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Abstract

Carneades is a recently proposed formalism for
structured argumentation with varying proof stan-
dards. An open question is its relation with Dung’s
seminal abstract approach to argumentation. In
this paper the two formalisms are formally related
by translating Carneades into ASPIC+, another re-
cently proposed formalism for structured argumen-
tation. Since ASPIC+ is defined to generate Dung-
style abstract argumentation frameworks, this in ef-
fect translates Carneades graphs into abstract argu-
mentation frameworks. It is proven that Carneades
always induces a unique Dung extension, which is
the same in all of Dung’s semantics.

1 Introduction

Carneades [Gordon et al., 2007; Gordon and Walton, 2009]
is a recently proposed formalism for structured argumenta-
tion with varying proof standards, inspired by legal reasoning
but more generally applicable. Its distinctive feature is that
each statement can be given its own proof standard, which
is claimed to allow a more natural account of reasoning un-
der burden of proof than existing formalisms for structured
argumentation, in which proof standards are defined globally.
This makes the Carneades formalism very useful, as signi-
fied by the large number of citations due to its proof stan-
dards. However, to date its relation with [Dung, 1995]’s sem-
inal abstract approach to argumentation is unknown, which
obscures its relation with mainstream work on argumenta-
tion in AI. Recently, [Brewka and Gordon, 2010] translated
Carneades into [Brewka and Woltran, 2010]’s abstract dialec-
tical frameworks. Such frameworks generalise Dung’s ap-
proach in that abstract argumentation frameworks are a spe-
cial case of abstract dialectical frameworks. However, this
translation relies on the full expressiveness of abstract dialec-
tical frameworks, so that it does not clarify the relation of
Carneades with Dung’s abstract argumentation frameworks,
nor with formalisms that generate such frameworks1

1When writing the final version of this paper, we were informed
that [Brewka et al., 2011] have meanwhile proved a formal corre-
spondence between ADFs and Dung AFs.

In this paper we provide such a formal relation be-
tween Carneades and abstract argumentation, by translat-
ing Carneades into ASPIC+ [Prakken, 2010]. Since AS-
PIC+ is defined to generate Dung-style abstract argumenta-
tion frameworks, we in effect translate Carneades graphs into
abstract argumentation frameworks. Thus, contrary to what
was suggested in [Gordon et al., 2007], we show that vary-
ing proof standards can be modelled in Dung-style seman-
tics. Also, contrary to what was claimed by [Brewka and
Gordon, 2010], we prove that Carneades can be modelled
cycle-free, thus always inducing a unique Dung extension,
which is the same in all of Dung’s semantics. This allows
us to generalise Carneades’ argument evaluation structures to
cycle-containing structures, addressing an important issue left
for future research by [Gordon and Walton, 2009].

The paper is structured as follows: Section 2 reviews ab-
stract argumentation, the ASPIC+ framework, and relevant
parts of the Carneades framework. Section 3 then translates
Carneades into Dung’s argumentation frameworks through
ASPIC+ and proves the correspondence result. Finally, Sec-
tion 4 concludes and discusses future work.

2 Background

In this section we review Dung’s abstract argumentation
frameworks and the ASPIC+ framework.

2.1 Abstract Argumentation Frameworks

Dung’s abstract argumentation frameworks consist of a set of
arguments ordered by a binary relation of defeat.2

Definition 2.1 (Abstract argumentation framework). An
abstract argumentation framework is a tuple 〈Args,Def〉,
such that Args is a set of arguments and Def ⊆ Args×Args
is a defeat relation on the arguments in Args.

Definition 2.2. Let AF = 〈Args,Def〉 and S ⊆ Args.

1. S is called conflict-free iff ¬∃A,B ∈ S such that
(A,B) ∈ Def .

2. An argument A ∈ Args is acceptable w.r.t. S iff ∀B ∈
Args, if (B,A) ∈ Def then ∃C ∈ S such that (C,B) ∈
Def .

2Dung calls it ‘attack’ but to unify terminology we rename it to
‘defeat’.
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3. The characteristic function of an AF , FAF is a function
such that:
• FAF : 2Args �→ 2Args,
• FAF (S) = {A | A is acceptable w.r.t. to S}.

4. A conflict-free set of arguments S is admissible iff ev-
ery argument A ∈ S is acceptable w.r.t. S, i.e. S ⊆
FAF (S).

Definition 2.3 (Extensions). Given a conflict-free set of ar-
guments S and an argumentation framework AF , then if F is
monotonic:

• S is a complete extension iff S = FAF (S).
• S is a grounded extension iff it is the least fixed point of
FAF .

• S is a preferred extension iff it is a greatest fixed point
of FAF .

• S is a stable extension iff it is a preferred extension de-
feating all arguments in Args\S.

Definition 2.4 (Well-founded argumentation frame-
work). An argumentation framework is well-founded iff
there does not exist an infinite sequence of arguments:
A0, A1, . . . , An, . . . such that for each i, (Ai+1, Ai) ∈ Def .

The differences between the semantics collapse in an argu-
mentation framework in which there are no cycles.

Theorem 2.5 (Theorem 30 of Dung [Dung, 1995]). Every
well-founded argumentation framework has exactly one com-
plete extension which is grounded, preferred and stable.

2.2 Structured Argumentation Frameworks

[Prakken, 2010]’s ASPIC+ framework further develops [Am-
goud et al., 2006]’s way to give structure to Dung’s argu-
ments and defeat relation. It assumes an unspecified logical
language L, and defines arguments as inference trees formed
by applying strict or defeasible inference rules of the form
ϕ1, . . . , ϕn → ϕ and ϕ1, . . . , ϕn ⇒ ϕ, interpreted as ‘if
the antecedents ϕ1, . . . , ϕn hold, then without exception, re-
spectively presumably, the consequent ϕ holds’. In order to
define attacks, some minimal assumptions on L are made;
namely that certain wff are a contrary or contradictory of cer-
tain other wff. Apart from this the framework applies to any
set of strict and defeasible inference rules, and to any logical
language with a defined contrary relation.

The basic notion of ASPIC+ is that of an argumentation
system. Arguments are then constructed w.r.t a knowledge
base that is assumed to contain four kinds of formulas.

Definition 2.6 (Argumentation system). An argumentation
system is a tuple AS = 〈L,−,R,≤〉 where:

• L is a logical language.
• − is a contrariness function from L to 2L , such that if

ϕ ∈ ψ then:
– if ψ �∈ ϕ then ϕ is called a contrary of ψ,
– otherwise, ψ ∈ ϕ and ϕ and ψ are called contradic-

tory, denoted by ϕ = −ψ (i.e., ϕ ∈ ψ and ψ ∈ ϕ).
• R = Rs ∪Rd is a set of strict (Rs) and defeasible (Rd)

inference rules such that Rs ∩Rd = ∅.
• ≤ is a partial preorder on Rd.

Definition 2.7 (Knowledge base). A knowledge base in an
argumentation system 〈L,−,R,≤〉 is a pair 〈K,≤′〉 where
K ⊆ L and ≤′ is a preorder on K \ Kn. Here, K =
Kn ∪ Kp ∪ Ka ∪ Ki where these subsets of K are disjoint,
being the (necessary) axioms (which cannot be attacked), the
ordinary premises (on which attacks succeed contingent upon
preferences), the assumptions (on which attacks are always
successful) and the issues (which must always be backed with
a further argument).

An argument that contains issue premises should not be
acceptable. Accordingly, Definition 2.2 is changed to: An
argument A ∈ Args is acceptable w.r.t. S iff A contains no
issue premises and . . ..
Definition 2.8 (Argument). An argument A on the basis
of a knowledge base 〈K,≤′〉 in an argumentation system
〈L,−,R,≤〉 is:

1. ϕ if ϕ ∈ K with: Prem(A) = {ϕ}; Conc(A) = ϕ;
Sub(A) = {ϕ}.

2. A1, . . . An →/⇒ ψ if A1, . . . , An are argu-
ments such that there exists a strict/defeasible rule
Conc(A1), . . . , Conc(An) →/⇒ ψ in Rs/Rd.
Prem(A) = Prem(A1) ∪ . . . ∪ Prem(An),
Conc(A) = ψ,
Sub(A) = Sub(A1) ∪ . . . ∪ Sub(An) ∪ {A}.

Where Prem, Conc and Sub respectively are the premises,
conclusions and subarguments of an argument.
Definition 2.9 (Argumentation theories). An argumenta-
tion theory is a triple AT = 〈AS,KB,�〉 where AS is an
argumentation system, KB is a knowledge base in AS and
� is an argument ordering on the set of all arguments that can
be constructed from KB in AS.

Arguments can be attacked in three ways: by attacking a
premise (undermining), a conclusion (rebutting), or an infer-
ence (undercutting). To model undercutting attacks, defeasi-
ble inference rules are given names, e.g. P ⇒app c, allowing
arguments to attack an inference rule by using their short-
hand name, app. Apart from undercut attacks and attacks on
contraries, the success of attacks as defeats depends on the
preference relation between the attacker and its target.
Definition 2.10 (Types of attack).

• Argument A undermines argument B (on ϕ) iff
Conc(A) ∈ ϕ for some ϕ ∈ Prem(B)\Kn. In such
a case A contrary-undermines B iff Conc(A) is a con-
trary of ϕ or if ϕ ∈ Ka.

• Argument A undercuts argument B (on B′) iff
Conc(A) ∈ B′ for some B′ ∈ Sub(B) of the form
B′′1 , . . . , B

′′
n ⇒ ψ.

• Argument A rebuts argument B (on B′) iff Conc(A) ∈
ϕ for some B′ ∈ Sub(B) of the form B′′1 , . . . , B

′′
n ⇒ ϕ

In such a case A contrary-rebuts B iff Conc(A) is a
contrary of ϕ.

Definition 2.11 (Types of defeat).

• Argument A successfully rebuts argument B if A rebuts
B on B′ and either A contrary-rebuts B′ or A �≺ B′.

• Argument A successfully undermines argument B if A
undermines B on ϕ and either A contrary-undermines
B or A �≺ ϕ.

1114



The previous notions can be combined in an overall defini-
tion of defeat:

Definition 2.12 (Defeat). Argument A defeats argument B
iff no premise of A is an issue and A undercuts or successfully
rebuts or successfully undermines B. Argument A strictly
defeats argument B iff A defeats B and B does not defeat A.

ASPIC+’s argumentation theories are then linked to
Dung’s abstract argumentation frameworks as follows:

Definition 2.13 (Argumentation framework). An abstract
argumentation framework (AF) corresponding to an argu-
mentation theory 〈AS,KB,�〉 is a pair 〈Args,Def〉 such
that:

• Args is the set of arguments on the basis of KB in AS
as defined by Definition 2.8,

• Def is the relation on Args given by Definition 2.12.

2.3 Carneades

As in ASPIC+, arguments in Carneades are not left abstract
but given structure. Arguments are constructed by linking
premises and exceptions to a conclusion. Unlike ASPIC+,
Carneades does not assume that arguments are constructed by
applying inference rules. Also, Carneades’ notion of an argu-
ment is not inductive; subarguments are modelled implicitly
by the inductive definition of applicability of arguments.

Definition 2.14 (Arguments). Let L be a propositional lan-
guage. An argument is a tuple 〈P,E, c〉 where P ⊂ L are
its premises, E ⊂ L with P ∩ E = ∅ are its exceptions and
c ∈ L is its conclusion. Both c and all members of P and E
are propositional literals. Let p be a literal. If p is c, then the
argument is an argument pro p. If p is the complement of c,
then the argument is an argument con p.

In Carneades a dialogue is a sequence of stages but for
evaluating arguments in a specific stage the other stages are
irrelevant. As in [Brewka and Gordon, 2010] we therefore
only consider stage specific Carneades argument evaluation
structures. To define them, the concepts of an audience and
an acyclic set of arguments must be introduced.

Definition 2.15 (Audience). Let L be a propositional lan-
guage. An audience is a tuple 〈assumptions, weight〉,
where assumptions ⊂ L is a consistent set of literals as-
sumed to be acceptable by the audience and weight is a
function mapping arguments to real numbers in the range
0.0 . . . 1.0, representing the relative weights assigned by the
audience to the arguments.

Definition 2.16 (Acyclic set of arguments). A set of argu-
ments is acyclic iff its corresponding dependency graph is
acyclic. The corresponding dependency graph has nodes for
every literal appearing in the set of arguments. A node p has
a directed link to node q whenever p depends on q in that
there is an argument pro or con p that has q or q in its set of
premises or exceptions.3

The previous definitions can now be combined to define
Carneades’ concept of an evaluation structure:

3As usual p is a complement of p, e.g. ¬p.

Definition 2.17 (Stage specific Carneades argument
evaluation structure). A (stage specific) Carneades
argument evaluation structure (CAES) is a tuple
〈arguments, audience, standard〉, where arguments
is an aycyclic set of arguments, audience is an audience and
standard is a total function mapping literals in L to their
applicable proof standards.

In a CAES each statement is assigned a standard of proof.
The current Carneades model includes five proof standards,
scintilla of evidence, preponderance of the evidence, clear
and convincing evidence, beyond reasonable doubt and di-
alectical validity. A proof standard is a function that given a
literal p, aggregates applicable arguments pro and con p and
evaluates to true or false depending on a specific audience.

Definition 2.18 (Proof standard). A proof standard is a
function mapping tuples 〈issue, arguments, audience〉 to
{true, false}, where issue is a literal in L, arguments is an
acyclic set of arguments and audience is an audience.

Given a CAES and the concept of a proof standard the ac-
ceptability of a literal is defined.

Definition 2.19 (Acceptability of literals). Let C =
〈arguments, audience, standard〉 be a CAES, p a literal
in L and s = standard(p) the proof standard corre-
sponding to P . Then the literal p is acceptable in C iff
s(p, arguments, audience) is true.

All proof standards defined depend on the concept of argu-
ment applicability and thus this needs to be defined first.

Definition 2.20 (Applicability of arguments). Let C =
〈arguments, audience, standard〉 be a CAES. An argu-
ment 〈P,E, c〉 ∈ arguments is applicable in C iff

• p ∈ P implies p is an assumption of the audience or [p
is not an assumption and p is acceptable in C] and

• p ∈ E implies p is not an assumption of the audience
and [p is an assumption or p is not acceptable in C].

Now Carneades’ proof standards can be defined.

Definition 2.21 (Proof standards). Given a CAES C =
〈arguments, audience, standard〉 and a literal p in L.

• scintilla(p, arguments, audience) = true iff there
exists at least one applicable argument pro p in
arguments.

• preponderance(p, arguments, audience) = true iff
there exists at least one applicable argument pro p
in arguments for which the weight assigned by the
audience is greater than the weight of the applicable
arguments con p.

• clear-and-convincing(p, arguments, audience) =
true iff there is an applicable argument A, pro p for
which:

– preponderance(p, arguments, audience) holds
and

– the weight for A exceeds the threshold α, and
– the difference between the weight of A and the

maximum weight of the applicable con arguments
exceeds the treshold β.
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• beyond-reasonable-doubt(p, arguments, audience) =
true iff clear-and-convincing(p, arguments, audience)
holds and the maximum weight of the applicable con
arguments is less than the threshold γ.

• dialectical-validity(p, arguments, audience) = true
iff there exists at least one applicable argument pro p
in arguments and no argument con p in arguments is
applicable.

3 Translation of Carneades

We now provide our translation of Carneades into ASPIC+.
The ideas are as follows. Assumptions in Carneades corre-
spond to axiom premises in ASPIC+, while non-assumption
premises of Carneades arguments for which there is no fur-
ther argument are issue premises in ASPIC+. For each CAES
argument a = 〈P,E, c〉 two defeasible rules are added to Rd:
a rule P ⇒appa

arga, saying that if P then a is applicable4,
and arga ⇒acca c, saying that if a is applicable, its conclu-
sion is acceptable (appa and acca are the rules’ names). To
this end, the language L of a CAES must be enriched with
literals composed of arga, appa and acca for each argument
a in CAES. Next, for each exception e ∈ E an undercutter
e ⇒ ¬appa is added to Rd. Finally, the contrariness rela-
tion on L is extended to let applicability conclusions for one
argument defeat the acceptability of conflicting arguments,
depending on the proof standards of their conclusions. This
is essentially where the proof standards are encoded.

Definition 3.1 (Argumentation system corre-
sponding to a CAES). Given a CAES C =
〈arguments, audience, standard〉 with audience =
〈assumptions, weight〉 and propositional language LCAES

the corresponding argumentation system, AS, is a tuple
〈L,−,R,≤〉 where:

• L = LCAES ∪ argument nodes ∪ rule names,
• − consists of all tuples specified below,
• Rd =

⋃
a∈arguments Rda ,

• Rs =
⋃

a∈arguments Rsa ,
• ≤= {(r, r) | r ∈ Rd}.

For every argument a = 〈P,E, c〉 in arguments:

Rda = {P ⇒appa arga; arga ⇒acca c} ∪
{ei ⇒ ¬appa | ei ∈ E}

For every argument a = 〈P,E, c〉 in arguments with
standard(c) = scintilla:

Rsa = ∅
For every argument a = 〈P,E, c〉 in arguments with
standard(c) = preponderance:

Rsa = ∅
−(acca) = {argb | b = 〈P ′, E′, c〉 ∈ arguments,

weight(a) ≤ weight(b)}
4This idea is adapted from [Brewka and Woltran, 2010]).

For every argument a = 〈P,E, c〉 in arguments with
standard(c) = clear-and-convincing:

Rsa = {→ ¬acca | weight(a) ≤ α}
−(acca) = {argb | b = 〈P ′, E′, c〉 ∈ arguments,

weight(a) ≤ weight(b) + β}
∪ {¬acca}

For every argument a = 〈P,E, c〉 in arguments with
standard(c) = beyond-reasonable-doubt:

Rsa = {→ ¬acca | weight(a) ≤ α}
−(acca) = {argb | b = 〈P ′, E′, c〉 ∈ arguments,

weight(a) ≤ weight(b) + β}
∨ weight(b) ≥ γ}

∪ {¬acca}
For every argument a = 〈P,E, c〉 in arguments with
standard(c) = dialectical-validity:

Rsa = ∅
−(acca) = {argb | b = 〈P ′, E′, c〉 ∈ arguments}

Definition 3.2 (Knowledge base correspond-
ing to a CAES). Given a CAES C =
〈arguments, audience, standard〉 with audience =
〈assumptions, weight〉 and propositional language
LCAES . Then the corresponding knowledge base, in an ar-
gumentation system corresponding to C defined in Definition
3.1, is a pair 〈K,≤′〉 where:

• Kn = assumptions,
• Kp = Ka = ∅,
• Ki = LCAES\(assumptions ∪ {c | 〈P,E, c〉 ∈
arguments}),

• ≤′= {(k, k) | k ∈ (K\Kn)}.

We can now relate an argumentation theory and conse-
quently an argumentation framework to a CAES:

Definition 3.3 (Argumentation theory corre-
sponding to a CAES). Given a CAES C =
〈arguments, audience, standard〉 with audience =
〈assumptions, weight〉 and propositional language LCAES

the argumentation theory AT corresponding to C is a tuple
〈AS,KB,�〉 where:

• AS is the argumentation system corresponding to C ac-
cording to Definition 3.1,

• KB is the knowledge base in the argumentation system
AS corresponding to C according to Definition 3.2,

• �= ∅.

Definition 3.4 (Argumentation framework cor-
responding to a CAES). Given a CAES C =
〈arguments, audience, standard〉 with audience =
〈assumptions, weight〉, propositional language LCAES

and argumentation theory AT corresponding to C as given
by Definition 3.3, the AF corresponding to C is the ar-
gumentation framework corresponding to AT as given by
Definition 2.13.
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The main difficulty in finding a translation is dealing with
the ambiguity-blocking nature of Carneades, while ASPIC+

is ambiguity-propagating. Let p, r and t be in assumptions
and let there be CAES arguments for q given p, for ¬q given
r, for s given ¬q and for ¬s given t. There are no exceptions
and all arguments are equally strong. Then with, say, prepon-
derance neither q nor ¬q is acceptable so the argument for s
is not applicable: hence ¬s is acceptable. However, a naive,
direct translation of the arguments into defeasible inference
rules in ASPIC+ would instead make no corresponding argu-
ments acceptable. The above translation solves this by using
an explicit argument node, yielding undefeated undercutters
for the acceptability of q and ¬q, thereby yielding an unde-
feated undercutter for the argument for s constructed by using
the argument for q, so that ¬s is acceptable in ASPIC+.

Argumentation frameworks corresponding to a CAES have
the following properties.

Proposition 3.5. Every argumentation framework corre-
sponding to a CAES is well-founded.

Proof (sketch). By construction of the rules and contrariness
relation in Definition 3.1 the only possible attack is undercut-
ting. There are three cases: a conclusion of the form argb
that attacks another argument on the inference rule represent-
ing acceptability acca, a direct undercut on the acceptability
of the form: → ¬acca or finally an exception to an argument
expressed in the form of ei ⇒ ¬appa. The second case can-
not create cycles by construction and the other two cases will
not occur due to the acyclicity of arguments.

The next result follows directly from Proposition 3.5 and
Theorem 2.5:

Corollary 3.6. Every argumentation framework correspond-
ing to a CAES according to Definition 3.4 has exactly one
complete extension which is grounded, preferred and stable.

Theorem 3.7. Let C be a CAES,
〈arguments, audience, standard〉, LCAES the propo-
sitional language used and let the argumentation framework
corresponding to C be AF . Then the following holds:

1. An argument a ∈ arguments is applicable in C iff there
is an argument contained in the complete extension of
AF with the corresponding conclusion arga.

2. A propositional literal c ∈ LCAES is acceptable in C
or c ∈ assumptions iff there is an argument contained
in the complete extension of AF with the corresponding
conclusion c.

Proof. We prove 1. and 2. by induction on the number of
arguments, n, in the CAES C.

For n = 0, there is neither an (applicable) argument nor
an acceptable proposition in C. The knowledge base KB
corresponding to C will only contain axioms in Kn for each
assumption in C and issue premises in Ki for other proposi-
tional literals in LCAES . The defeasible and strict rules Rd

and Rd will be empty. Therefore all arguments on the ba-
sis of KB will either be an argument using an issue premise
and thus not in the complete extension of the argumentation

framework (CEAF ), or an argument containing only an ax-
iom and therefore in CEAF . So CEAF contains an argument
with corresponding conclusion for every assumption in C and
no argument with a conclusion of the form arga, therefore
every conclusion of an argument in CEAF is an assumption,
making 1. and 2. hold.

Assuming 1. and 2. hold for n arguments we consider
a CAES, C, with n + 1 arguments. Due to acyclicity of
arguments there is at least one argument a = 〈P,E, c〉 ∈
arguments for which the conclusion c is not contained in the
premises or exceptions of another argument in arguments.
Now consider the CAES C ′ constructed from C by taking
arguments′ = arguments\{a} and let AF ′ be the corre-
sponding argumentation framework. We then obtain a CAES
with n arguments for which the induction hypothesis holds.
(1. ⇔) We must prove that for all (not) applicable argu-

ments b in C there is (not) an argument in CEAF with con-
clusion argb. For all arguments in C ′ this follows from the in-
duction hypothesis. By our selection of a, the applicability of
a does not influence applicability of the arguments that were
in C ′. In the translation of a to ASPIC+, corresponding argu-
ments for arga will not defeat arguments in AF ′. Then by the
satisfaction of the directionality criterion of complete seman-
tics [Baroni and Giacomin, 2007] it follows that all arguments
acceptable in CEAF ′ are also in CEAF , thus leaving corre-
spondence of the applicability of a in C to prove. Acceptabil-
ity of the premises and exceptions of a is not influenced by
the applicability of a, and thus by the induction hypothesis on
C ′ and the directionality criterion, premises and exceptions of
a are acceptable in C or part of the assumptions iff there is
an argument contained in CEAF with the corresponding con-
clusion. By our translation, we know that P ⇒appa arga and
the set {ei ⇒ ¬appa | ei ∈ E} are in Rd.

Now suppose first that a is applicable in C. Then by the in-
duction hypothesis for all premises pi ∈ P there exists an ar-
gument Ai in CEAF . We prove that if for P = {p1, . . . , pn}
the argument A1, . . . , An ⇒appa arga also is in CEAF . By
conflict-freeness of CEAF , no defeater of any Ai is in CEAF

so it suffices to prove that no argument for ¬appa is in CEAF .
By applicability of a and the induction hypothesis, for no
e ∈ E there exists an argument in CEAF with conclusion
e and thus this follows directly.

Suppose next that a is not applicable in C. Then by the in-
duction hypothesis either not all Ai are in CEAF or for some
e ∈ E an argument Ae with conclusion e is in CEAF . In the
first case A = A1, . . . , An ⇒appa

arga /∈ CEAF by closure
of CEAF under subarguments (Proposition 6.1 of [Prakken,
2010]). In the second case A for arga is defeated by Ae so
A �∈ CEAF by conflict-freeness of CEAF .
(2. ⇒) If d is an assumption, then by translation d ∈ Kn

and thus there is an argument A with corresponding conclu-
sion d in CEAF .

Otherwise, we must prove that if a propositional literal
d ∈ LCAES is acceptable in C then there is an argument con-
tained in CEAF with the corresponding conclusion d. For the
CAES C ′ defined before, the induction hypothesis holds and
therefore acceptable literals (or literals in assumptions) of C ′
have an argument with corresponding conclusion in CEAF ′ .
By our selection of a and acyclicity of arguments we know
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that a only influences the acceptability of its conclusion and
negation, c and c. Then, again by the directionality criterion,
we have (2. ⇒) left to prove for c and c in C. Moreover,
if d �= c then (2. ⇒) trivially holds, so in the following we
assume d = c.

Suppose a is not applicable, then by (1.), no argument for
arga will be in CEAF and therefore neither an argument for c
in CEAF . This also prevents a from influencing acceptability
of c, letting (2. ⇒) hold.

If a is applicable, then by (1.) there exists an argument A1

with conclusion arga in CEAF . By translation arga ⇒acca
c ∈ Rd, allowing A1 to be extended to an argument A2 for
c. If c is acceptable in C, then its proof standard is satisfied.
Then by translation there will be neither a contrary of acca in
− nor a strict rule of the form → ¬acca ∈ Rs and therefore
there will be no undercutter of A2 in CEAF on the final infer-
ence. Furthermore since A1 is in CEAF , by conflict-freeness
no defeater of A1 is in CEAF . Thus A2 ∈ CEAF . Similarly,
if a makes the proof standard for c unsatisfiable in C, by con-
struction of AF , A1 will defeat any argument b with conclu-
sion c on its inference rule argb. So by conflict-freeness no
such argument will be in CEAF , correctly preserving accept-
ability of c.
(2. ⇐) Proof by contraposition. First, d /∈ assumptions

and therefore d /∈ Kn. Similar to the proof of (2. ⇒), (2. ⇐)
holds if d �= c or a is not applicable.

So assume a is applicable and d = c. Since c is not accept-
able, the proof standard of c is not satisfied in C. Consider for
example standard(c) = clear-and-convincing. Then either
weight(a) ≤ α or weight(a) ≤ weight(b) + β for another
applicable argument b with conclusion c. Therefore the ar-
gumentation system either has → ¬acca ∈ Rs or otherwise
argb ∈ −(acca). Finally the AF on the basis of this argu-
mentation system will either have an argument of the form
→ ¬acca, or by applicability of b and the induction hypoth-
esis, argb will be in CEAF and defeats any argument using
the defeasible inference acca. Concluding any argument con-
structed for the acceptability of c will be defeated and thus by
conflict-freeness not in CEAF .

Acceptability of c is analogous to (2. ⇒).

Finally, as in [Brewka and Gordon, 2010] we can gener-
alise Carneades to cycle-containing structures.

Definition 3.8. Given a CAES C =
〈arguments, audience, standard〉 without the acyclic-
ity restriction, LCAES the propositional language used and
let the argumentation framework corresponding to C be AF .
Then for s ∈ {complete, preferred, grounded, stable}:

• An argument a ∈ arguments is applicable in C under
sceptical (credulous) s semantics iff all (some) s exten-
sions of AF contain an argument with conclusion arga.

• A propositional literal c ∈ LCAES is acceptable in C or
c ∈ assumptions under sceptical (credulous) s seman-
tics iff all (some) s extensions of AF contain an argu-
ment with conclusion c.

4 Conclusion

This paper has shown that Carneades can be reconstructed
through ASPIC+ as Dung’s abstract argumentation frame-
works. Thus we have shown that the idea of varying proof
standards for statements can be modelled within a Dungean
approach, while retaining a correspondence between both
through Theorem 3.7. Furthermore, addressing issues from
Carneades [Gordon and Walton, 2009], the translation allows
the semantics of Carneades to be generalised to argument
evaluation structures that containing cycles, in a way similar
to [Brewka and Gordon, 2010].

By translating Carneades into ASPIC+, the consistency
and closure results of [Prakken, 2010] can be directly applied
to Carneades. it is easy to verify that argumentation frame-
works generated by our translation satisfy the assumptions
under which [Prakken, 2010] proves consistency and strict
closure of extensions. Finally, we note that our translation en-
ables a standard Dung semantics for an ’ambiguity blocking’
non-monotonic logic ([Gordon et al., 2007], section 7.1); to
our knowledge, we are the first to have achieved such a result.
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