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Abstract

In this paper, we introduce a probabilistic classifi-
cation model to address the task of semi-supervised
learning. The major novelty of our proposal
stems from measuring distributional relationships
between the labeled and unlabeled data. This is
achieved from a stochastic translation model be-
tween data distributions that is estimated from a
mixture model. The proposed classifier is defined
from the combination of both the translation model
and a kernel logistic regression on labeled data. Ex-
perimental results obtained over synthetic and real-
world data sets validate the usefulness of our pro-
posal.

1 Introduction

In the last years, the task of semi-supervised classification has
attracted a considerable amount of research in machine learn-
ing and pattern recognition [Singh et al., 2008]. Broadly, this
task consists of learning a classifier from a training set com-
posed of both labeled and unlabeled data. The motivation
of semi-supervised classification stems from the use of un-
labeled data to help build a better classifier from the labeled
data. This is of great interest in many real-world applications
[Cherniavsky et al., 2010; Bandos et al., 2006], mainly in
those in which the acquisition of labeled data is quite expen-
sive and time consuming, whereas a large amount of unla-
beled data is far easier to obtain.

There are actually two different semi-supervised learning
settings, namely transductive and inductive semi-supervised
learning [Zhu and Goldberg, 2009]. In the transdutive setting,
the goal is to predict only the labels of the unlabeled data in
the training set. In addition, the inductive semi-supervised
learning is aimed at devising a good classifier on future data,
beyond the training set.

We focus our research on the inductive setting. That is,
given a training set T ⊆ X that includes a set of labeled
instances L (L ⊆ T ), the goal is to train a classifier in order
to predict the labels for the instances in X . Specifically, in
this paper we address the task in which the labels are binary
by introducing a new probabilistic classification model.

The novelty of our proposal consists of measuring distribu-
tional relationships between the labeled data and the instances

in X . To this end, the approach relies on a stochastic trans-
lation model between distributions from a mixture, which is
also introduced in this paper. The proposed method combines
the stochastic translation model with a kernel logistic regres-
sion on labeled data to define the probabilistic classifier.

The proposal can be contextualized into the class of those
stochastic (generative) semi-supervised methods that esti-
mate conditional prediction models. Traditionally, these
methods have been focused on estimating structured mod-
els such as conditional random fields [Mann and Mccallum,
2008; Dillon et al., 2010], and they have been mainly applied
to discrete data such as texts.

On the other hand, this work can be seen as an extension to
the inductive setting of the classifier derived from the semi-
supervised multi-task learning framework presented in [Liu
et al., 2009]. In that work, authors rely on t-step Markov
transition probabilities between the training points to learn
their conditional predictive model. In our case, we consider
arbitrary Markov chains on mixture distributions to setup the
stochastic translation model. This allows us both to directly
apply our approach to the inductive setting, and to base the
method on local and global knowledge from the data.

The rest of this paper is organized as follows. In Sec-
tion 2, we present the proposed probabilistic model for semi-
supervised classification. Section 3 describes some experi-
ments for validating the performance on both synthetic and
real-world data sets. Finally, in Section 4 we provide some
conclusions and future work.

2 The Probabilistic Classification Model

In order to address our semi-supervised classification task,
we rely on the latent structure of data X given by a mixture
model:

p(x) =
m∑
i=1

p(x|gi)p(gi) (1)

where x ∈ X , ∀i ∈ {1, . . . ,m} gi represents a probabil-
ity distribution, p(gi) is the prior for gi, and p(x|gi) repre-
sents the probability of generating data point x from gi. Such
a mixture can be obtained from the training set T by typi-
cally applying an Expectation-Maximization algorithm, La-
tent Dirichlet Allocation in the case of discrete data [Blei et
al., 2003], or a Dirichlet Process Mixture Model [Rasmussen,
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2000]. In our experiments, we consider both Dirichlet pro-
cesses and data spectroscopy [Shi et al., 2008] to learn this
mixture.

Let G denotes the set of probability distributions
{g1, . . . , gm} from the mixture shown in Equation 1. In this
work, the distributions in G are aimed at measuring distribu-
tional relationships between the labeled data in L and the data
points in X . In this way, for all x′ ∈ L and all x ∈ X we can
define a posterior probability for x′ given x as:

p(x′|x) ∝
∑
gi∈G

∑
gj∈G

p(x′|gi)t(gi|gj)p(gj |x) (2)

where p(gi|x) = p(x|gi)p(gi)/p(x) (from Bayes’ theorem),
and t(gi|gj) represents some posterior probability for gi given
gj .1

In this paper, we define t(gi|gj) as the probability of trans-
forming or translating gj into gi by regarding the overall
structure of distributions from the mixture shown in Equa-
tion 1. We refer to {t(gi|gj)}gi,gj∈G as the (stochastic) trans-
lation model between mixture distributions.

Accordingly, p(x′|x) can be thought of as a measure of
how likely x can be transformed into x′. Hence, a straight-
forward definition for the posterior probability of class y ∈ Y
given x ∈ X can be determined by:

p(y|x)∝
∑
x′∈L

p∗(y|x′)p(x′|x)

=
∑
x′∈L

∑
gi∈G

∑
gj∈G

p∗(y|x′)p(x′|gi)t(gi|gj)p(gj |x)(3)

where p∗(y|x′) is an estimation of the probability of including
the labeled point x′ in class y.

Thus, in our proposal each data point x ∈ X can be classi-
fied as belonging to class y∗(x) according to the rule:

y∗(x) = argmax
y∈Y

p(y|x) (4)

where p(y|x) is defined as in Equation 3.
The next subsections are devoted to describe the es-

timation of both (i) the stochastic translation model be-
tween mixture distributions (i.e., {t(gi|gj)}gi,gj∈G), and (ii)
the class posteriors conditioned on the labeled points (i.e.,
{p∗(y|x′)}y∈Y,x′∈L).

2.1 Translation Between Mixture Distributions

For estimating the translation model {t(gi|gj)}gi,gj∈G , we
consider Markov chains between the mixture distributions.

In a generative model of Markov chains between distribu-
tions, the generation of a chain 〈gi1gi2 . . . gik〉 starting with
distribution gi1 stems from the model:

p(〈gi1gi2 . . . gik〉) = (1− α)
k∏

l=2

(αp(gil |gil−1
)) (5)

where α is the probability of adding a new distribution to the
chain being generated, and p(gb|ga) typically represents the

1The values p(x|gi), p(gi) and p(x) are defined from Equation 1.
Both x ∈ X and x′ ∈ L, in p(x|g) and p(x′|g) respectively, are
drawn according to the same distribution.

probability of generating the distribution gb immediately after
ga in a chain.

Currently, we propose two approaches for estimating the
conditional probability p(gb|ga) from the training set T . The
first one simply relies on the chain rule to define the condi-
tional densities as follows:

p(gb|ga) ∝
∑
x∈T

p(gb|x)p(x|ga) (6)

On the other hand, the second approach estimates p(gb|ga)
from a given metric h between distributions in the following
manner:

p(gb|ga) ∝ exp

(
−1

2

(
h(gb, ga)

h0

)2
)

(7)

where h0 is a given distribution width. Notice that different
from the first approach, in this case we compare two prob-
ability distribution without considering their context in the
modeling of data X (i.e., their priors are disregarded).

The rationale here is to rely on the method based on the
chain rule when both (a) the underlying distribution of the
training set T approaches the true underlying distribution of
actual data X , and (b) the distributions reveal some chaining
effect to conform the class structures. Otherwise, we consider
the distance-based method to estimate the conditional proba-
bilities p(ga|gb).

Overall, {p(gb|ga)}ga,gb∈G can be seen as a translation
model [Berger and Lafferty, 1999] that expresses the likeli-
hood of translating distribution ga into gb in one translation
step. In this way, a distribution chain of length k starting at
distribution ga and ending at gb can be seen as a translation
sequence that translates ga into gb in k steps.

Consequently, the overall probability of translating a dis-
tribution gj into gi can be defined as the probability of gen-
erating an arbitrary chain starting at gj and ending at gi, and
hence:

t(gi|gj) =
∞∑
k=2

⎛
⎝ ∑

i2,...,ik−1∈{1,...,m}
p(
〈
gjgi2 . . . gik−1

gi
〉
)

⎞
⎠
(8)

This definition can be summarized in the following closed
form [Lafferty and Zhai, 2001]:

t(gi|gj) =
(
(1− α)(I − αP )−1

)
i,j

(9)

where I is the m × m identity matrix, and P is a m × m
matrix whose element Pi,j is defined as p(gi|gj).

2.2 Class Posteriors Conditioned on Labeled
Points

In this work, the estimation of the conditional probabilities
{p∗(y|x′)}y∈Y,x′∈L is based on Kernel Logistic Regression
[Roth, 2001].

Typically, given a set of kernel functions {K1, . . . ,Km}
with domain X and a discrete random variable Y (taking
values in {−1, 1}), a kernel-based logistic regression model
computes the posterior probability of a value y ∈ Y condi-
tioned on x ∈ X as follows:

p∗(y|x) = 1

1 + e−y(β0+
∑m

i=1 βiKi(x))
(10)
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where ∀i ∈ {0, . . . ,m} βi is a scalar coefficient.
For estimating the probability of including the labeled

point x′ ∈ L in the class y ∈ Y , we follow Equation 10. How-
ever, we properly rely on the mixture distributions g1, . . . , gm
instead of using traditional kernel functions in our estimation.
Note that this is feasible since each distribution corresponds
to a probability density function.

Therefore, we define p∗(y|x′) as the parameterized regres-
sion:

p∗ (y|x′, β = 〈β0, . . . , βm〉) = 1

1 + e−y(β0+
∑m

i=1 βip(x′|gi))
(11)

Several optimization methods can be applied to estimate
vector β. In [Roth, 2001], it has been shown that kernel lo-
gistic regression can be learned in the primal using Newton’s
method. Thus, in this work we estimate β by considering a
Newton-like method for maximizing the log-posterior:

�(β) =
∑
x∈L

⎛
⎝log

∑
x′∈L

p∗(y(x′)|x′, β)p(x′|x)

⎞
⎠ (12)

where y(x′) is the class label associated to the labeled point
x′ ∈ L.

Starting from an initial value of β, namely β(0), the
Newton-like method iteratively approaches the value of vec-
tor β until convergence by using the following updating equa-
tion in the kth iteration:

β(k) = β(k − 1)− γH−1g (13)

where the scalar value γ is the learning step (γ > 0), and
H and g represent the Hessian matrix and the gradient vector
respectively of the regularized �(β) at β = β(k − 1).

Notice that the overall formulation of our methodol-
ogy can be seen as a combination of two models: (i)
the model of labeled data conditioned on the domain data
{p(x′|x)}x∈X ,x′∈L, and (ii) the model of class posteriors
conditioned on the labeled data {p∗(y|x′)}y∈Y,x′∈L. Actu-
ally, in the learning mechanism parameterization only affects
the second model (i.e. only a component of the overall model)
since the estimation of the probabilities p(x′|x) is performed
in an unsupervised manner. Thus, the overall model can be
considered as a partially parameterized one.

3 Experiments

In order to validate the proposal here presented, we consider
both synthetic and real-world evaluation data sets. The per-
formance of the classification is evaluated in terms of the Ac-
curacy measure, defined as the ratio of the number of cor-
rectly classified data over the total number of data being
tested.

For each data set X , the experimentation is carried out con-
sidering different training and test sets, and also different la-
beled sets from each training set. Specifically, for each data
set X , and given a size l for the labeled data set, we consider
25 different triplets of training, labeled and test sets, which
are generated as follows.

Firstly, we randomly sample a uniform partition X =
X1 ∪ . . . ∪ X5. Then, for each i ∈ {1, . . . , 5}, we define

both a training and a test set from X as X \Xi and Xi respec-
tively. Finally, from each training set X \ Xi, we randomly
sample 5 labeled data sets Li1 , . . . ,Li5 , each one of size l.
We report the results for different values of l in each data set
X by averaging the accuracy on their corresponding 25 test
sets.

Our experimentation is mainly focused on the following
issues:

i. Measure the impact of combining the kernel logistic re-
gression with the proposed translation model between
distributions. With this aim, we compare our model with
a Kernel Logistic Classifier (KLC) [Roth, 2001].

ii. Compare our approach with existing most related work.
That is, a version of the Semi-Supervised Single Task
Learning (SS−STL) classifier derived from [Liu et al.,
2009]. This is also useful for measuring the impact of
using the translation model between distributions, in-
stead of t-step Markov transition probabilities between
training points.

To ensure a fair comparison, the underlying kernels for both
KLC and SS−STL were given by the mixture distributions
learned from the training sets.

3.1 Synthetic Data Sets

As for synthetic data, we consider the two toy data sets rep-
resented in left column of Figure 1. These data sets are uni-
formly divided into 2 classes. The first data set (moons) con-
sists of 600 points in the real plane, whereas the second one
(p-moons) comprises 1000 data points.

In this case, for generating the mixture models we re-
gard the unsupervised mixture generation given by Dirichlet
processes as defined in [Rasmussen, 2000]. Thus, for each
training set we regard a gaussian mixture to carry out the
semi-supervised classification. The second column of Fig-
ure 1 shows one of the training samples generated from the
databases together with the respective gaussian mixture dis-
tributions learned from the sample. It is worth mentioning
that the mixture generation process produced some spatial
confusion according to the actual class distributions in some
training sets.

In tables 1 and 2, we show the results obtained over moons
and p-moons data sets respectively. We consider two ver-
sions of our proposal, namely T−Chain and T−Distance, ob-
tained from the use of the chain rule and the distance-based
approaches respectively for estimating the translation model
between distributions (see equations 6 and 7).

For the version T−Distance, we rely on the well-known
Hellinger distance as the metric between distributions. The
distribution width h0 was conveniently defined as the third
part of the average distance between each gaussian and its
nearest (gaussian) neighbor in the mixture model. The param-
eter α in the translation model can be seen as a confidence on
the chaining effect of the mixture distributions. Thus, we con-
sider a large α for version T−Chain (α = 0.99), and a small
α for T−Distance (α = 0.10). Since SS−STL is a transduc-
tive method, the results reported for this method on the test
data correspond to the base kernel classifier embedded in its
own methodology.
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Figure 1: Synthetic data sets: moons (first row) and p-moons (second row).

As it can be seen, our two versions consistently outper-
forms both KLC and SS−STL. Particularly, version T−Chain
performs largely better than T−Distance. This was expected
on these data sets since we perceived from Figure 1 that the
mixture model learned from T accurately approaches the ac-
tual underlying distribution of data X , and there is a certain
overlapping degree between gaussians that generates subsets
of the same class with a high likelihood. It can be noticed
that a distance-based criterion can produce some uncertainty
on the conditional probability between gaussians in the ex-
tremes of the moons.

Currently, learning from very few labeled samples is a
challenging issue in semi-supervised classification. In these
data sets, it can be appreciated that T−Chain obtains a small
number of misclassified data despite of the size of the la-
beled data set. Notice also that in the case of p-moons this
version correctly classifies the entire dataset from l0 labeled
instances. We estimate that when the number of labeled sam-
ples is large enough so that the randomly selected labeled
points tend to spatially cover the class distributions, the per-
formance of all of these methods will be similar.

3.2 Real-World Data Sets

For the case of real-world data sets, we test our approach us-
ing two binary databases from the UCI repository, namely
Ionosphere and Wisconsin Breast Cancer (WBC). The Iono-
sphere database is a collection of radar data obtained by a
system in Goose Bay, Labrador. This database comprises 351
instances described by 34 continuous attributes. On the other
hand, WBC database includes 683 samples, each one consist-
ing of 9 features taken from fine needle aspirates from a pa-
tient’s breast. All 9 features were graded on an integer scale

from 1 to 10.
Since these databases consists of a small number of sam-

ples according to their dimensionality, we avoid the use of
Dirichlet processes to generate the mixture models (currently,
they need a very large number of iterations to converge). In-
stead, we consider data spectroscopy [Shi et al., 2008] to ef-
ficiently produce a mixture of gaussian distributions from the
training sets.

Our aim was to generate a number of gaussians from each
mixture so that the entropy value of the classes conditioned on
each gaussian distribution was small. This caused a relative
large separation between the gaussian distributions within
each mixture learned, which in turn impacts negatively on
the chaining effect between the distributions. In this way,
the results obtained by T−Chain do not significantly improve
those obtained by KLC and SS−STL. Note that this problem
is overcome by T−Distance.

Figures 2 and 3 show the results obtained over Ionosphere
and WBC respectively. In these figures we show in the left
and right columns the average accuracy values obtained over
the unlabeled samples in the training sets and the test samples
respectively.

Several observations can be made by analyzing these fig-
ures. Firstly, it can be seen that T−Distance has a good per-
formance on unseen data (i.e., on the test data sets). This
corroborates the usefulness of our proposal for the inductive
semi-supervised task, which is the main purpose of this work.
Indeed, T−Distance significantly outperforms both KLC and
SS−STL on test data.

Secondly, it can be appreciated that despite SS−STL per-
forms the best on the unlabeled data from WBC, this method
is not appropriate for inductive learning. It suffer from some

1168



Table 1: Performance on the unlabeled samples (U) and test data (T) of moons.

KLC
SS-STL
T-Distance
T-Chain

l=2 l=5 l=10 l=20
U T U T U T U T

0.6649 0.6727 0.7865 0.7990 0.9151 0.9107 0.9644 0.9587
0.6829 0.6843 0.7929 0.8013 0.9140 0.8987 0.9722 0.9637
0.7163 0.7193 0.8648 0.8707 0.9343 0.9363 0.9883 0.9897
0.9607 0.9610 0.9933 0.9937 0.9813 0.9810 0.9979 0.9980

Table 2: Performance on the unlabeled samples (U) and test data (T) of p-moons.

KLC
SS-STL
T-Distance
T-Chain

l=2 l=5 l=10 l=20
U T U T U T U T

0.6578 0.6555 0.8034 0.8070 0.8596 0.8549 0.9521 0.9584
0.6618 0.6591 0.7942 0.7956 0.8753 0.8708 0.9608 0.9624
0.6996 0.7081 0.8354 0.8380 0.9081 0.9081 0.9873 0.9902
0.9894 0.9897 0.9887 0.9922 1.0000 1.0000 1.0000 1.0000
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Figure 2: Performance on the unlabeled samples (left) and test data (right) from Ionosphere.
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Figure 3: Performance on the unlabeled samples (left) and test data (right) from WBC.
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overfitting, which can be explained from both (i) the unsta-
ble behavior of it accuracy curve on unseen data and (ii) the
similarity of this curve with that of KLC (i.e., SS−STL per-
forms similar to a pure supervised classifier). On the other
hand, it can be clearly observed that our approach obtains
stable and similar results on both transductive and inductive
semi-supervised learning.

The performance improvement over KLC validates the
combination of logistic regression with the proposed trans-
lation model, whereas the improvement over SS−STL mea-
sures the positive impact of translating from Markov chains
on mixture distributions instead of using t-step Markov tran-
sition probabilities between the training points for inductive
learning.

4 Conclusions

In this paper, a new semi-supervised probabilistic classifica-
tion model has been introduced. The proposal exploits the lo-
cal and global context of the data by measuring distributional
relationships between the labeled and unlabeled data. This is
carried out from a stochastic translation model between data
distributions, which allows our method to be directly applied
to unseen data within the semi-supervised learning task.

The proposed learning mechanism combines both the
stochastic translation model and a kernel logistic regression
on labeled data. Experimentally, we tested two approaches
derived from the methodology on synthetic and real-world
data sets. The obtained results corroborates the usefulness of
our proposal for the semi-supervised classification task.

Future works include extending this methodology to the
multiclass setting. This can be easily achieved since the learn-
ing mechanism relies on logistic regression, which is suitable
for the multiclass learning problem.
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