresponds to the KP
postulate (IC2) (resp. (IC1).)

As Proposition 3 suggests it, UNI -language independence
is hardly achieved by operators which have to deal with
jointly inconsistent (but typically individually consistent)
propositional information, while avoiding trivialization. Ac-
tually, focusing on translations satisfying TPR or FCP is
not enough as well, since rational belief revision/merging op-
erators (in the sense of AGM/KM postulates for belief revi-
sion and KP postulates for belief merging) are neither TPR-
language independent, nor FCP -language independent; more
precisely:

Proposition 7 No belief revision operator ◦ satisfying (R2)
and (R3) and no belief merging operator Δ satisfying (IC1)
and (IC2) is TPR-language independent or FCP -language
independent.

2Actually, a pseudo-distance is enough, i.e., triangular inequality
is not mandatory.

Hence, one needs to consider less restricted forms of lan-
guage independence, especially REV . It turns out that exist-
ing belief revision/merging operators are not equally REV -
language independent. Unsurprisingly, the distance choice is
of tremendous significance in this respect:
Proposition 8 Let f be any aggregation function.
• Every distance-based belief merging operator ΔdD,f

based on the drastic distance dD is REV -language in-
dependent.

• No distance-based belief merging operator ΔdH ,f based
on the Hamming distance dH is REV -language inde-
pendent.

The situation is worse for SIN -language independence
since it is not always guaranteed by rational operators:
Proposition 9 There exist belief revision (resp. belief merg-
ing) operators which satisfy all AGM/KM postulates (resp.
all KP postulates) but are not SIN -language independent.

Indeed, every AGM/KM operator ◦ can be characterized in
terms of a faithful assignment associating with every formula
α a total preorder ≤α over interpretations, so that the models
of α ◦ β are exactly the models of β which are minimal w.r.t.
≤α [Katsuno and Mendelzon, 1991]. The point is that noth-
ing ensures that the faithful assignment associates with σ(α)
a total ordering corresponding to ≤σ(α) even when σ is a bi-
jective symbol translation. For instance, let X = Y = {a, b}.
Consider a belief revision operator associated with a faithful
assignment such that:

10 <10 01 <10 11 <10 00,
01 <01 11 <01 10 <01 00.

Let σ : a 
→ b; b 
→ a. Let α = a∧¬b and β = b. We have
α◦β ≡ ¬a∧ b. Now, σ(α) ≡ ¬a∧ b and σ(β) ≡ a. We have
σ(α) ◦ σ(β) ≡ a ∧ b, which is not equivalent to σ(α ◦ β).

This calls for two further axioms expressing such a form
of language independence ((SIN-R) for belief revision and
(SIN-M) for belief merging), stating respectively that for ev-
ery bijection σ from X to Y :
(SIN-R) σ(α ◦ β) ≡ σ(α) ◦ σ(β);
(SIN-M) σ(Δμ(E)) ≡ Δσ(μ)(σ(E)).

Those axioms complement the ones related to syntax in-
dependence ((R4) for belief revision, and (IC3) for belief
merging) and seem highly desirable. Actually, the distance-
based belief revision and belief merging operators, based on
“standard distances” (like the drastic distance and the Ham-
ming one), satisfy those axioms. More generally, when X =
{x1, . . . , xn} contains n atoms, let a distance d over interpre-
tations over X be decomposable when there exists a mapping
fd : Rn → R symmetric in each argument and a symmetric
mapping gd : {0, 1} × {0, 1} → R such that d(ω1, ω2) =
fd(gd(ω1(x1), ω2(x1)), . . . , gd(ω1(xn), ω2(xn)). We have:
Proposition 10 Every belief revision/merging operator
based on a decomposable distance is SIN -language
independent.

For the drastic distance dD, we have fdD
= max and

gdD
(x, y) = 0 if x = y, = 1 otherwise. For the Hamming

distance dH , we have fdH
= Σ and gdH

= gdD
.
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6 Other Related Work

Independence is well-known as a key notion in many domains
within artificial intelligence, especially graphical models for
representing beliefs (e.g., Bayes nets) or preferences (e.g.,
CP-nets or GAI-nets.) In propositional logic, since Belnap’s
work about relevance logic in the sixties, a number of con-
cepts of independence (also referred to as irrelevance, sep-
arability, etc.) has been pointed out in the literature (see
[Lang et al., 2002; 2003] for a survey.) Various forms of
syntax-independence for belief bases have also been investi-
gated so far [Dalal, 1988; Nebel, 1991; Benferhat et al., 1997;
Hansson, 2002]. Qualitative independence, i.e., how the fact
of learning a new piece of evidence individually affects pre-
vious beliefs, has been studied as well for a while [Dubois
et al., 1997]. It turns out that none of these notions of in-
dependence in propositional logic coincides with a form of
language independence (in all the works cited above, inde-
pendence is defined as a relation over a language over a fixed
set of propositional symbols.)

More recently, Makinson [Makinson, 2009] studied a no-
tion of relevance (canonical relevance) which is expected to
be respected in belief change (roughly, contracting a belief
base/set K with some piece of information α should preserve
every consequence β of K when α is irrelevant to β.) While
canonical relevance is syntax-independent in the usual sense,
Makinson shows that it is not language-independent; revis-
iting Makinson’s counter-example in the light of our work,
we can state more precisely that canonical relevance is SIN -
language independent, but is neither REV -language indepen-
dent nor FCP -language independent.

7 Conclusion

This paper is centered on the concept of language indepen-
dence in propositional logic. The main contributions are
mainly as follows:

• We have defined language independence as robustness
w.r.t. symbol translations.

• We have motivated the need to focus on symbol transla-
tions of different types, i.e., satisfying some additional
properties, which leads to several notions of language
independence. We have shown how they are logically
connected.

• We have identified the complexity of recognizing sym-
bol translations satisfying properties of interest.

• As a case study, we have investigated the robustness of
belief revision and belief merging operators w.r.t. trans-
lations of different types. Only limited forms of lan-
guage independence are satisfied in the general case for
belief change operators. Especially, even SIN -language
independence is not guaranteed for the AGM/KM belief
revision operators.

This work paves the way for three main directions for fur-
ther research. A first one concerns belief change; pointing
out other operators satisfying SIN -language independence
would be useful. A second direction consists in investigat-
ing the ”degree” of language independence of other proposi-
tional operators from the literature (for instance, abduction,

circumscription and other forms of closed-world reasoning.)
A third one consists in determining how our results can be
lifted to other propositional settings where a substitution the-
orem holds (for instance, this is the case for a number of
multi-valued paraconsistent logics.)
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