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Abstract

Topic models have a wide range of applications, in-
cluding modeling of text documents, images, user
preferences, product rankings, and many others.
However, learning optimal models may be difficult,
especially for large problems. The reason is that
inference techniques such as Gibbs sampling of-
ten converge to suboptimal models due to the abun-
dance of local minima in large datasets.

In this paper, we propose a general method of im-
proving the performance of topic models. The
method, called ‘grouping transform’, works by in-
troducing auxiliary variables which represent as-
signments of the original model tokens to groups.
Using these auxiliary variables, it becomes possi-
ble to resample an entire group of tokens at a time.
This allows the sampler to make larger state space
moves. As a result, better models are learned and
performance is improved. The proposed ideas are
illustrated on several topic models and several text
and image datasets. We show that the grouping
transform significantly improves performance over
standard models.

1 Introduction

Topic models such as Latent Dirichlet Allocation (LDA) are
widely used in applications such as text modeling, collabo-
rative filtering, and image segmentation [Blei et al., 2003;
Sivic et al., 2005; Marlin, 2003; Andreetto et al., 2007].
Since exact inference is intractable, iterative methods such as
Gibbs sampling are typically used. Using these methods on
large problems often produces poor models due to the abun-
dance of local minima in large datasets.

In this paper, we propose a general method of improving
the performance of topic models. The method works by com-
bining the original topic variables into groups (as in Figures
1–2) in such a way that all variables within a group are likely
to be assigned the same topic. Using these groups, it becomes
possible to re-sample an entire group at a time (instead of a
single variable at a time). This allows the sampler to make
larger moves and thus converge to a better model.

The proposed method also touches upon a fascinating as-
pect of human problem solving—the human ability to dis-

(a) 13 scenes gLDA
(b) Corel 1000 gLDA

Figure 1: Example groups learned by gLDA on image data.
Three groups per experiment are shown. For each group, the
tokens it contains are displayed within a frame. For the 13
scenes dataset, the average image patch is shown for each
vector-quantized SIFT descriptor.
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Figure 2: Example groups learned by gLDA on text data (the
NIPS articles corpus). Three groups are shown. For each
group, the tokens it contains are listed within a frame.

cover the correct primitives at a level of abstraction suit-
able for a given problem. This is in contrast to most
machine learning algorithms which only work with user-
supplied primitives. For example, when Gibbs sampling is
used for inference in a topic model, these primitives typically
represent the most basic building blocks of the problem, such
as image pixels. As the problem size increases, more vari-
ables in the model become necessary. Gibbs sampling often
performs poorly under these circumstances, because standard
primitives become too fine-grained for large problems. The
proposed variable grouping method can be viewed as an ap-
proach to discover higher-level primitives for a given prob-
lem.

The remainder of this paper is organized as follows. In the
next section, we briefly review the relevant previous work. In
section 3, we describe the proposed variable grouping method
in detail. Experimental results are presented in section 4. We
conclude with general remarks in section 5.
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2 Brief survey of previous work

Several existing modifications of LDA [Yao et al., 2009;
Porteous et al., 2008b] focus on improving efficiency (speed
and memory requirements) of inference by using efficient
data structures and algorithms. However, these methods still
produce regular LDA models. If LDA performs poorly on
a given dataset, the same poor model will be produced, just
more efficiently. In contrast, the method proposed here at-
tempts to improve the model produced on a given dataset.
Although speed and memory are not the focus of our method,
note that many LDA speedup techniques can be applied to it
to combine the advantages of both.

One method related to the grouping transform proposed
here is ‘block sampling’ [Bishop, 2006]. In block sampling,
several variables are selected and resampled as a group. One
important difference from the grouping transform is that in
block sampling, all possible combinations of values are con-
sidered. For example, if the block consists of K topic vari-
ables, each of which has T possible values, then a total of
TK values need to be considered. This makes block sam-
pling computationally inefficient for large K . In contast, in
the method proposed here all variables in a group are con-
strained to have the same value. In addition, it is unclear in
general which variables should be selected to form a block.
Therefore, standard block sampling is typically used when
several variables in a model are known a priori to be related
deterministically or almost deterministically. In contrast, the
method proposed here allows learning which variables need
to be grouped.

Another class of relevant approaches includes augmenta-
tion samplers and similar methods. For example, in [Swend-
sen and Wang, 1987], variables are grouped and sampled as
a group to improve convergence. Similar ideas are used in
[Barbu and Zhu, 2003; Tu, 2005]. A disadvantage is that find-
ing a reasonable augmentation for a new problem may be dif-
ficult. The approach proposed in this paper is more general
and applicable to a broader class of models. An additional
difference is that traditional augmentation samplers gener-
ally do not try to find persistent groups. Instead, the groups
change at every iteration (an iteration corresponds to resam-
pling all variables once). This is in contrast to the approach
proposed here, where groups are persistent across multiple it-
erations and are valuable by themselves. Similar comments
pertain to split-merge methods (e. g. [Jain and Neal, 2000]).

Next, we review approaches that use persistent groups of
variables. In [Ren and Malik, 2003] (in the context of im-
age segmentation) individual image pixels are combined into
groups, called ‘superpixels’, and subsequent processing is
done in terms of these superpixels. Superpixels are defined
by color similarity and proximity. A similar process is used in
[Gomes et al., 2008], using a more general definition of sim-
ilarity. In general, these methods are application- or model-
specific. In additon, groups in these methods have to be de-
termined using properties of the objects the original variables
represent (for example, color similarity of image pixels). Cre-
ating such groups could therefore be difficult if the objects
do not have an obvious similarity measure (for example, in a
recommendation system, how would one determine similarity

(a)

(b)

Figure 3: Grouping transform: a methodical way to introduce
variable groups into topic models.

between different users?). The grouping method proposed in
this paper is more general, as it requires no separate definition
of similarity, although it can use it if available.

3 Variable grouping

In this section, we describe how variable grouping can be
used to improve topic model performance. First, the pro-
posed method of introducing group variables, called ‘group-
ing transform’, is described in section 3.1. An example ap-
plication of grouping transform to LDA is described in detail
in section 3.2. Additional applications of the grouping trans-
form to two other topic models are described in sections 3.3,
3.4, and some properties of the grouping transform are de-
scribed in section 3.5.

3.1 The grouping transform

In topic models, observations (called ‘tokens’) are assumed
to be generated from a set of topics. Each topic represents
a distinctive pattern of token co-occurence. For example, in
LDA, topics are multinomial distributions (typically, sparse)
over the vocabulary. For every token i in every document d, a
topic model has a latent variable (called ztd,i) that represents

the topic from which the token was generated.
The goal of training the topic model is to infer its parame-

ters given a training set of documents. The most interesting of
these parameters are usually the topics themselves (although
others may be of interest too depending on the model). Col-
lapsed Gibbs sampling is one of the most popular ways to
train a topic model. Typically, continuous parameters (such
as the topics) are integrated out, and topic assignments ztd,i
are sampled. The topics are recovered after sampling from
these assignments.

Since even a short document may contain thousands of to-
kens, the total number of ztd,i’s may easily reach millions. As

a result, sampling may exhibit poor convergence. Note, how-
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ever, that the number of topics is relatively small compared to
the number of tokens, so that many tokens belong to the same
topic and have equal ztd,i’s. If several tokens could be identi-

fied in advance as belonging to the same topic, they could be
resampled as a group.

We propose to replace the original topic model by a new
model which represents groups of variables explicitly. This
new model is obtained from the original model by a process
called the ‘grouping transform’, described below.

First, we introduce a group assignment variable gtd,i into

the model. The idea is that document d has Gd groups. The
variable gtd,i ∈ [0, Gd− 1] then represents the group to which

the token (d, i) (token i in document d) belongs. In the sim-
plest case, these variables are generated from a uniform multi-
nomial distribution.

A group g in document d is assigned to a topic via the
group topic variable zgd,g. (The superscript g indicates that

one variable per group exists, while the superscript t indicates
that one variable per token exists.) zgd,g is sampled from the

same distribution that ztd,i was sampled from in the original

model. An assignment zgd,g means that all tokens in the group

are generated by the topic zgd,g. Since the group for token

(d, i) is gtd,i, the topic from which that token was generated is

zgd,gd,i . This process is illustrated in Figure 3(a).

Note that the proposed modifications change the model
slightly. For example, in the original model the parents of
the ztd,i variables specified a distribution over Nd tokens in a

document; in the modified model, they specify a distribution
over the Gd groups. In other words, integrating out the new
zg and gt variables will not produce the original model. This
is in contrast to Swendsen-Wang-type approaches [Swendsen
and Wang, 1987], where the same model is preserved. The
main justification for the changes the grouping transform in-
troduces is the improved performance compared to the origi-
nal model.

The inference in the modified model can be performed by
Gibbs sampling as well, similarly to the original model. One
point to note is that each ztd,i variable is a deterministic func-

tion of gtd,i and zgd,g’s. As a result, the value of zgd,g will

never switch given fixed ztd,i’s; in other words, the sampler

will not mix (as is typical with deterministic dependencies).
To achieve mixing, we propose to sample each zgd,g jointly

with all the ztd,i variables for tokens in group g, and to sample

each gtd,i jointly with the corresponding ztd,i. This does not

add complexity to the sampler since in each case only one
variable is actually sampled, while others are simply updated
deterministically. Alternatively, the ztd,i variables can be re-

moved from the model completely; this is illustrated in Fig-
ure 3(b) for the case the observations are generated directly
from the topics.

3.2 Group LDA

LDA is a popular model for text and image data [Blei et al.,
2003; Sivic et al., 2005; Fei-Fei and Perona, 2005]. Its plate
diagram is shown in Figure 4(a). LDA represents documents
as bags of words. The i’th token in document d (denoted

(a) LDA (b) gLDA

Figure 4: (a): the LDA model. (b): the gLDA model. In
gLDA, a document d is generated as follows. First, θd, a
mixture over the T topics is sampled from a uniform Dirich-
let prior. A set of topic labels zd,g is generated for the G
groups in the document. For each token, a group is sam-
pled uniformly, and then a word is sampled from the topic
associated to that group. The conditional distributions are:

θd ∼ DirT [α], φt ∼ DirY [β], gd,i ∼ Mult(1/G), zd,g ∼
Mult(θd), yd,i ∼ Mult(φzd,gd,i

).

by yd,i) is an instance of some word in the vocabulary. For
text documents, the vocabulary is the set of English words.
For images, each word is a cluster of visually similar im-
age patches. A topic is a multinomial distribution (typically,
sparse) over the vocabulary. These topics represent distinc-
tive patterns of word co-occurence.

The goal of training the LDA model is to infer model pa-
rameters given a set of documents. These model parame-
ters include the topics φt, a topic distribution θd for each
document d, and a topic assignment zd,i for each token in
each document. Inference is typically performed by collapsed
Gibbs sampling. The variables φt and θd are integrated out,
and the z’s are sampled according to:

p(zd,i = z|rest) ∝
α+N

¬(d,i)
d,z

αT +N
¬(d,i)
d,.

β +N
¬(d,i)
z,yd,i

βY +N
¬(d,i)
z,.

. (1)

Here N are the count variables: Nd,z is the number of tokens
in document d assigned to topic z, and Nz,y is the number of
times word y is assigned to topic z. The superscript ¬(d, i)
means that the i’th token in document d is omitted from the
counts. A dot in place of a subscript represents summation
over that subscript; for example, Nz,. is the total number of
tokens assigned to topic z.

Applying the grouping transform described above to LDA,
we obtain a model called gLDA (group LDA), shown in Fig-

ure 4(b). Note again that the meaning of θgLDA

d in gLDA

is slightly different from that in LDA: in LDA, θLDA
d spec-

ifies the distribution of Wd tokens in a document, while in

gLDA, θ
gLDA

d specifies the distribution of G groups. The
gLDA model is nevertheless useful, because in many cases
the parameters of interest are topics φk, whose meaning is
not changed. If needed (e. g. for document classification),
the counts NLDA

d,z can be computed after sampling (using

zLDA
d,i = zd,gd,i), and θLDA

d can be estimated from these.
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Gibbs updates in gLDA are performed according to

p(gd,i = g|rest) ∝
β +N

¬(d,i)
zd,g,yd,i

βY +N
¬(d,i)
zd,g,.

, (2)

p(zd,g = z|rest) ∝
α+N

¬(d,g)
d,z

αT +N
¬(d,g)
d,.

·

·
Γ(βY +N

¬(d,g)
z,. )

Γ(βY +N
¬(d,g)
z,. +Nd,g)

·

·
∏

y

Γ(β +N
¬(d,g)
z,y +Nd,g,y)

Γ(β +N
¬(d,g)
z,y )

.(3)

Here Nd,g is the number of tokens in document d assigned
to group g, and Nd,g,y is the number of times word y is as-
signed to group g in document d. The superscript ¬(d, g)
means that all tokens in group g in document d are omitted
from the counts. The remaining counts are as in LDA. The
performance of gLDA is described in section 4.

Note that in eq. (2), the probability that token (d, i) is as-
signed to group g depends only on zd,g (the topic for group
g). Typically, there are many groups in a document assigned
to the same topic, and all these groups have equivalent proba-
bilities. To improve convergence further, we assign the token
(d, i) to that group which has the most tokens belonging to
the same word yd,i. In other words, group sampling is per-
formed as follows. A token (d, i) is an instance of the word
y0 = yd,i. First, the group g is sampled for this token accord-
ing to eq. (2). The topic for this group is z0 = zd,g. Then,
out of all groups with this topic z0 we pick the one which has
the largest number of other instances of the word y0, and set
gd,i to that group. This has the effect of encouraging groups
to have uniform tokens, which improves convergence. Note
that despite this, only about 30% of the groups in our exper-
iments consist of instances of only one word; most groups
consist of two words or more (see e. g. Figures 1–2). Note
also that there are multiple groups per document and differ-
ent instances of the same word may belong to more than one
group. Therefore, dealing with polysemy is still possible.

3.3 Group AZP

A topic model for probabilistic image segmentation was in-
troduced in [Andreetto et al., 2007]. This model will be called
AZP here. Its plate diagram is shown in Figure 5(a). Im-
age pixels in this model are generated from a mixture of top-
ics, each topic being modeled as a mixture of a parametric
component (a Gaussian distribution over colors) and a non-
parametric component. See [Andreetto et al., 2007] for de-
tails. For inference, θ is integrated out and the ci variables
are sampled according to

p(ci = c|rest) ∝
α+Nc

αK +N
fc(yi). (4)

Group variables were introduced into AZP using the group-
ing transform. The resulting model (called gAZP) is shown

(a) AZP (b) gAZP

Figure 5: (a): the AZP model for image segmentation. An
image is generated as follows. First, θ, a mixture over the K
clusters (segments) is sampled from a uniform Dirichlet prior.
A cluster label ci is generated for every pixel in the image.
A color is sampled from the ‘topic’ (a distribution fci over
colors) associated to that cluster. The cluster distributions fk
are mixtures of a parametric (Gaussian) and a non-parametric
distributions. (b): the gAZP model. Each pixel is assigned to
one of G groups. The remaining model is similar to AZP.

(a) BiLDA (b) gBiLDA

Figure 6: (a): the BiLDA model. The conditional distribu-
tions are: πc

i ∼ Dir[αc], πp
j ∼ Dir[αp], φzc,zp ∼ Dir[β],

zci,j ∼ Mult(πc
i ), z

p
i,j ∼ Mult(πp

j ), ri,j ∼ Mult(φzc
i,j ,z

p

i,j
).

(b): the gBiLDA model. The conditional distributions are:
πc
i ∼ Dir[αc], πp

j ∼ Dir[αp], φzc,zp ∼ Dir[β], gci,j ∼

Mult(1/Gc
i), g

p
i,j ∼ Mult(1/Gp

j ), z
c
i,g ∼ Mult(πc

i ), z
p
j,g ∼

Mult(πp
j ), ri,j ∼ Mult(φzc

i,gc
i,j

,z
p

j,g
p
i,j

).

in Figure 5(b). The inference is performed according to

p(cg = c|rest) ∝
α+Nc

αK +G
·

∏

i in group g

fc(yi), (5)

p(gi = g|rest) ∝ fcg(yi). (6)

Experiments with this model are presented in section 4.

3.4 Group BiLDA

A topic model for collaborative filtering was proposed in
[Porteous et al., 2008a; Airoldi et al., 2008; Marlin, 2003].
This model will be called BiLDA here. It is assumed that N
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Dataset Method Initial log p(W ,Z) Final log p(W ,Z) % improvement over LDA

NIPS stemmed LDA −7.31× 106 −4.77× 106

gLDA −4.24× 106 21%

NIPS raw LDA −7.12× 106 −4.68× 106

gLDA −4.09× 106 24%

NYT stemmed LDA −5.64× 107 −3.60× 107

gLDA −3.42× 107 9%

NYT raw LDA −8.97× 107 −6.16× 107

gLDA −5.59× 107 20%

Corel 1000 LDA −8.20× 106 −3.43× 106

gLDA −3.17× 106 5%

13 scenes LDA −1.27× 107 −8.14× 106

gLDA −7.28× 106 19%

Table 1: Performance (in terms of log p(W ,Z)) of LDA and gLDA. Higher values are better (note that the values are negative).
Improvement is shown in percent relative to the difference between initial and final log p(W ,Z) of LDA. Higher improvement
percentage indicates better performance.

customers have rated M products using R discrete rating val-
ues. For example, N binary images may consist of M pixels
each, and each pixel’s value is 0 or 1. In some cases, the data
may be sparse. This is the case, for example, when some pixel
values are missing (unknown) in some images. A typical task
in this case is to predict the missing values.

Briefly, the approach in BiLDA is to model customer pref-
erences by a set of customer topics, and product features by
product topics. The distribution of ratings for a given cus-
tomer topic and a given product topic is assumed to be a
multinomial over the R values. The plate diagram for BiLDA
is shown in Figure 6(a). As can be seen, it consists of two
LDA models, one representing customer topics and another
representing product topics. See [Porteous et al., 2008a;
Airoldi et al., 2008] for details.

Group variables were introduced into BiLDA using the
grouping transform. The resulting model (called gBiLDA)
is shown in Figure 6(b). Equations for sampling in BiLDA
and gBiLDA are omitted to save space, but can be derived
in a straightforward manner. Experiments with BiLDA and
gBiLDA are presented in section 4.

3.5 Properties of the grouping transform

Greediness of grouping A feature which is common to all
the grouped models presented above is greediness of group
formation. This refers to the fact that the probability of a to-
ken belonging to a group is proportional to the likelihood of
the token under that group’s topic. In contrast, in the original
models this likelihood is gated by what can be thought of as
the prior probability that the token belongs to that topic. For
example, in LDA the probability of a token (d, i) belonging
to a topic z is the likelihood of that token in the topic z (the
second term in eq. (1)), gated by the probability of any token
in document d belonging to that topic (the first term). In con-
trast, in gLDA only the analogue of the second term plays a
role when resampling g (eq. (2)). Similarly, in AZP the like-
lihood of a pixel in a cluster (the f term in eq. (4)) is gated by
the probability of that cluster in the image (the first term in
eq. (4)). In contrast, only the f term plays a role in sampling

the group assignments in gAZP (eq. (6)). Similar comments
pertain to gBiLDA.

Selecting the number of groups A practical question is
how should the number of groups be selected. Experimen-
tally, we found that the performance is best with many groups
per document—as many as tokens per document or more.
Note that in this case many groups still contain more than
one token, and other groups are empty. The nonempty groups
contain 2–5 tokens on average. Using that many groups is,
however, less efficient computationally. The performance is
close to optimal when the number of groups is such that there
are 3–10 tokens per group on average, and this also avoids the
need to maintain and sample many empty groups. When the
number of groups decreases further, the performance starts to
deteriorate. Therefore, in our experiments, we set the number
of groups such that there were on average 4 tokens per group.
In the future, we plan to explore models where the number of
groups is determined automatically using models similar to
HDP [Teh et al., 2006].

4 Results

Here, we evaluate the quality of models learned using group
variables.

4.1 LDA and gLDA

Two text datasets and two image datasets were used for the
experiments. For text experiments, we used the NIPS pa-
pers dataset [Roweis, 2002] and the New York Times corpus
[Sandhaus, 2008] (only documents with at least 3500 words
were used from the NYT corpus). Typically, text datasets
are preprocessed by stemming the words and removing stop
words. These versions of the datasets are called ‘stemmed’.
To illustrate how the models cope with raw data, we have also
experimented with the unprocessed corpora (where neither
stemming nor stop word filtering were performed). These
versions are called ‘raw’. In addition, the dataset of 13 vi-
sual scene categories [Fei-Fei and Perona, 2005] was used
(we used vector-quantized SIFT descriptors as words, as

1182



0 50 100 150 200 250 300

−7

−6.5

−6

−5.5

−5

−4.5

−4
x 10

6

LDA

gLDA

Figure 7: log p(W ,Z) as a function of iteration on the
NIPS dataset. Top curve (solid green): gLDA. Bottom curve
(dashed blue): LDA. For gLDA, the X axis shows the effec-
tive number of iterations that takes into account the fact that
sampling one group variable requires more computation than
in LDA.

described in [Fei-Fei and Perona, 2005]). Finally, an im-
age dataset consisting of 1000 color images from the Corel
dataset was used (we used color values, vector-quantized uni-
formly in the RGB space, as words).

The joint probability of all words W and all topic as-
signments Z , log p(W ,Z), was recorded every 20 iterations
and used as performance estimate [Wallach et al., 2009]. In
Figure 7, the performance as a function of iteration is plot-
ted for regular LDA and gLDA. As can be seen, the gLDA
model converges to a noticeably better mode compared to
LDA. Performance of gLDA on additional datasets is summa-
rized in Table 1. As can be seen, gLDA consistently outper-
forms LDA. Each experiment was repeated at least 10 times.
All improvement figures are statistically significant (t test,
p << 0.001).

Hyperparameter settings only weakly influence the perfor-
mance of both methods. We used the settings recommended
in [Steyvers and Griffiths, 2005]. Variations over two or-
ders of magnitude affected the results by only 1–2 percentage
points.

Block sampling is a standard method related to the group-
ing transform proposed here. As mentioned in section 2, for
blocks of size K and with T topics, a total of TK compu-
tations need to be performed to resample one block. This
amounts to TK/K computations per variable, as opposed to
just T computations per variable for regular LDA. In our ex-
periments we used T = 100 topics; as a result, block sam-
pling was computationally infeasible for K > 2. We have
run block sampling with blocks of two variables, but the im-
provement in performance was less than 0.5% compared to
regular LDA. In contrast, gLDA often gives improvements of
10–20% (Table 1).

Several examples of learned topics are shown in Figure 8.
As can be seen, gLDA copes much better with distractors (in-
cluding stop words such as ‘the’), and as a result produces
much better topics.

Several groups learned by gLDA on the NIPS dataset are
shown in Figure 2. As can be seen, groups consist of tokens
that often belong to the same topics. Most groups contain
multiple words, although often the same word is repeated
multiple times. Examples of groups learned on the image

the training neurons
order the neuron
of and the
mean set connections
field et of
approximation generalization network
and validation and
for with to
in trained their
theory al lateral

(a) Regular LDA

control set network
policy and networks
actions test neural
value of architecture
action on number
reward validation feed
controller training forward
optimal is chosen
function error sigmoidal
reinforcement sets reference

(b) gLDA

algorithm have network
only algorithms different
linear field simulation
step sets bounds
under determined curves
obtained tasks sub
log experimental clusters
energy estimates grid
reinforcement entropy demonstrated
computation dynamical free

(c) Restricted LDA

Figure 8: Example topics learned by LDA, gLDA and re-
stricted LDA (see text) on the NIPS dataset. Three topics are
shown for each model. For each topic, the 10 most probable
words are shown. Note that gLDA topics are more focused
and include fewer generic words (such as ‘the’, ‘and’, etc.).
Note also that restricted LDA topics are much less coherent
than both LDA and gLDA.

datasets are shown in Figure 1. Note that no measures of simi-
larity between words were used. When more than one word is
assigned to the same group, this assignment is based solely on
the underlying model (gLDA). Nevertheless, the tokens in the
same group usually contain similar words. For example, the
middle group in Figure 1(a) contains various diagonal edges;
the bottom group in the same figure contains different ver-
sions of blobs; the middle group in Figure 1(b) contains dif-
ferent shades of pink; and the topmost group in Figure 2 con-
tains singular and plural versions of the word ‘curve’. Such
groups, once established, could potentially be useful for other
applications, such as training a different model on the same
corpus.

1183



Since many groups in gLDA contain repetitions of the
same word (Figures 1, 2), it was interesting to test a variant of
LDA in which all instances of the same word were restricted
to belong to the same topic. However, this restricted LDA
performed very poorly in practice (much poorer than LDA).
Examples of topics learned by restricted LDA are shown in
Figure 8. The conclusion is that naively grouping all in-
stances of the same word together does not improve perfor-
mance.

4.2 AZP and gAZP

The performance of AZP was evaluated using the joint prob-
ability of all pixels Y and all cluster assignments C in the im-
age, log p(Y, C). The algorithms were tested on the dataset of
images of egrets used in [Andreetto et al., 2007], as well as
on several personal photographs (mostly of landscapes). The
improvement in performance of gAZP over AZP is defined
in percent relative to the difference between initial and final
log p(Y, C) of AZP. On average, the performance improve-
ment was 4.6%.

4.3 BiLDA and gBiLDA

The MNIST dataset of handwritten digits [LeCun et al., 1998]

was used for the experiments. This dataset contains binary
images of size 28 × 28 pixels. Some examples are shown
in Figure 10(a). Each image corresponded to a customer in
the BiLDA model, and each pixel corresponded to a product.
Since the images are binary,R = 2 ratings were used. In each
image, 50% of the pixels (selected at random) were observed,
and the remaining 50% created a hold-out set. The BiLDA
model with 100 customer, or image, topics and 100 product,
or pixel, topics was fitted to the data by running Gibbs sam-
pling for 1000 iterations. The gBiLDA model with the same
parameters as BiLDA was fitted to the same data.

We visualized the image topics learned by the two models
as follows. For every image topic zc, a synthetic image of
size 28× 28 pixels was generated. For each pixel j, the prob-
ability of that pixel being white under zc is displayed. This
probability is computed as

∑

zp

πp
j [z

p] ·Mult(1|φzc,zp). (7)

Several image topics for BiLDA are shown in Figure 9(a),
and the image topics for gBiLDA are shown in Figure 9(b).
As can be seen, each image topic represents a particular style
of a digit. For example, several styles of the digit ‘0’, with
varying aspect ratios and slants, are observed.

Several pixel topics learned by the two models are dis-
played in Figures 9(c), 9(d). For every pixel topic zp, a syn-
thetic image of size 28 × 28 pixels was generated. For each
pixel j, the probability of this pixel being assigned to topic
zp is shown. This probability is given by πp

j [z
p], the zp’th

component of πp
j . Referring to eq. (7), we may observe that

to form a single image topic, the pixel topics are combined
with weights given by Mult(1|φzc,zp). The pixel topics thus
represent strokes, which are subsequently combined to obtain
complete characters. Several pixel topics represent the black
border around the image, where there are rarely any white

(a) BiLDA image topics (b) gBiLDA image topics

(c) BiLDA pixel topics (d) gBiLDA pixel topics

Figure 9: Several image and pixel topics learned by BiLDA
and gBiLDA. This figure is best viewed on-screen. See text
for details.

pixels. As can be seen, the gBiLDA strokes are more con-
centrated, compared to BiLDA’s fuzzier strokes (this figure is
best viewed on-screen).

The joint probability of all ratings R and all topic assign-
ments Z , log p(R,Z), was recorded every 20 iterations and
used as a quantitative performance estimate (cf. [Wallach et
al., 2009]). For BiLDA, log p(R,Z) after initialization was
−1.71×107, and converged to−1.97×106 after sampling for
1000 iterations. For gBiLDA, the performance converged to
−1.67×106 (note that the values are negative and that higher
numbers represent better performance).

As an additional performance measure we attempted to
predict the missing pixel values and in this manner to recon-
struct the images. For a pixel j in image i, the probability that
this pixel is white was computed as

∑

zc

∑

zp

πc
i [z

c] · πp
j [z

p] ·Mult(1|φzc,zp). (8)

The reconstructions of several images obtained by BiLDA
and gBiLDA are shown in Figures 10(b), 10(c). As can be
seen, gBiLDA reconstruction quality is significantly better.

5 Discussion

We have presented a method for variable grouping that signif-
icantly improves topic model performance. The method was
illustrated on three topic models and several text and image
datasets.

An interesting problem for future research is introducing
auxiliary similarity measures for individual words (e. g. edit
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(a) Original images (b) BiLDA reconstructions (c) gBiLDA reconstructions

Figure 10: Left: several example images from the MNIST dataset. Middle: reconstruction of these images by BiLDA. Right:
reconstruction of the same images by gBiLDA. As can be seen, gBiLDA reconstruction is much closer to the original.

distance for text). The framework provided by the grouping
transform allows introducing such auxiliary information eas-
ily, by simply modifying the prior on the group variables. An-
other direction for future research is applying variable group-
ing to a broader class of graphical models.
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