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Abstract

The ability to predict, or at least recognize, the state
of the world that an action brings about, is a central
feature of autonomous agents. We propose, herein,
a formal framework within which we investigate
whether this ability can be autonomously learned.

The framework makes explicit certain premises that
we contend are central in such a learning task: (i)
slow sensors may prevent the sensing of an action’s
direct effects during learning; (ii) predictions need
to be made reliably in future and novel situations.

We initiate in this work a thorough investigation of
the conditions under which learning is or is not fea-
sible. Despite the very strong negative learnability
results that we obtain, we also identify interesting
special cases where learning is feasible and useful.

1 Introduction

An important part of the knowledge humans employ is causal
in nature: it captures the manner and conditions under which
a world state changes following the execution of some ac-
tion. Understandably, then, such type of knowledge has been
the focus of several formalisms / calculi developed for com-
monsense reasoning over the years (see, e.g., [McCarthy and
Hayes, 1969; Thielscher, 1998; Miller and Shanahan, 2002]).
For the potential of these formalisms to be realized, the causal
knowledge that they assume is given should be somehow ac-
quired. We investigate, herein, the extent to which this acqui-
sition task can be carried out autonomously through learning.

The learning setting we consider is this: An initial state of
affairs is observed, a given action is executed, and some state
following the execution of the action is observed. Given sev-
eral pairs of such initial / resulting states, the agent’s goal is
to approximate how the particular action maps initial states to
resulting ones. Our work is based on the following premises:

(P1) The resulting state need not necessarily be the one im-
mediately following the action’s execution. Hence, the
resulting state may differ from the initial state not only
on those properties of the environment that are directly
affected by the action, but also on those that are indi-
rectly so by the ramifications of the action’s effects.

(P2) The agent’s goal is not simply to identify a pattern in the
available data. Instead, the goal is to build a hypothesis

that the agent can use to make predictions of how the ac-
tion would affect a state that it has not observed before.

We prove a rich suite of results bordering and straddling the
fine line that distinguishes learnable from unlearnable cases.
Of note is the fact that the proofs of our positive results are
constructive, and either provide novel or adapt existing algo-
rithms that can be readily implemented into reasoning agents.

2 A Framework for Causal Change

Our framework for causal change follows typical frameworks
of reasoning about actions and change in the literature, both in
terms of syntax and semantics (see, e.g., [Kakas er al., 2011]).
We fix a non-empty finite list F of fluents, representing the
properties of the environment that an agent may sense, and
which may change over time as a result of action executions.
A state over F is a vector st € {0,1}7], determining a
truth-value for each fluent in F. We shall write st [i] to refer
to the value of the i-th fluent in F according to the state st.
A causal law (of order k) over F is a statement of the form
“S causes L”, where S is a set of literals (with |S| = k),
and L aliteral. A causal law is monotone if it uses no negated
fluents. A domain c is a finite collection of causal laws.
A literal L is triggered in a domain c by a state st if there
is a causal law “S causes L” € csuch that st satisfies S.
A model M of a domain c is a mapping of each time-point
T € Nto a state M(T), such that: M (T +1) satisfies a given
literal L if and only if either (i) L is triggered in ¢ by M (T),
or (ii) M(T) satisfies L, and L is not triggered in ¢ by M (T).
This semantics captures the minimal set of principles nec-
essary for causal domains, namely that the effects are brought
about (Condition (7)), and that default inertia applies to fluents
whose persistence is not caused to stop (Condition (ii)).

Example 1 (Faulty Wiring) Consider a scenario described
in terms of whether current flows (C), the wiring is okay (W),
and the fuse is working (F'). A domain c includes the causal
laws “{C,W} causes F” and “{F} causes C”. An ini-
tial state M(0) that satisfies {C, W, F'} triggers F, resulting
in a new state M(1) that satisfies {C, W, F'}. The latter state
triggers C (and F), resulting in a new state M(2) that satis-
fies {C, W, F}. By persistence, all subsequent states M(T),
T > 2 are equal to M(2). The mapping M is a model of c.

Regarding the manner in which the developed formaliza-
tion will come into play in the sequel, we point upfront the
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following. We shall not consider the scenario usually consid-
ered by the RAC community of computing models, or some
aspect thereof, given access to a specific domain c. Instead,
we shall formalize and investigate what could be considered
the inverse scenario: given access to models, or some aspects
thereof, of an unknown target domain, identify the domain.

3 Passive and Active Sensing of States

An agent’s limited resources and sensor capabilities prevent
it from having access to all models of the target domain, or
complete access to any one of the target domain’s models. We
will consider, instead, a setting where the agent observes an
initial state, then executes some action, and finally observes a
resulting state. The cycle is, then, repeated a number of times.

Since the agent is attempting to learn the effects of its ac-
tions, we can assume that it cannot choose the initial state, but
can only passively sense whatever it might be. We model this
by letting the agent’s sensors randomly — according to some
unknown fixed, but arbitrary, distribution — choose an initial
state corresponding to some model of the target domain.

We shall let st < sense (¢) denote that state st is
sensed by the agent in the manner described above, when the
target domain is, although unbeknown to the agent, c.

Although the agent is learning the effects of its actions, we
may consider the case where it has done so for some of them,
and can, thus, use them to partially choose the initial state; at
which point, it will execute one of the actions whose effects
it is still trying to learn. We model this by assuming that the
agent may map the fluents in some subset of F to any truth-
values it wishes. Given this constraint, the truth-values of the
rest of the fluents are determined as in the passive case above.

We shall let st < sense (¢ | £ix) denote that state st is
sensed by the agent in the manner described above, given that
the truth-value st[¢] of fluent F; in st matches that in tuple
fix € {0,1, *}| whenever, of course, fix[i] € {0,1}.

The action executed by the agent shall be assumed to be the
same each time, in line with the agent’s goal to gather enough
information to deduce the action’s effects. Our framework of
causal change was, in fact, designed with this assumption in
mind, and does not mention actions explicitly. This design
choice is without loss of generality, since learning the effects
of multiple actions can be reduced to learning a distinct target
domain for each action (with the causal laws in each target
domain being those applicable to the corresponding action).

The state sensed after the action execution need not imme-
diately follow the action execution. We will assume that the
agent cannot, in fact, choose how soon to observe this state
after the action execution, since the rippling effect caused by
the ramifications of the action might be too fast for the agent’s
sensors. We model this by letting a parameter determine the
number of time-steps that need to elapse between the agent
sensing the initial state and sensing this second state (which
comes, of course, from the same model as the initial state).
This last point makes precise and explicit Premise (P1).

We update again the notation we have introduced earlier to
capture the requirements mentioned above. We shall, then, let
(sty,sta) < sense (¢, t | £ix) denote that some model
M of c is chosen according to some fixed arbitrary distribu-
tion, so that: st; = M(0) is the initial state of this model;
stg = M(t) is the second state, sensed ¢ time-steps after the
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action execution. Beyond stq, stg, no other information is
revealed to the agent during any single sensing session.

The aforementioned distribution over models depends, in
general, on the choice of £ix. When fix = %71, the agent
passively senses its environment, according to some distribu-
tion over models. When it attempts to actively fix the truth-
values of some fluents, the remaining ones may be indirectly
affected; hence, the distribution over models may be affected
depending on £ix. In all cases, the distribution remains the
same for all sensings that involve the same choice of £ix.

4 Learning with Predictive Guarantees

Given access to observed pairs (stq, stg) of states obtained
through sense (¢, t | £ix), the agent’s goal is to approxi-
mate the target domain c, whatever it might be. This approx-
imation we expect to be accompanied by certain guarantees.
We discuss next what these guarantees might reasonably be.

The approximation need not be a collection of causal laws
as defined in Section 2. Indeed, our causal framework aims
to give semantics to the dynamics of an agent’s environment,
and not to prescribe how the agent will represent them. We
shall, thus, denote by H the set of all representations that the
agent may choose to use. He shall call each representation h
in H a hypothesis, and H itself the hypothesis class.

Conceivably, the agent may have a prior bias on the nature
of the target domain c. For instance, even though the agent
does not know c directly, it may believe that (or wish to inves-
tigate the case where) ¢ comprises only of monotone causal
laws, or of causal laws of order at most 127. To capture this
bias, we shall assume that the target domain c belongs in some
domain class C, which itself is known to the agent. In case no
bias exists, we can simply let C contain all possible domains.

The setting so far is that assuming the target domain c be-
longs in C, and given access to (sty, sta) < sense (¢, |
fix),the agentis expected to return a hypothesis i € H. We
designate the period during which these happen the fraining
phase, and we expect that it takes time polynomial in the rel-
evant parameters. What other guarantees should we impose?

One type of guarantees, often found in the literature (which
we shall discuss later on), is that A should be consistent with
all pairs (st1, sto) that the agent has sensed during training.
That is, for each sensed pair (sti, sts), there should be a
model M of h such that st; = M(0) and sty = M(%).

This requirement by itself is, however, not very useful. The
agent attempts to learn the effects of its actions so that it can
utilize this knowledge in future situations. We consider, thus,
a scenario where following the training phase, an agent enters
atesting phase, where it uses the hypothesis i. Depending on
the precise use of h, we get different types of guarantees. The
testing phase makes precise and explicit Premise (P2).

The formalizations that follow next build on the Probably
Approximately Correct semantics [Valiant, 1984], by adopt-
ing the requirements that learning during the training phase is
carried out efficiently, and that the learned hypothesis is ac-
companied by predictive guarantees during the testing phase.

Departing from the original PAC model, however, our for-
malizations do not assume that learning has access to individ-
ual states of the environment, nor that the values of the fluents
within each single state are somehow correlated. Instead, they
assume that learning has access to pairs of states, and that the



values of the fluents in the second state are correlated with
the values of the fluents in the first state. Such a type of cor-
relation captures the causal structure of the environment that
we seek to identify, as opposed to the static structure of the
environment that the original PAC model seeks to identify.

4.1 Recognizing the Effects of Actions

Perhaps the simplest testing requirement is: Given an initial
state st 1, recognize whether a second given state sto could
have been caused by a given action. More precisely, the agent
is given a pair of states (sty, sto) such that st; = M(0),
where M is a model of the target domain ¢ chosen according
to an arbitrary distribution that remains, however, fixed dur-
ing the training and testing phases. Furthermore, one of the
following two scenarios occurs, each with probability 1/2:
either sto = M(t) or sta is chosen arbitrarily among all
statesin {0, 1}7|. The agent should decide which is the case.
We call the above testing requirement the recognition task.

We do not expect the agent will always succeed in deciding
correctly. On the other hand, we do expect that its success rate
will noticeably exceed the trivially obtainable rate of 1/2.

In weak recognition, we expect the agent’s success rate to
be at least 1/2 + 1/p(|.F|, |¢c|), for some arbitrary fixed poly-
nomial p(+,-). Thus, the success rate need only be slightly
better than random guessing. We shall later see that in certain
settings, achieving even this weak guarantee is infeasible.

In strong recognition, we expect the agent’s success rate
to be at least 1 — ¢, for any given ¢ € (0, 1]. Thus, the success
rate need be arbitrarily close to perfect. The agent may em-
ploy resources that grow polynomially in 1/¢ to compensate
for this more arduous requirement. Thus, the better predic-
tions we expect, the more time we allow the agent to train.

Definition 1 (Learning to Recognize the Effects of Actions)
A domain class C is learnable by recognition by a hypothesis
class H if there exists an algorithm L for which it holds that:
for every sensor sense (¢, t | -) suchthatc € Candt € N,
(and for every € € (0, 1] in the case of strong recognition),
during the training phase

L is given access to C, H, (and € in the case of strong recogni-
tion), and pairs of states (st1, sta) + sense (¢, t | £ix),
where £ix € {0,1, x}/” may be chosen by L at each call,
and has the property that

L runs in time polynomial in |F|, |c|, (and 1/¢ in the case
of strong recognition), and with probability' 2/3 returns a
hypothesis h € H that succeeds in the recognition task.

We shall later consider restrictions of this model, by im-
posing, for instance, constraints on C, ¢, and £1ix, so that we
can investigate causal learnability in more structured settings.

4.2 Generating the Effects of Actions

A second testing requirement is: Given an initial state st,
generate a state sto that could have been caused by a given
action. More precisely, the agent is given a state st such
that st; = M(0), where M is a model of the target domain

IThis probability corresponds to the confidence parameter & in
the PAC semantics. For simplicity, and without loss of generality,
we have fixed it to a constant value, and shall not discuss it further.
It is included so that the PAC requirements are properly captured.

c chosen according to an arbitrary distribution that remains,
however, fixed during the training and testing phases. The
agent should generate a state sto such that sty = M(¢),
with the value of ¢ being that used during the training phase.
We call the above testing requirement the generation task.

As in the recognition task, we do not expect the agent will
always succeed in this task. Unlike the recognition task, there
are now exponentially-many possible outcomes, and the triv-
ially obtainable rate of (1/2)17 is, effectively, zero. Any no-
ticeable improvement above zero would, thus, be welcome.

In weak generation, we expect the agent’s success rate to
be at least 1/p(|.F|,|c|), for some arbitrary fixed polynomial
p(+,+). Thus, as in the weak recognition setting, the success
rate need only be slightly better than random guessing.

In strong generation, we expect the agent’s success rate to
be at least 1 — &, for any given ¢ € (0,1]. This setting fol-
lows the strong recognition setting on how £ comes into play
during learning. We shall later see that in certain settings,
achieving this rather strong guarantee is, in fact, feasible.

Definition 2 (Learning to Generate the Effects of Actions)
A domain class C is learnable by generation by a hypothesis
class H if the provisions of Definition 1 hold, after substitut-
ing “generation” for each occurrence of “recognition”.

We shall later consider restrictions of this model, by im-
posing, for instance, constraints on C, ¢, and £1ix, so that we
can investigate causal learnability in more structured settings.

5 Learnability when Sensors are Fast

We consider first the case where sensors are fast enough to
sense the state immediately following the execution of a given
action, which incorporates the action’s direct effects — even
though the state may subsequently change further due to the
action’s indirect effects. Fast sensing does not imply any re-
strictions on the richness or complexity of the target domain.

Even Weak Learning of General Domains is Hard

We start this section with two strong negative results, assum-
ing that DNF formulas (of size polynomial in the number of
their variables) are hard to learn under the PAC semantics.
More precisely, the “DNF Learning Hardness” assumption
we invoke is this: given access to randomly chosen inputs to
a circuit implementing a hidden DNF formula, and to the cor-
responding outputs of the circuit, it is intractable to construct
a good approximation of the DNF formula in the PAC sense.
This constitutes one of the major open questions in Compu-
tational Learning Theory [Kearns and Vazirani, 1994], even
if at most one of the following holds: (i) the inputs are drawn
from the uniform distribution, or (ii) the inputs can be chosen
(in addition to being drawn from some arbitrary distribution).

Theorem 1 (Non-Learnability of Direct Action Effects 1)

Given that the “DNF Learning Hardness” assumption holds,
there exists a domain class C not weakly learnable by recog-
nition by any hypothesis class H, even if sense (¢, t | £ix)
is such that the target domain c € C contains only monotone
causal laws, t = 1, the models of c are sensed uniformly at
random, and £1ix may be chosen from {0, 1, *}171=1 x {x}.
Sketch of Proof: For each DNF formula ¢ include in C the
domain c,, s.t. for each term v;, -« - vy, Vg, V5, i0 @, Cy
includes “{Fif, R A , Iy} causes Fy”.

[ S
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If C is learnable, then so are DNF formulas, by calling the
learning algorithm for C and providing it with pairs of states
as follows: When fix = *!7|, construct states stq, sto that
match the inputs and output of the DNF formula. Otherwise,
choose a state st that agrees with £ix on those fluents that
have their values fixed, and complete the rest st uniformly
at random, except set Fjp to 1. Set sty = stj. O

This constitutes a very strong negative result, as it: (i) ap-
plies to the weakest type of learning (weak recognition by any
hypothesis class), (ii) uses the strongest type of sensing (fast
sensing with essentially unrestricted fixing — the single flu-
ent that cannot be fixed is the one affected by the action whose
effects are being learned), and (iii) concerns a fairly restricted
class of domains (with only monotone causal laws). Further-
more, (iv) only uniform sensing needs to be dealt with.

Despite the availability of fixing, the result goes through by
exploiting the single value in £ i x that cannot be set, to essen-
tially render the fixing of the remaining values not useful. Itis
natural, hence, to ask whether allowing f£ix to be chosen in
a completely unrestricted manner would restore learnability.

Theorem 2 (Non-Learnability of Direct Action Effects 2)

Given that the “DNF Learning Hardness” assumption holds,
there exists a domain class C not weakly learnable by recog-
nition by any hypothesis class H, even if sense (¢, t | £ix)
is such that t = 1, and £1ix may be chosen from {0, 1, x}171.

Sketch of Proof: For each DNF formula ¢ include in C the
domain c,, s.t. for each term v;, - - - v;, U5, *+* U5, N, Cy
includes “{F;,,..., F;,, Fi,, ..., F;, } causes Fy”.

If C is learnable, then so are DNF formulas, by calling the
learning algorithm for C and providing it with pairs of states
as follows: When £ix = %/, construct states st, st that
match the inputs and output of the DNF formula. Otherwise,
choose a state st that agrees with £ix on those fluents that
have their values fixed, and complete the rest st uniformly
at random. Choose a DNF input consistent with st;, and
using a membership query obtain the output of the target
DNF formula. Set sto st1, under the provision that if
Fyis 0in sty, then Fj is set to the obtained output in st.

)

The second negative result is also strong: we have given up
causal law monotonicity, and uniform sensing; but we have
allowed the unconditional fixing of attributes when sensing.

Special Domain Classes that are Strongly Learnable

From a theoretical perspective, the two negative results seem
to indicate that there is little hope in deriving positive results
of any significance. From a somewhat philosophical perspec-
tive, they seem to clash with the apparent ability of humans
to identify causal relations in our surrounding environment.
Fortunately, this pessimism and the apparent paradox can
be dismissed once we observe that the domain classes whose
unlearnability Theorems 1 and 2 establish, comprise domains
of few causal laws of large order. This imbalance in the do-
mains is an artifact of the reduction from DNF formulas. We
postulate that it does not occur in real-world domains; at least
we are not aware of any such cases. Our aim, then, is to ex-
clude consideration of such presumably unnatural domains.
A domain with causal laws of maximum order k is bal-

1017

anced if the number of its causal laws is a non-negligible? in
| F| fraction of the number of all causal laws of order at most
k. Domains containing any number of causal laws of order
independent of ||, are easily shown to be balanced. In gen-
eral, the definition insists that the size of the domain grows,
not too slowly, with the order of the causal laws it contains.
Under the assumption of fast sensors, we are able to estab-
lish the learnability of balanced domains in a strong sense, as
it: (i) applies to the strongest type of learning (strong gen-
eration with the hypothesis class being equal to the domain
class), (ii) uses the weakest type of sensing among those that
are fast (no fluent can be fixed), and (iii) concerns a general
class of domains (with causal laws of arbitrary monotonicity).

Theorem 3 (Passive Learning of Balanced Domains)

Consider a domain class C comprising only domains that are
balanced. Assume the hypothesis class H is equal to C, and
that sense (¢c,t | £ix) is called always witht = 1, and

fix = 71, Then, C is learnable by strong generation by H.

Sketch of Proof: Draw a number of pairs of states to populate
a set 7 of training instances. Set £ = 0, and repeat the fol-
lowing: Initialize a hypothesis i with all possible causal laws
of order at most ¢. For every pair of states (sty,sts) € T,
remove from A all causal laws “S causes L” such that st
satisfies S, and sty satisfies L; such causal laws provably
cannot be part of the target domain c. Now, test h on 7. If h
correctly predicts all pairs of states in 7, then return h, and
terminate. Else, increase ¢ by one, and repeat the process.
The algorithm terminates before ¢ exceeds the maximum
order k of causal laws in the target domain c. By the balanced
property, the running time is polynomially-related to |c¢|. O

A second aspect of the unlearnable domain classes in Theo-
rems 1 and 2 is that multiple causal laws have the same fluent
in their head, yet their preconditions are completely uncorre-
lated with each other. Such dissociated causal laws are use-
ful when one wishes to model effectively unrelated circum-
stances that, nonetheless, cause the same effect to be brought
about. There exist, however, scenarios where the causal laws
are naturally much more tightly coupled. Such causal laws
could result, for instance, when encoding exception lists.

An exception list e is a list of pairs (C;, ;) of some set C;
of literals, and a literal Q; € {F, F'} for some fixed fluent F',
such that: given a truth-assignment, the conclusion of e is the
highest-indexed @; for which C; UC3 U. .. U Cj is satisfied.
Thus, each pair refines the conditions under which a conclu-
sion is to be drawn, and overrides the preceding conclusions.

Example 2 (Flying Bird) Consider a scenario where a bird
named Tweety starts or stops flying when shot at by a clumsy
hunter (who often misses). This could be represented thus:

if Tweety is not a penguin  then  start flying
unless  Tweety is hit by the shot  then  stop flying
unless  Tweety’s injury is minor  then start flying

Note that exception lists (nested if-then-unless statements)
are closely related to decision lists (nested if-then-else state-
ments), a class of functions known to be learnable under the
PAC semantics [Rivest, 1987]. It can be shown, in fact, that

*Borrowing this useful notion from Cryptography, a function is
non-negligible in n if it is Q(1/n") for any k that is constant in 7.



LEARNEXCEPTIONLIST (Training set 7, Fluent F')

Set T toinclude (st1, sta) € T s.t. stafi] # stq[d].
Set 7o toinclude (stq,sto) € T s.t. stafi) =0
Set 7; toinclude (sti,sts) € T s.t. stafi] =1
Set h to be the empty exception list.
Set all = cur = FindMaxConjunction(Tx, D).
Repeat the following, until termination:
Set neg = FindM azConjunction(To,all) \ all.
Set pos = FindMaxConjunction(Ty,all) \ all.
If (neg # 0), then set Q = F and nxt = neg.
If (pos # 1), then set Q = F and nxt = pos.
If (neg U pos = (), then return h, and terminate.
Set h = h o (cur,Q), cur = nat, all = all U cur.

Algorithm 1. An algorithm that passively learns exception
lists. Conjunctions of literals are represented as sets.

the latter class coincides with a strict subclass of exceptions
lists: those whose first condition is the empty conjunction.

In the general case, and unlike decision lists, exception lists
may abstain from making predictions in certain settings. This
feature, although not applicable in the original PAC model, is
particularly appropriate in a causal setting, as it accounts for
cases where values persist without being caused to change.

Observation 1 (Modelling Exception Lists via Causal Laws)

For any exception list (C1,Q1),(Co,Q2),...,(Cpm,Qm),
there exists a domain c of size polynomial in the size of the
exception list, such that st satisfies the conclusion of the
exception list when it is applied on the truth-assignment st 1,
whenever (st1, sta) <+ sense (¢,t| fix) witht = 1.

The domain is this: Forevery j € {1,2,... ,m}, and every
literal L € Cj11 (applicable if j < m), domain c includes

the causal law “C1 UCy U...UC; U{L} causes Q;".

We show that (even non-balanced) domains modelling ex-
ception lists are learnable, in the strong sense of Theorem 3.

Theorem 4 (Passive Learning of Exception List Domains)
Consider a domain class C comprising only domains where
each of the fluents is caused according to some exception
list. Assume the hypothesis class H is equal to C, and
that sense (c,t | £ix) is called always witht = 1, and

fix = 71, Then, C is learnable by strong generation by H.

Sketch of Proof: Draw a number of pairs of states to popu-
late a set 7 of training instances. For each fluent F;, invoke
Algorithm 1 with inputs 7 and F}, to obtain a hypothesis ;.
Following Observation 1, convert h; into a set h} of causal
laws. Seth = r, hl, return the hypothesis &, and terminate.
Subroutine FindM azConjunction(T’,S’) is based on
an algorithm in [Valiant, 1984]. Each iteration introduces at
least one new literal in all, which guarantees termination.
Assume that h; = (C1,Q1),{(C2,Q2), ..., {Cm,Qm). By
a careful case analysis it can be shown that h; cannot err:
(i) if Cy is not satisfied, since that would contradict Step 5.
(i) if Cy UCy U ... UC}, j < m is maximally satisfied,
since Step 12 would imply that C'; 1 should also be satisfied.
(iii) if C7 U Cy U ... U (), is satisfied, since the target
exception list would imply that /; should have been longer. [
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Of course, even if only some of the fluents are caused ac-
cording to an exception list, those can be learned as above,
and other approaches can be used for the remaining fluents.

Learning through Active Selection of the Initial State

The established negative results point to two more scenarios
where learning may be possible: use sensing with unrestricted
fixing and focus on either domains of monotone causal laws,
or uniform sensing. We prove next that both results hold.

Theorem 5 (Active Learning of Monotone Domains)
Consider a domain class C comprising only domains of
monotone causal laws. Assume the hypothesis class H is
equal to C, and that sense (c,t | £ix) is called always
with t = 1, and £1x may be chosen from {0, 1, *}‘H. Then,
C is learnable by strong generation by H.

Sketch of Proof: By adapting the algorithm for PAC learning
monotone DNF formulas in [Angluin, 1988]. Start by setting
h = 0, and test h on a training set 7. Whenever h errs on
sti, use fixing to find a minimal subset S of the fluents
satisfied in st that preserve the value of fluent F; in sto.
Add “S causes F;” in h, and repeat. O

It is straightforward to extend Theorem 5 to a certain class
of non-monotone domains, where it holds that all causal laws
with the same fluent F; in their head (possibly negated), com-
prise simultaneously either all positive or all negative literals.

Assuming that the models of the target domain are sensed
uniformly at random, and doing without the requirement for
hypotheses to be represented as sets of causal laws, it is pos-
sible to learn general non-monotone non-balanced domains.

Theorem 6 (Active Learning under Uniform Sensing)
Consider a domain class C. Assume that sense (c,t | £ix)
is called always with t = 1, the models of the target domain
¢ € C are sensed uniformly at random, and £ix may be
chosen from {0, 1, *}‘}- |, Then, there exists a hypothesis
class H such that C is learnable by strong generation by H.

Sketch of Proof: By multiple reductions to the problem of
learning DNF formulas, which can be achieved by adapting
the celebrated result in [Jackson, 1997]. The DNF formulas
encode whether fluent values change as a result of the action
execution. Hence, for each causal law “S causes L” that af-
fects a fluent F}, the corresponding DNF formula will include
aterm SU{L}. Each (stq, sta) ¢ sense (¢, t | £ix) will
give rise to a positive learning example for the DNF formula
if st1[i] # st2[i], and a negative example otherwise. O

6 Learnability when Sensors are Slow

In many cases, the agent’s sensors are slow, and result in the
agent sensing some state following the action’s execution that
may incorporate some or all of the action’s indirect effects.
In this setting, the action’s execution and the sensed state are
interjected by one or more states, which encode the interme-
diate materialization of the action’s effects. Fluents may have
their values change back and forth, without being sensed so.
It is, thus, unsurprising that slow sensors hinder learnabil-
ity further. In fact, hidden states can be exploited to simulate
the workings of circuits, certain classes of which are unlearn-
able under reasonable assumptions, even if causal laws are
restricted to have order 2 [Michael, 2007]. Although many



relevant negative results could be presented, we focus on what
is, admittedly, a more interesting direction: establishing that
under certain natural assumptions, learnability is reinstated.
We achieve this not by restricting the structure of domains,
but by imposing constraints on the sensors through which
their models are sensed. The constraints aim to alleviate the
hiding of complex computations that take place in the inter-
mediate states, and which ultimately leads to unlearnability.

Simple Sensing as a Counterbalance to Slow Sensing

A sensor sense (¢, t | £ix) is (o, B)-simple if for every
F; € F there exists an a-term S-DNF formula such that for
every (sty, sta) < sense (¢, t | £ix), the formula evalu-
ates on st to true exactly when st[i] # sts[i] holds.
Although the agent is not necessarily aware of o and 3 dur-
ing learning, the learning time is bounded by those parame-
ters. This, in turn, allows us to carry positive results from the
case of fast sensing, under certain assumptions on « and /3.

Theorem 7 (Passive Learning of Simply Sensed Domains)
Consider a domain class C. Assume the hypothesis class H is
equal to C, and that sense (¢, t | £ix) is («, B8)-simple for
B independent of |F|, is called always with the same t, and
fix = 71, Then, C is learnable by strong generation by H.

Sketch of Proof: The algorithm is similar to that in the proof
of Theorem 3. The value of k is 3. The causal laws in the
hypothesis h initially are those with the negation of their
head in their conditions. This ensures that during the k-th
iteration, the conditions of the casual laws in A are always a
superset of the terms of the respective DNF formulas whose
existence is guaranteed by the definition of («, 8)-simple. O

Theorem 7 has two immediate corollaries. The first corol-
lary relates to domains whose causal laws include at most
one literal in their conditions. These domains are not overly
simple, since a chain of such causal laws effectively allows
fluents to be caused according to some disjunction of literals.
It is immediate that for any such domain ¢, any given sensor
sense (¢, t | £ix) is (O(|F|), 1)-simple. Hence:

Corollary 8 A domain class comprising only domains whose
causal laws include at most one literal in their conditions, is
learnable in the sense of Theorem 7.

The second corollary relates to a situation that could, pre-
sumably, be common when a teacher (or parent) guides a stu-
dent (or child) to learn the effects of an action. In such a set-
ting, then, one could envision the teacher as choosing the ini-
tial state st so that if some effect is caused after the execu-
tion of the action, the effect would have also been caused had
the initial state been heavily perturbed. Put in other words,
the teacher chooses the initial state so that only a small part
of it is essential, which, arguably, makes learning easier.

Formally, a sensor sense (¢, t | £ix) is y-friendly if for
every F; € F and every (sty, sta) ¢ sense (¢, t | £ix)
such that st [i] # sta[i], there exists a y fraction of the flu-
ents in F so that any state st resulting from st; by chang-
ing the truth-values of those fluents is such that st/[i] #
sth[i] whenever (st), sth) <+ sense (¢, t | £ix).

It is immediate that any sensor sense (¢, ¢ | £ix) thatis
~-friendly is necessarily (v, (1 — 7)|F|)-simple. Hence:

Corollary 9 A domain class is learnable in the sense of The-
orem 7 whenever the sensor is (1 — O(|F|~"))-friendly.
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Friendly sensing is related to the general problem of learn-
ing in the presence of irrelevant information [Blum and Lan-
gley, 19971, progress in which could lead to new learnability
results in our framework with certain less friendly sensors.

If we, now, allow active learning in addition to simple sens-
ing, we can establish a generalization of Theorems 5 and 6.

Theorem 10 (Active Learning of Simply Sensed Domains)
Consider a domain class C. Assume that sense (c,t | £ix)

is («, B)-simple, and is called always with the same t. Then,
Theorems 5 and 6 apply mutatis mutandis for the learnability
of C, assuming that extra time polynomial in o is allowed.

There are natural conditions under which « is polynomial
in | F|, and the extra time in Theorem 10 can be eliminated.

The associated graph of a domain ¢ comprises a node for
each fluent, and a directed edge between two fluents when the
former and latter appear, respectively, in the body and head
of a causal law in c. It is possible to show that the number of
directed paths in the associated graph of c¢ of length at most
t, upper-bounds the value of « in any («, 3)-simple sensor
sense (¢, t | £ix). The next corollary follows from above:

Corollary 11 A domain class is learnable in the sense of
Theorem 10 whenever the associated graphs of the domains
contain polynomially in | F| many directed paths of length at
most the sensor’s speed t. This holds, in particular, under the
very natural assumption that t is independent of | F|.

Transparency for Learning Width-Bounded Domains

Another way to stop intermediate states from hiding complex
computations, is to consider transparent sensing, where any
change can be attributed to something that the agent observes.
Formally, a sensor sense (¢, t | £1x) is transparent if for
every F; € F and every (sty, sts) < sense (¢, t | £ix)
such that st1[i] # sta[i], assuming L € {F;, F;} is satisfied
by sto (i.e., L indicates stsli]), there exists a causal law
“S causes L” € ¢ whose body is satisfied by st or sts.
An analogous notion of transparency has been employed in
the context of PAC learning CP-networks [Dimopoulos et al.,
2009]. At its basis, the learning algorithm developed in that
context receives preferences over pairs of outcomes that are
transparently entailed by an acyclic CP-network of bounded
in-degree, and efficiently identifies one such CP-network. We
suggest that some adaptation of that learning algorithm could
be used to establish the following result in our framework.

Conjecture 1 (Passive Learning with Transparent Sensing)
Consider a domain class C comprising only domains with
an acyclic associated graph of in-degree at most k. As-
sume the hypothesis class H is equal to C, and that
sense (¢, t | £ix) is transparent, is called always with the
same t that is upper bounded by some polynomial in | F|, and
fix = %71, Then, C is learnable by strong recognition by

H, assuming that extra time polynomial in |F |k is allowed.

We believe that causal learnability and preference elicita-
tion (e.g., in PAC learning CP-networks) share some key fea-
tures that can be formally characterized, and that further re-
search may reveal deep connections between the two areas.

7 Conclusions

We have presented a formal theory and a comprehensive col-
lection of results in causal learning, delineating the scenarios



that are learnable from those that are not. Related work often
diverges from ours on not adopting our two premises.

Otero [2005], for instance, considers indirect effects of ac-
tions that all come about in the state immediately following
the action execution. Hence, there are no hidden states, nor a
rippling effect as indirect effects materialize over time; prop-
erties which are a necessary implication of Premise (P1).

Some works seek to identify causal laws consistent with a
training set. Inoue et al. [2005], for instance, show how to do
this for Language A, by reducing domains to Deterministic
Finite Automata. The known unlearnability of the latter class
when guarantees are expected [Kearns and Vazirani, 1994],
exemplifies the non-adoption of Premise (P2) by that work.

More recently, Amir and Chang [2008] consider an online
setting of partially observing a sequence of states and inter-
jected actions, and investigate the problem of simultaneously
identifying the current state of the world, and the direct ef-
fects of all involved actions. Indirect effects, predictive guar-
antees, and the use of queries are not considered in that work.

We find the partial state observability and the online setting
intriguing for future investigation, alongside the investigation
of sensors that occasionally return incorrect inputs. Relevant
work in Learning Theory can aid in this line of research (e.g.,

[Aldous and Vazirani, 1995; Kearns, 1998; Michael, 2010b]).

In an effort to strengthen our positive results, albeit at the
expense of learning autonomy, one could investigate learn-
ability with the aid of teachers [Goldman and Mathias, 1996],
or more powerful sensors [Angluin, 1988]. We have touched
upon these issues when discussing how the use of active sens-
ing can be best interpreted, but further research is warranted.

Additional extensions can be considered to account for sce-
narios where, for instance: the speed of sensing varies during
the training and testing phases; additional actions occur while
the effects of certain preceding actions are still being realized;
the causal models being learned are non-deterministic; etc.

In terms of applications, beyond offering a computational
toolbox for the autonomous acquisition of causal knowledge,
the developed causal learnability framework can also be used
for the formal study of questions such as whether learning by
generation is strictly harder than learning by recognition, or
even for the identification of the context under which certain
stories are to be interpreted and understood [Michael, 2010a].
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