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Abstract

Uncertainty and vagueness are pervasive phenom-
ena in real-life knowledge. They are supported in
extended description logics that adapt classical de-
scription logics to deal with numerical probabili-
ties or fuzzy truth degrees. While the two concepts
are distinguished for good reasons, they combine
in the notion of probably, which is ultimately a
fuzzy qualification of probabilities. Here, we de-
velop existing propositional logics of fuzzy prob-
ability into a full-blown description logic, and we
show decidability of several variants of this logic
under Lukasiewicz semantics. We obtain these re-
sults in a novel generic framework of fuzzy coal-
gebraic logic; this enables us to extend our results
to logics that combine crisp ingredients including
standard crisp roles and crisp numerical probabili-
ties with fuzzy roles and fuzzy probabilities.

1 Introduction

Description logics (DLs) have emerged as a widely accepted
and used knowledge representation framework. By-and-
large, the semantics of DLs is based on relational structures.
This provides a good fit for many applications, but needs to be
extended if one requires concepts that involve some form of
vagueness, e.g. fuzzy truth degrees. Extensions of the latter
kind are commonly subsumed under the term Fuzzy Descrip-
tion Logics [Lukasiewicz and Straccia, 2008]. The prime ex-
ample here is a logic of ‘likes” where the assertion likes(a, b)
may (semantically and syntactically) receive a fuzzy truth de-
gree, depending on the strength of affection.

Orthogonal to this, many knowledge representation for-
malisms have been extended with probabilities, includ-
ing DLs (overviews are in [Lukasiewicz, 2008; Lutz and
Schréder, 2010]) and first-order logics [Halpern, 1990]. Such
logics make crisp statements about probabilities, e.g. that the
incidence rate of a certain disease exceeds some numerical
value. Semantically, this is accommodated by assigning prob-
abilities to concepts that can then be compared, but in contrast
to fuzzy logics, these comparisons are bivalent.

The fact that vagueness and probabilistic uncertainty are
notions that deserve to be distinguished [Lukasiewicz and
Straccia, 2008] does not preclude situations involving both.
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A point in case is the word probably, a vague qualification of
a degree of uncertainty. In crisp logics, this phenomenon has
been approached by either giving qualitative axiomatizations
of likelihood [Burgess, 1969; Halpern and Rabin, 1987] or by
imposing a threshold probability above which events are con-
sidered probable [Hamblin, 1959; Herzig, 2003]. In a fuzzy
logic over probability distributions, one can define the truth
value of probably C' for a fuzzy concept C' as the expecta-
tion of C, read as a [0, 1]-valued random variable. This view
goes back to Zadeh [1968] and is also taken in [Hdjek, 20071,
where a fuzzy propositional logic of probably is developed
and shown to be in PSPACE.

Hajek’s reading of probably is global in that it depends on
a single probability distribution on the model. Syntactically,
this is reflected in the fact that the probably operator cannot
be nested. Here, we introduce and analyse fuzzy probabilis-
tic DLs that are interpreted locally, i.e. a distribution is asso-
ciated to each point in the model, as in [Fagin and Halpern,
1994]. This allows modelling situations where, €.g., the prob-
ability of exhibiting a certain symptom depends on the dis-
ease. It elevates probability operators to the status of DL op-
erators like existential restriction 3R, which may be nested
ad libitum, for the same reason: a local set of successors is
associated to each point in the model.

While the logic of probably provides us with new expres-
sive means for vague knowledge, it is clearly necessary to
combine probably with other DL connectives for meaningful
applications. To accommodate this, we formulate our results
in a more abstract framework that also allows treating fuzzy
roles, such as likes, crisp roles, and quantitative uncertainty.
We achieve this by using coalgebraic logic, which encapsu-
lates the precise nature of knowledge operators as well as
their interpretation, making our results applicable in a wide
context by instantiating the more abstract framework.

We work with Lukasiewicz semantics for fuzzy connec-
tives, which avoids some of the counter-intuitive properties of
the simpler minimalistic (or Zadeh) fuzzy logic [Kundu and
Chen, 1998]. Our main technical results are generic satisfi-
ability algorithms that instantiate to yield the first algorithm
for DLs with the probably operator, overcoming difficulties
related to unavailability of the finite model property for some
reasoning problems; this can be combined modularly with a
whole range of DL features involving crisp and fuzzy roles
as well as numerical probabilities and nominals. Depending



on details of the logic, our algorithms run in NEXPTIME or
EXPSPACE, respectively, and in particular match the current
best upper bound for Lukasiewicz fuzzy ALC, NEXPTIME
as implicit in [Straccia, 2005].

Related Work An overview of fuzzy and (quantitative)
probabilistic description logics is given in [Lukasiewicz and
Straccia, 2008]. Early research was focused on fuzzy DLs
with Zadeh semantics, whose complexity is typically that
of their classical counterparts; in fact, the nature of logical
consequence does not change much, either [Straccia, 2001;
Stoilos et al., 2007]. Fuzzy DLs with Lukasiewicz semantics
are perceived to have better logical properties and have there-
fore received increased recent attention, e.g. [Hajek, 2005;
Straccia, 2005; Bobillo and Straccia, 2011], but appear to
have significantly higher complexity. For Lukasiewicz fuzzy
ALC with general concept inclusions, even the finite model
property fails [Bobillo et al., 2010], so that we focus on
acyclic TBoxes.

2 Fuzzy Description Logics by Example

Fuzzy description logics come in many different flavours.
Roles may be fuzzy, crisp, or probabilistic, and operators
come in various shapes and formats. All extend propositional
logic, which we equip with Lukasiewicz semantics through-
out this work (see Section 3), and in particular include con-
nectives ' (fuzzy conjunction) and > (fuzzy implication).
Beyond this, our logics feature generic modal operators from
a given set A parametrizing the syntax, to capture various
modes of expression; given an operator O € A, we can form
the concept QC from a concept C. For readability, we focus
on single roles here, the extension to multiple roles even with
structurally different interpretations being straightforward.

We take the interpretation of a concept C' to be a map
[C] : X — [0,1] that assigns truth values to individuals
in the carrier X of a model. If the structure underlying the
model is crisp, we use thresholds to define the semantics of
operators, given by

[Cla = {z € X [[C](2) = o}

so that [C], is the set of those individuals that satisfy concept
C with degree at least a.

Fuzzy ALC with crisp roles. The syntax of ALC arises via
A = {3}, i.e. we use existential restriction as single operator.
Models take the shape (X, £, ) where X is a set (of individu-
als), £ : X — P(X) determines the relational successors and
m is a fuzzy valuation of atomic concepts. Given a concept C'
with interpretation [C] : X — [0, 1], we put

[BCY(z) = sup{er | £(z) N [Cla # 0}

using the threshold notation introduced above. The primary
purpose of this logic, called ALC.(C) in the sequel, is to
import relational knowledge into a fuzzy setting.

Fuzzy ALC. The syntax of fuzzy ALC is as above (3 is
the only operator) but interpreted over fuzzy relations. Thus,
models are of type (X, &, 7) as above but £ : X — (X —
[0,1]) is fuzzy and relates x and =" with degree {(x)(z’). The
interpretation of 3 now takes the form

[BC](x) = sup{&()(y) M [C](y) | y € X}

where M is Lukasiewicz conjunction. It agrees with the stan-
dard semantics of fuzzy ALC [Lukasiewicz, 2008] (and is
compatible with the semantics of ALC(C)). We call this
logic ALC\(F).

Quantitative fuzzy ALC is interpreted over local probabil-
ity distributions and asserts likelihoods. We use operators
M, read ‘with probability more than p’, where p € [0, 1]NQ.
Again, models take the form (X, &, ), but now £ : X —
D(X) associates a discrete probability distribution £(x) to
eachz € X (ie. D(X) = {p: X = [0,1] [ D cx p(w) =
1}). For a concept C' we have

[M,,Cl(z) = sup{a | £(2)([C]a) > p}

where [C] : X — [0,1]. Informally, if the truth value of
M, C at z is o, then the local measure at  assigns probabil-
ity > p to the set individuals that satisfy C' with degree > «
and M, picks the largest such o. The interpretation of M,
depends on the local probability distributions, thus, e.g., al-
lowing us to model the mentioned fact that the probability of
exhibiting a given symptom varies between diseases. E.g., we
can express that encephalitis will show up as a headache with
probability of more than 0.8 (encephalitis > M gheadache).
We use ALCL(Q) to refer to this logic, and ALC (Qfr) to
denote the variant that is interpreted w.r.t. finitely supported
probability distributions.

The logic of probably lifts the logic of fuzzy probability
[Héjek, 2007] to a description logic context that allows arbi-
trary nesting of the probably operator. Syntactically, we have
a single operator P (read ‘probably’), interpreted over proba-
bility distributions as above, where

[PCl(z) = E¢()(IC]) = 22, x[C1(y) - £(2) (v);

i.e. PC' is the expectation of C' under the local distribution
&(y). Under a causal reading (different from the previous ex-
ample), headache > Phead_trauma asserts the vague prob-
ability judgement that an observed head trauma is probably
the cause of a headache. We write ALC\ (P) for the logic
with the probably operator, and ALC\ (Pp,) to designate an
interpretation over finitely supported distributions.

The logic of generally. This logic, similar to ALC (P),
has a single operator G, read ‘generally’, or ‘with high prob-
ability’. Again, models are of the form (X,£, ) where
¢ : X — D(X). The interpretation of G uses an explicit
conversion function h : [0,1] — [0, 1] (monotone, continu-
ous, and piecewise linear) associating to a probability p the
degree h(p) to which p is ‘high’. We stipulate that

[GCI(z) = sup{a MM A(¢(2)([Cla))}-

Here, « is a threshold value for membership in C, and the
truth value of GC depends on both this threshold (the left
conjunct) and the degree to which the likelihood of mem-
bership in C' being > « is considered high (the right con-
junct). In this logic, denoted by ALC (G) (and ALC\ (Gfin)
for its finitely supported semantics), we can express, e.g., that
headaches generally respond to analgesics.

Combinations and multiple roles. The heart of the seman-
tics of all logics discussed above is coalgebraic, i.e. models
are defined in terms of observations X — T'X where 7" can
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be varied as needed. This makes it easy to combine features
and roles: if roles R; are interpreted w.r.t. structures of shape
X = T;X (1 = 1,2), then models X — 17X x T»X inter-
pret their combination by projecting to the respective compo-
nent.

3 Preliminaries

To account for various different reasoning principles and
compositionality, we parametrize our exposition synfactically
over a set A of unary modal operators (higher arities are
straightforward). The set 7 (A) of concepts is given by

FA)3C,Du=A|CND|~C|0C

(with CUD := =(=CMN-D)and Ct> D := -CU D), where
© € A and A is an atomic concept. The size |C| of a concept
C counts the number of logical operators and atomic concepts
in C. As we can emulate atomic concepts by modal operators
that ignore their argument, we omit them in the following.
Substitutions are maps o : V. — F(A) for a typically finite
set V' of variables; the size of o is |o| = Y i, |o(v)].

The semantics is then determined by the following data.
Firstly, we fix the underlying type of structures by choosing
a set functor T', i.e. a construction that assigns to each set X
aset T'X of clusters over X,andtoeachmap f: X - Y a
mapT'f : TX — TY, preserving identities and composition.
Concepts are interpreted over (coalgebraic) T-models M =
(X, &) consisting of a set X of statesandamap § : X — TX
assigning to each state x a cluster £(z) of successor states.
E.g.,if TX = [0,1]% x [0,1]At where At is a set of atomic
concepts, then T-models are fuzzy Kripke models. Second,
all operators O € A are assigned a fuzzy predicate lifting [©],
i.e. a family of maps

[l : [0, 1% — [0, 177

that lifts fuzzy subsets of X to fuzzy subsets of T'X, subject
to the naturality condition [Q] (Ao f) = [V]y (A) o T'f for
f:X =Y, A€e[0,1]. The extension [C],, : X — [0,1]
of a concept C in M = (X, &, ) is defined recursively by
pointwise application of the underlying propositional connec-
tives according to Lukasiewicz semantics, i.e. [C' 1 D](x) =
max{0, [C](x) + [D](x) — 1} and [~C](z) = 1 - [C](x),
and the clause

for all sets X

[©C] = [[QQ]]X([[C]]]W) o¢.

We fix A, T, and the assignment of liftings throughout, and
refer to these data collectively as a logic L.

Example 3.1 (Fuzzy coalgebraic description logics). All
examples presented in Section 2 and their modular combina-
tions can be expressed in the coalgebraic framework. E.g. for
the probably-operator, T X = D(X) as in Section 2, and we
have the lifting

[Plx(A) (1) = > sex Al@) - p(z)
that recovers the semantics introduced in Section 2.

We are concerned with the satisfiability problem for DLs,
which comes in a number of variants depending on how we
deal with truth values.

Definition 3.2 (Constraints). A comparison operator is one
of =, <,>,<,>. A constraint 0 <1 K consists of a substi-
tution o : V' — F(A), a valuation x : V. — [0,1], and a
comparison operator >. We say that o > « is satisfiable if
there exists a T-model M = (X&) and a state x € X such
that for all v € V, [o(v)],,(x) < k(v). The p<-satisfiability
problem is to decide whether a constraint o < & is satisfiable.

Note that a constraint 0 >4 & is essentially a conjunction
Avev o (v) >4 k(v). Evidently, p<-satisfiability reduces to <-
satisfiability for b1 € {=, >}, and >-satisfiability reduces to
<-satisfiability. None of <-satisfiability and <-satisfiability
seem to reduce to the other. Note that <-satisfiability sub-
sumes the dual of the validity problem, i.e. to decide whether
a formula is always satisfied with truth degree 1.

4 Generic Closed Interval Satisfiability

We now develop generic reasoning procedures for coalge-
braic fuzzy description logics, which we mainly instantiate to
fuzzy probability. A substantial technical role is played by the
distinction between closed and open truth degree intervals,
i.e. <-satisfiability and <-satisfiability. Our generic algo-
rithms are of high complexity (NEXPTIME and EXPSPACE)
but match existing algorithms for fuzzy ALC, which produce
exponential-size mixed integer linear programming problems
[Straccia, 2005]. The model constructions that witness cor-
rectness of our algorithms remove operators layer-by-layer,
leading to the following notion of decomposition.

Definition 4.1 (Top-level decomposition). A rop-level de-
composition of a substitution o : V' — F(A) is a decom-
position ¢ = ofo” where o” : W — F(A), of 1 V —
Prop(A(W)), and every variable in W occurs exactly once in
of. Here, A(W) = {Qw | w € W} are operator-prefixed for-
mulas over W, and for any set Z, Prop(Z) denotes proposi-
tional combinations of elements of Z. This determines o#, o
uniquely up to renaming the variables in W.

In other words, the arguments of the top-most modal opera-
tors in o are replaced with variables from W in of, and o®
records which formulas these variables stand for.

Definition 4.2 (Theory of a substitution). Let ¢ : V —
F(A) be a substitution. The theory of o is the set

Th(o) ={k:V —[0,1] | 0 = & satisfiable}.

That is, Th(o) records the possible joint truth values that the
formulas o (v) can attain.

Definition 4.3 (Local constraints and models). A local con-
straint I' = (y,0 > k) over sets V, W of variables consists
of asety C (V — [0, 1]) of valuations for V, a substitution
o : W — Prop(A(V)), a valuation k : W — [0, 1], and a
comparison operator i<I. A local model M = (X, T,t) over
V consists of a set X, a valuation 7 : V — (X — [0,1]),
and a cluster t € T'X. We say that I' is satisfiable if there
exists M as above such that M = T in the sense that for all
r € X, 77(x) € v, where 77(z)(v) = 7(v)(z), and for
all w € W, [o(w)],, > &(w). Here, evaluation [¢],, of
¢ € Prop(A(V)) over M is defined by extending the assign-

ment
[©a], = [C)((a))(?)
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to (Lukasiewicz) propositional combinations.

Definition 4.4 (Local small model properties). We say that
L has the local finite (polysize) ><-model property for a com-
parison operator X if whenever a local constraint (v, o < k)
is satisfiable, then it is satisfiable in a local model (X, 7, )
with X finite (| X| polynomially bounded in |o ).

Remark 4.5. It is clear that the local finite (polysize) ><-
model properties for 1 € {=, <, >} are equivalent, simi-
larly for 1 € {<,>}. Moreover, the local finite (polysize)
<-model property implies the local finite (polysize) <-model
property. It is unlikely that the converse holds; a possible
counterexample is precisely ALC| (P) (Example 4.6). More-
over, despite the implication between the respective local
small model properties, it does not seem to be the case that
<-satisfiability can easily be reduced to <-satisfiability.

Example 4.6. It follows from results of [Héjek, 2007] that
ALC\(P) has the local polysize <-model property. The
proof relies on continuity arguments and on approximating
infinite sums by finite partial sums. Essentially the same ar-
guments work for the other probabilistic logics ALCL(Q),
ALC(G). No similar result is known for < in place of
<, even relaxing polysize to finite. Of course, the local fi-
nite <-model property trivially holds for any finitely branch-
ing logic, including the finitely branching probabilistic logics
ALC (X fin) for X € {Q, P, G}; the local polysize <-model
property then follows by results from linear programming as
carried out for P in [Hajek, 20071

Fuzzy ALC (ALC(F')) and ALC(C) do have the local
finite <-model property, which can be proved rather easily
from the fact that solvability of systems Az < b of linear
inequalities (for a matrix A and a vector b) is closed un-
der infima in b; again, the polysize sharpening follows. (For
ALC| (F), the local finite <-model property follows alterna-
tively from results of [Héjek, 2005], which however employ
heavy-weight methods from fuzzy first-order model theory.)
Theorem 4.7 (Local reduction). Let o : V — F(A) be a
substitution with top-level decomposition o = oo’ let 1€
{=,<,>,<, >} andlet k : V — [0,1] be a valuation. Then
o X Kk is satisfiable iff the local constraint

(Th(c”), 0% > k)
is satisfiable.

In the presence of the local finite <-model property, the local
reduction theorem immediately implies a shallow tree model
property. While in the classical case and in the very simi-
lar case of Zadeh logics [Straccia, 2001] the tree structure of
models can often be exploited to obtain PSPACE decision pro-
cedures that explore one branch of the tree at time, this does
not seem to be possible for Lukasiewicz logics, in which the
branches are arithmetically entangled. We thus state only the
arising exponential model property:

Corollary 4.8 (Exponential model property). Let L have
the local polysize <-model property. Then every satisfiable
constraint o < k is satisfiable in a model with at most expo-
nentially many states in |o|.

One then typically obtains a translation of the satisfiability
problem into an exponential sized constraint in a suitable for-
malism, depending on the nature of the modalities:
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Definition 4.9. We say that L is polynomially existential first-
order if for every finite set X,

1. the set T'X of clusters over X can be represented by a
polynomial-sized existential first-order formula ¢x over the

reals G.e. TX 2 {(y1,...,yn) | &(¥1,...,yn)}), and
2. for every © € A and every comparison operator i<,

the formula [O] , (A)(¢) > a is expressible as an existential
first-order formula over the reals in the variables a¢ and A,
x € X, the latter representing the truth values A(x), and
additional variables y; describing ¢ € T'X according to 1., of
polynomial size in | X|.

If, additionally, all atoms in the mentioned first-order formu-
las are linear inequalities, then L is polynomially MILP.

Example 4.10. The logic ALC (P) is polynomially existen-
tial first-order: € D(X) M [P]y(A)(p) = a is expressed
by the existential (in fact, quantifier-free) first-order formula

ox = /\mexﬂx 2 OI—IZ;EEX:LLJJ = lﬂerxAmuz =a

involving variables a and A, as in Definition 4.9 and vari-
ables u, representing probabilities p(z); the size |px| is
clearly polynomial in |X|. The logics ALC(X), for X €
{C, F,Q, G}, are even polynomially MILP.

Since mixed integer linear programming is in NP and the ex-
istential fragment of the first order logic of the reals is in
PSPACE [Canny, 1988], we obtain

Corollary 4.11 (Complexity of <-satisfiability). Ler L have
the local polysize <-model property, and let < € {<, <}
Then v<-satisfiability is in EXPSPACE if L is polynomially ex-
istential first-order, and in NEXPTIME if L is polynomially
MILP.

Example 4.12. By the above, t<-satisfiability in ALC(C)
and ALC\(F) is in NEXPTIME for 1 € {<,<}. For
fuzzy ALC (ALCL(F)), this is exactly the complexity of
the existing algorithms [Straccia, 2005]; we do not know of
any matching lower bound. Moreover, t<-satisfiability for
<1 € {<,<} in the finitely branching probabilistic logics
ALC\ (X ) is in EXPSPACE for X = P, and in NEXPTIME
for X € {Q,G}.

5 Generic Open Interval Reasoning

We now analyse the case where the local finite <-model prop-
erty and hence Corollary 4.8 are not available, a case that we
are particularly interested in as it includes the general forms
of the probabilistic logics ALC (X), X € {Q,P,G}. The
main reason for studying the infinitely branching case instead
of just assuming finite branching is to ensure that restricting
to the finite does not introduce artifacts into the mechanisms
of logical consequence (see, e.g., [Schockaert et al., 2009] for
the effects of just restricting Lukasiewicz semantics to finitely
many values).

In the absence of the local finite <-model property, we
focus on <-satisfiability, which then brings topological and
metric concepts into play [Hdjek, 2007]. Recall that a func-
tion f : X — Y between metric spaces is k-Lipschitz contin-
uous for k € Rif d(f(z), f(y)) < kd(x,y) forall z,y € X
(where we denote both metrics by d). It is one of the pleas-
ant features of Lukasiewicz semantics that its operators are



Lipschitz continuous (unlike for Godel or product logic). For
a set X, we regard the set X — [0, 1] as a metric space,
equipped with the supremum metric.

Definition 5.1 (Lipschitz logics). We say that £ is Lipschitz
if for every © € A there exists ko € Q (pspace computable
from Q) such that for every every t € TX, the map (X —
[0,1]) = V, A [O] 4 (A)(t) is ko-Lipschitz continuous.
(Computability of Lipschitz constants is usually not an actual
issue, and in fact often all operators are 1-Lipschitz.)

Example 5.2. All logics of Section 2 are Lipschitz. To see
this for ALC (P), let p € D(X) be a discrete probability
distribution on a set X. We claim that [P], (A)(u) is 1-
Lipschitz in A: We have [P](A)(p) = >, cx m(z)A(x),
soif A, A" : X — [0,1] such that d(A,A") < e, then
[P x (A) () = [Plx (A) ()] < Xpex nlw)e = e

The following facts are particular for Lukasiewicz semantics.

Lemma 5.3. Let L be Lipschitz. Then for every substitu-
tion o : V. — Prop(A(W)) and every t € TX, the map
W — (X — [0,1)) — (V — [0,1]) sending T to
Xa € V. [o(a)], (t) is Lipschitz continuous.

Lemma 5.4. Let L be Lipschitz. Then Th(o) is a compact
subset of V. — [0, 1] for every substitution o : V. — F(A).

Recall that given ¢ > 0 and a subset A of a metric space
(X,d), U(A) = {z € X | d(y,A) < €}, where d(y, A) =
sup,c 4 d(y, a). By Lemma 5.4, local reduction leads back to
<-satisfiability; we escape from this by

Theorem 5.5 (Local s-reduction). Let L be Lipschitz and
have the local finite <-model property, andleto : V — F(A)
be a substitution, V finite. Then there exists k, pspace com-
putable from o, such that for all valuations v : V — [0,1],
the constraint o < kK is satisfiable iff the local constraint

(U.(Th(c”)), 0% < k — ke)
is satisfiable for some ¢ > 0.

Proof sketch. Let k be the Lipschitz constant of o
(Lemma 5.3). Then ‘only if’ is trivial; ‘if” relies on compact-
ness (Lemma 5.4) and the local finite <-model property. [

Theorem 5.6. Let L be Lipschitz and have the local poly-
size model property. Then <-satisfiability (and hence valid-
ity) is in EXPSPACE if L is polynomially first order, and in
NEXPTIME if L is polynomially MILP.

Proof. By recursive translation of 0 < « into an exponential
size existential first-order formula over the reals; the upper
bounds then follow as in Corollary 4.11. The core step in
the translation is local e-reduction, in which k is explicitly
computed while € is just existentially quantified. The recur-
sive call is then based on the observation that in the notation
of Theorem 5.5 and Definition 4.3, 77 (x) € U.(Th(c)) is
equivalent to satisfiability of the constraint o” < 77 (x) +& A
o’ >77(z) —e. O

Example 5.7. By Theorem 5.6, <-satisfiability in the general
forms of the probabilistic logics ALC (X)) is in EXPSPACE
for X = P, and in NEXPTIME for X € {Q, G}, i.e. although
G is intuitively similar to P, it is computationally simpler.
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Remark 5.8. The combination of logics as discussed at the
end of Section 2 inherits the respective conditions of Theo-
rem 5.6 and Corollary 4.11 from its constituents, so that the
combination of logics satisfying the relevant assumptions is
decidable in NEXPTIME or EXPSPACE, respectively.

Remark 5.9 (Reasoning with acyclic TBoxes). As usual, it
is unproblematic to deal with acyclic TBoxes by on-the-fly
expansion [Lutz, 1999] without affecting complexity.

Satisfaction operators and ABox reasoning For the sake
of readability, we have omitted ABox reasoning from the pre-
sentation so far. It is easy to extend our results to cover
not only ABoxes, but even nominals i, j,... taken from a
fixed set N, and satisfaction operators Q;, i € N. Nom-
inals are designated atomic concepts which are interpreted
as crisp singletons, i.e. individual states in a model, which
are then called named states. Concepts @;C' evaluate to the
truth value of C in the state i. We can then express con-
cept assertions C(i) > a, where C' is a concept, i € N,
and a € [0, 1], by conjuncts @;C' < a in a constraint. By
using nominals in concepts, we can express also role asser-
tions; e.g., in fuzzy ALC, (@,3R.j) < a is equivalent to
R(i,j) > a (and we can indeed also express role constraints
of the form R(i,j) < a, which are excluded, e.g., in [Strac-
cia, 2005]). We do not impose the unique name assumption;
distinctness of nominals 4, j is expressed by (@;—j) > 1 or
by (@;=j) > 0.

The extension of our results to the arising fuzzy coalge-
braic hybrid logic follows the lines of [Myers et al., 2009].
This requires adapting the notion of local constraint and local
model to accommodate nominals, and restructuring the lo-
cal reduction theorem. Details are omitted for lack of space;
we note only that where the truth values of subformulas of
the target formula and the ABox at named states are non-
deterministically guessed in the crisp setting, we instead in-
troduce existentially quantified real variables in the fuzzy set-
ting. With these modifications, the generic complexity re-
sults obtained so far (Corollary 4.11, Theorem 5.6) extend to
the hybrid case, and their instantiation to our example log-
ics requires only minor adaptation of the proofs of the local
small model properties. Taking into account modularity (Re-
mark 5.8), we obtain the following specific upper complexity
bounds:

1. Fuzzy ALCO: Reasoning with ABoxes and acyclic
TBoxes in the fuzzy version of the description logic ALCO
(ALC with nominals) is in NEXPTIME, even when satisfac-
tion operators are included. To our knowledge, this logic
was not previously known to be decidable (previous algo-
rithms for fuzzy description logics with nominals [Bobillo
and Straccia, 2011] are limited to the finitely-valued version
of Lukasiewicz semantics).

2. Fuzzy probability: The upper bound NEXPTIME re-
mains valid if we extend fuzzy ALCO with crisp roles, quan-
titative probability operators M,,, and the generally operator
G. If we add the probably operator P, the upper bound jumps
to EXPSPACE. Here, the comparison operators admissible in
the ABox are the same as for satisfiability checking, i.e. unre-
stricted in the finitely branching case, and >, < in the count-
ably branching case.



6 Conclusion

We have shown decidability of fuzzy description logics with
an operator probably and variations thereof, generalizing
previous results on a propositional fuzzy logic of proba-
bly [Héjek, 2007] to a full-blown description logic featuring
nested probability operators, ABoxes, acyclic TBoxes, and
nominals, as well as crisp and fuzzy relational roles. The key
tool here is an extension of the generic framework of coal-
gebraic logic [Myers et al., 2009] to the fuzzy setting, which
not only enables us to prove results that apply to whole ranges
of logics at once, but also allows us to use modularity results
in order to obtain results for combined logics that mix various
modal operators for free. An important new technical aspect
that is brought into play here is the use of metric concepts
such as compactness and Lipschitz continuity.

Although no tight lower bounds are known, there appears
to be a substantial hitch in computational complexity caused
by the arithmetic character of Lukasiewicz semantics. In fu-
ture research, we will investigate the prospect of optimized
reasoning in Lukasiewicz description logics, e.g. using col-
umn generation [Klinov and Parsia, 2009]. Moreover, we
intend to extend the range of reasoning services, in partic-
ular to top-k query answering [Lukasiewicz and Straccia,
2007], which would, e.g., determine which candidates are
most likely to be suitable for a given job.

References

[Bobillo and Straccia, 2011] Fernando Bobillo and Umberto
Straccia.  Reasoning with the finitely many-valued
Lukasiewicz fuzzy description logic SROZQ. Informa-
tion Sci., 181:758-778, 2011.

[Bobillo et al., 2010] Fernando Bobillo, Félix Bou, and Um-
berto Straccia. On the failure of the finite model property
in some fuzzy description logics. CoRR, abs/1003.1588,
2010.

[Burgess, 1969] John Burgess. Probability logic. J. Symbolic
Log., 34:264-274, 1969.

[Canny, 1988] John Canny. Some algebraic and geometric
computations in PSPACE. In Symposium on Theory of
Computing, STOC 1988, pages 460—467. ACM, 1988.

[Fagin and Halpern, 1994] Ronald Fagin and Joseph
Halpern. Reasoning about knowledge and probability. J.
ACM, 41:340-367, 1994.

[Hijek, 2005] Petr Hdjek. Making fuzzy description logic
more general. Fuzzy Sets and Systems, 154:1-15, 2005.

[Hajek, 2007] Petr Hajek. Complexity of fuzzy probability
logics II. Fuzzy Sets and Systems, 158:2605-2611, 2007.

[Halpern and Rabin, 1987] Joseph Halpern and Michael Ra-
bin. A logic to reason about likelihood. Artif. Intell.,
32:379-405, 1987.

[Halpern, 1990] Joseph Halpern. An analysis of first-order
logics of probability. Artif. Intell, 46:311-350, 1990.

[Hamblin, 1959] C. Hamblin. The modal ‘probably’. Mind,
68:234-240, 1959.

1080

[Herzig, 2003] Andreas Herzig. Modal probability, belief,
and actions. Fund. Inf., 57:323-344, 2003.

[Klinov and Parsia, 2009] Pavel Klinov and Bijan Parsia. On
improving the scalability of checking satisfiability in prob-
abilistic description logics. In Scalable Uncertainty Man-
agement, SUM 2009, volume 5785 of LNCS, pages 138—
149. Springer, 2009.

[Kundu and Chen, 1998] Sukhamay Kundu and Jianhua
Chen. Fuzzy logic or Lukasiewicz logic: A clarification.
Fuzzy Sets and Systems, 95:369 — 379, 1998.

[Lukasiewicz and Straccia, 2007] Thomas Lukasiewicz and
Umberto Straccia. Top-k retrieval in description logic pro-
grams under vagueness for the semantic web. In Scal-
able Uncertainty Management, SUM 2007, volume 4772
of LNCS, pages 16-30. Springer, 2007.

[Lukasiewicz and Straccia, 2008] Thomas Lukasiewicz and
Umberto Straccia. Managing uncertainty and vagueness
in description logics for the semantic web. J. Web Sem.,
6(4):291-308, 2008.

[Lukasiewicz, 2008] Thomas Lukasiewicz. Expressive prob-
abilistic description logics. Artif. Intell, 172:852-883,
2008.

[Lutz and Schroder, 2010] Carsten Lutz and Lutz Schroder.
Probabilistic description logics for subjective uncertainty.
In Principles of Knowledge Representation and Reason-
ing, KR 2010. AAAL, 2010.

[Lutz, 1999] Carsten Lutz. Complexity of terminological
reasoning revisited. In Logic Programming and Automated
Reasoning, LPAR 99, volume 1705 of LNCS, pages 181—
200. Springer, 1999.

[Myers et al., 2009] Rob Myers, Dirk Pattinson, and Lutz
Schroder. Coalgebraic hybrid logic. In Foundations of
Software Science and Computation Structures, FoSSaCS
2009, volume 5504 of LNCS, pages 137-151. Springer,
2009.

[Schockaert et al., 2009] Steven Schockaert, Jeroen Janssen,
Dirk Vermeir, and Martine De Cock. Finite satisfiability in
infinite-valued Lukasiewicz logic. In Scalable Uncertainty
Management, SUM 2009, volume 5785 of LNCS, pages
240-254. Springer, 2009.

[Stoilos ef al., 2007] Giorgos Stoilos, Giorgos Stamou, Jeff
Pan, Vassilis Tzouvaras, and Ian Horrocks. Reason-
ing with very expressive fuzzy description logics. JAIR,
30:273-320, 2007.

[Straccia, 2001] Umberto Straccia. Reasoning within fuzzy
description logics. JAIR, 14:137-166, 2001.

[Straccia, 2005] Umberto Straccia. Description logics with
fuzzy concrete domains. In Uncertainty in Artificial Intel-
ligence, UAI 2005, pages 559-567. AUAI Press, 2005.

[Zadeh, 1968] Lotfi Zadeh. Probability measures of fuzzy
events. J. Math. Anal. Appl., 23:421-427, 1968.





