
Learning Decision Rules from Data Streams

João Gama1,2 and Petr Kosina1,3

1 LIAAD - INESC Porto L.A., Portugal
2 Faculty of Economics, University of Porto, Portugal

3 Fac. of Informatics, Masaryk University, Brno
jgama@fep.up.pt, petr.kosina@inescporto.pt

Abstract

Decision rules, which can provide good inter-
pretability and flexibility for data mining tasks,
have received very little attention in the stream
mining community so far. In this work we intro-
duce a new algorithm to learn rule sets, designed
for open-ended data streams. The proposed algo-
rithm is able to continuously learn compact ordered
and unordered rule sets. The experimental evalua-
tion shows competitive results in comparison with
VFDT and C4.5rules.

Keywords: Data Streams, Rule Learning

1 Motivation

Large decision trees are difficult to understand because each
node appears in a specific context established by the out-
comes of tests at the antecedent nodes. The work of Rivest
(1987) presents a new representation, decision lists, that gen-
eralizes decision trees. The advantage of this representation
is modularity and consequently interpretability: each rule is
independent of the others, and can be interpreted in isolation
of the others.

Rule sets take advantage of not being hierarchically struc-
tured, so concept descriptions can be updated or removed
when becoming out–of–date without hardly affecting the
learning efficiency. A decision rule is a logic predicate of
the form IF antecedent THEN label. The antecedent is a con-
junction of conditions of the form Attribute ⊗ Values,
and ⊗ is a operator that states a relation between a particular
attribute and values of its domain. Contrary to partitions ob-
tained with decision tree based approaches, the regions given
by decision rules do not model the whole space. Thus, new
test examples may not be covered by any rule.

2 Related Work

A widely used strategy consists of building decision lists from
decision trees, as it is done in Quinlan (1993). In any decision
tree when a case reaches a leaf, the conditions that must be
satisfied appear along the path from the root to the leaf. So,
any tree can be easily transformed into a collection of rules.
Each rule corresponds to the path from the root to a leaf, and
there are as many rules as leaves. This process generates a set

of rules with the same complexity as the decision tree. How-
ever, it has been shown that the antecedents of individual rules
may contain irrelevant conditions. C4.5rules (Quinlan, 1993)
uses an optimization procedure to simplify conditions. The
optimization is done in two phases. First, each rule is gen-
eralized by deleting conditions that do not seem to be help-
ful in discriminating the classes. A greedy search method is
used. At each step the rule is evaluated as if one condition was
dropped. The condition that produces the lowest increase of
the pessimistic estimate of the error rate of the rule is elimi-
nated. The pessimistic error rate is estimated similarly to the
process discussed in the pruning phase of C4.5. After gener-
alizing individual rules some of them may become identical
to others, and so the duplicates are removed. Also, some of
them may have no conditional part. They are also removed.
In the second phase, all rules are grouped by the predicted
class. For each class, the set of rules is simplified by remov-
ing rules whose removal does not diminish the accuracy of the
complete set. Empirical studies (Quinlan, 1993) have shown
that the set of rules is both simpler and more accurate than
the initial tree. Frank and Witten (1998) present a method for
generating rules from decision trees without using global op-
timization. The basic idea is to generate a decision tree in a
breadth-first order, select the best rule, remove the examples
covered by the rule and iteratively induce further rules for the
remaining instances.

Several algorithms appear in literature for building de-
cision lists (Rivest, 1987; Clark and Niblett, 1989; Cohen,
1995; Domingos, 1996; Weiss and Indurkhya, 1998). As
pointed out by Wang et al. (2003), a drawback of decision
trees is that even a slight drift of the target function may
trigger several changes in the model and severely compro-
mise learning efficiency. On the other hand, ensemble meth-
ods avoid expensive revisions by weighting the members, but
may run the risk of building unnecessary learners when vir-
tual drifts are present in data.

Fundamental incremental rule learners include STAGGER
(Schlimmer and Granger, 1986), the first system designed
expressly for coping with concept drift, the FLORA family
of algorithms (Widmer and Kubat, 1996) with FLORA3 be-
ing the first system able to deal with recurring contexts, and
the AQ-PM family (Maloof and Michalski, 2004). The most
representative algorithm is the AQ11-PM system (Kolter
and Maloof, 2003; Maloof and Michalski, 2004). It selects

1255

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence



positive examples from the boundaries of its rules (hyper–
rectangles) and stores them in memory. When new examples
arrive, AQ11-PM combines them with those held in memory,
applies the AQ11 algorithm to modify the current set of rules,
and selects new positive examples from the corners, edges, or
surfaces of such hyper–rectangles (extreme examples). Since
pure incremental rule learners store in memory every train-
ing example, many of them have not still adapted to a data
streams environment, especially those featuring numerical at-
tributes.

Decision Rules from Data Streams. At our best knowl-
edge, the work of Ferrer, Aguilar, and Riquelme (2005) is
the only streaming rule learner published till now. In that
work, the authors present system Facil, a classification sys-
tem based on decision rules that may store up–to–date border
examples to avoid unnecessary revisions when virtual drifts
are present in data. Consistent rules classify new test ex-
amples by covering and inconsistent rules classify them by
distance as the nearest neighbor algorithm. Similarly to AQ-
PM, Facil uses a forgetting mechanism that can be either
explicit or implicit. Explicit forgetting takes places when the
examples are older than a user defined threshold. Implicit
forgetting is performed by removing examples that are no
longer relevant as they do not enforce any concept descrip-
tion boundary. The core of this approach is that rules may be
inconsistent by storing positive and negative examples which
are very near one another (border examples). A rule is said
consistent when does not cover any negative (different label)
example. The aim is to seize border examples up to a thresh-
old is reached. This threshold is given as an user parameter
and sets the minimum purity of a rule. The purity of a rule
is the ratio between the number of positive examples that it
covers and its total number of covered examples, positive and
negative. When the threshold is reached, the examples as-
sociated with the rule are used to generate new positive and
negative consistent rules. A restriction in Facil is that it
requires normalized (between 0 and 1) numerical data.

3 Rule Learning from Data Streams

In this section we present the Very Fast Decision Rules al-
gorithm. VFDR is designed for high-speed data streams. It is
a single pass algorithm, that learns ordered and/or unordered
rules.

The algorithm begin with a empty rule set (RS), and a de-
fault rule {} → L, where L is initialized to ∅. L is a data
structure that contains information used to classify test in-
stances, and the sufficient statistics needed to expand the rule.
Each rule (r) learned is a conjunction of literals, that are con-
ditions based on attribute values, and a Lr. For numerical
attributes, each literal is of the form ati > v, or ati ≤ v
for some feature ati and some constant v. For categorical at-
tributes VFDR produce literals of the form ati = vj where vj
is a value in the domain of ati.

Growing a set of rules. If all the literals are true for a given
example, then the example is said to be covered by the rule.
The labeled examples covered by a rule are used to update

Lr. A rule is expanded with the literal that minimizes the
entropy of the class labels of the examples covered by the
rule. Lr accumulates the sufficient statistics to compute the
entropy of all possible literals. Lr is a data structure that
contains: an integer, that stores the number of examples cov-
ered by the rule; a vector, to compute p(ci), the probability
of observing examples of class ci; a matrix p(ati = vj |ci), to
compute the probability of observing value vj of a nominal
attribute ati, per class; and a btree to compute the probabil-
ity of observing values greater than vj of continuous attribute
ati, p(ati > vj |ci), per class. The information maintained
in Lr is similar to the sufficient statistics in VFDT like al-
gorithms. Gama et al. (2006) presents efficient algorithms
to maintain Lr. The main difference, is that instead of select-
ing the attribute with best information gain considering all the
partitions based on the attribute values, it selects the condition
(ati = vj , ati ≤ vj , or ati > vj) that minimizes the entropy
of the class distribution in the corresponding partition.

The sample size to decide when to expand a rule is given
by Hoeffding bound. It guarantees that with the probability
1 − δ the true mean of a random variable x with a range R
will not differ from the estimated mean after n independent

observations by more than: ε =
√

R2ln(1/δ)
2n . In order to learn

decision rule lists, Hoeffding bound determines the number of
observations after which a rule can be expanded or new rule
can be induced. It is not efficient to check for the sufficient
number of examples with every incoming example, therefore
it is done after only Nmin observations.

The set of rules (RS) is learned in parallel, as described
in Algorithm 1. We consider two cases: learning ordered or
unordered set of rules. In the former, every labeled example
updates statistics of the first rule that covers it. In the latter,
every labeled example updates statistics of all the rules that
covers it. If a labeled example is not covered by any rule, the
default rule is updated.

The expansion of a rule is done with Algorithm 2 that
employs the aforementioned Hoeffding bound. For each at-
tribute Xi, the value of split evaluation function H is com-
puted for each attribute value vj , which was observed in more
than 10% of examples. If the best split hbest is better than not
splitting, i.e. satisfies condition h0 − hbest > ε the rule, is
expanded with condition Xa = vj and class of the rule is
assigned according to the majority class of observations of
Xa = vj .

Classification strategies. Assume that a rule r covers a test
example. The example will be classified using the informa-
tion in Lr of that rule. The simplest strategy uses the distri-
bution of the classes stored in Lr, and classify the example
in the class that maximizes p(ci). This strategy only use the
information about class distributions and does not look for
the attribute-values. It uses only a small part of the avail-
able information, a crude approximation to the distribution
of the examples. In a more informed strategy, a test ex-
ample is classified with the class that maximizes the pos-
teriori probability given by Bayes rule assuming the inde-
pendence of the attributes given the class. There is a sim-
ple motivation for this option. L stores information about

1256



Algorithm 1: VFDR: Rule Learning Algorithm.
input : S: Stream of examples

Nmin: Minimum number of examples
ordered set: boolean flag

output: RS: Set of Decision Rules
begin

Let RS ← {}
Let default rule L ← ∅
foreach example (x, yk) ∈ S do

foreach Rule r ∈ RS do
if r covers the example then

Update sufficient statistics of Rule r
if Number of examples in Lr > Nmin

then
r ← ExpandRule(r)

if ordered set then
BREAK

if none of the rules in RS trigger then
Update sufficient statistics of the empty rule
if Number of examples in L > Nmin then

RS ← RS∪ ExpandRule(default rule)

the distribution of the attributes given the class usually for
hundreds or even thousands of examples, before expanding
the rule and re-initializing the counters. Naive Bayes takes
into account not only the prior distribution of the classes, but
also the conditional probabilities of the attribute-values given
the class. This way, there is a much better exploitation of
the available information in each rule. Given the example
�x = (x1, . . . , xj) and applying Bayes theorem, we obtain:
P (ck|�x) ∝ P (ck)

∏
P (xj |ck).

Using naive Bayes in VFDT like algorithms, is a well-
known technique since it was introduced in Gama et al.
(2003). At our best knowledge, it is the first time that it is
employed in decision rule approach.

The set of rules learned by VFDR can be ordered or un-
ordered. In the former, only the first rule that covers an un-
labeled example is used to classify the example. In the latter,
all rules that trigger are used to classify an example using
weighted vote.

4 Experimental Evaluation

The main goal in this experimental evaluation is to study the
behavior of the proposed algorithm in terms of performance,
model complexity (measured in terms of number of rules) and
learning times. We are interested in studying the following
scenarios:

• How to classify test examples? Does the use of naive
Bayes (NB) improve over majority class classification?

• How to grow the rule set?

– Update only the first rule that covers training ex-
amples. In this case the rule set is ordered, and the

Algorithm 2: ExpandRule: Expanding one Rule.
input : r: One Rule

H: Split evaluation function;
δ: is one minus the desired probability
of choosing the correct attribute;

output: r′: Expanded Rule
begin

Let h0 the entropy of the class distribution at Lr

Compute ε =
√

R2ln(1/δ)
2n (Hoeffding bound)

if (h0 > ε) then
foreach attribute Xi do

Let hij be the H() of the best split based on
attribute Xi and value vj
if hij < hbest and nij > 0.1 ∗ n then

Let hbest ← hij

if (h0 − hbest > ε) then
Extend r with a new condition based on the
best attribute Xa = vj
Release sufficient statistics of Lr

r ← r ∪ {Xa = vj}
return r

corresponding classification strategy uses only the
first rule that covers test examples.

– Update all rules that covers training examples. In
this case the rule set is unordered, and the cor-
responding classification strategy uses a weighted
sum of all rules that covers test examples.

• How does VFDR compares against state-of-the-art
streaming decision trees VFDT? 1

• How does VFDR compares against state-of-the-art
(batch) rule learners C4.5rules? 2

In the experimental section, we evaluate the classifiers
based on error rate, i.e., ratio of misclassified examples to the
number of examples obtained for classification. The error-
rate is estimated by holding out a large test-set. This strat-
egy is appropriate when dealing with stationary streams. It is
also interesting to compare the number if rules induced and
the number of leaves in the decision tree since the branch to
the leaf corresponds to one rule. The structures keeping the
statistics for both are the same; therefore it can indicate lesser
memory demands.

Datasets. The datasets used in our experimental work are:
Disjunctive concept: The class label of the instances from
this dataset is given by the logical expression: (A ∧ B) ∨
(C∧D), where the letters A,B,C,D represent four attributes
with values {0, 1}. The training set contains 40k examples.

1The Hoeffding parameters for approaches in the experiments
are: δ = 1 × 10−6, τ = 0.05 for VFDT with gain ratio as split
evaluation metric, and δ = 1× 10−7 for VFDR using entropy.

2We have not used system Facil (Ferrer et al., 2005) because
it is not public available.

1257



LED: Examples in this dataset represent a digit on a seven-
segment display. Each boolean attribute signals whether the
LED is off or on. Only seven out of 24 are relevant. Class
label reflects the digit displayed by the relevant diodes. There
is 10% of class noise added. SEA: an artificial dataset (Street
and Kim, 2001) commonly used in stream mining tasks that
evaluate time changing qualities of data. It is a two-class
problem, defined by three attributes, where only two are rel-
evant and 10 % of noise. Hyperplane is similar to SEA
dataset in a 10-dimensional space. All the attributes are rele-
vant. Stagger: Instances of this dataset have three categori-
cal attributes with values as follows: size = {small, medium,
large}; color = {red, green, blue}; shape = {square, circular,
triangular}. The concept present in the set used in the exper-
iments is defined as size = small and color = red with 100K
examples and without noise. Waveform: problem with three
classes defined by 21 numerical attributes. The training sets
for LED, Hyperplane and Waveform contain 106 examples.

Classification Strategies. In this subsection, we compare
the classification performance of VFDR using two different
classification strategies. Assume that a rule covers a test ex-
ample. The example might be classified either using the ma-
jority class of the training examples covered by the rule or
using a naive Bayes directly derived from sufficient statis-
tics stored in the rule. In this work, we designate as VFDR
the algorithm that classify examples using the majority class
strategy while VFDRNB designates the version that use naive
Bayes classifiers. VFDRNB explores information about the
distribution of attribute-values per class, P (xi|c). To have ro-
bust estimators of these probabilities, we require a minimum
number of training examples covered by the rule 3.

Figure 1 plots the evolution of the prequential error (Gama
et al., 2009) for the LED and Waveform datasets. The
VFDRNB exhibit much more powerful predicting capabili-
ties than VFDR, especially in case of noisy data, as in LED
dataset. Another observation is that VFDRNB exhibit very
good performance at any-time, a relevant property in stream
mining.

Since the behavior in the rest of the datasets is very similar
to aforementioned cases we can conclude that the use of NB
improves the predictive capabilities and therefore we proceed
to compare and present the results of VFDRNB .

Ordered rules versus unordered rules. Classification
rules offer a variety of different combinations of approaches
for learning and predicting. In this section we focus on two
strategies that we found potentially most interesting. It is a
combination of learning (expanding) only one rule, the rule
that first triggered, with predicting also according to a first hit
strategy (VFDRo). Obviously, for this approach it is necessary
to use ordered rules. The second setting employs unordered
rule set, where all the covering rules learn (expand) and the
weighted sum of their predictions determines the final class
prediction (VFDRu).

3This is a user defined parameter. We have used 50 examples in
the experiments reported here.

(A)

(B)

Figure 1: Prequential error of VFDRMC and VFDRNB in
LED(A), and Waveform(B).

Unordered Ordered
A = 1 ∧B = 1 → 1 1. B = 0 ∧ C = 0 → 0
C = 1 ∧D = 1 → 1 2. A = 1 ∧B = 1 → 1
A = 0 ∧D = 0 → 0 3. D = 0 → 0
B = 0 ∧D = 0 → 0 4. B = 0 → 1

Table 1: Unordered and ordered rule sets in the Disjunctive
data set.

As we observed in the previous section, VFDRNB outper-
forms VFDR, therefore only this version is included in the
following results. Both strategies have almost the same er-
ror rate in the simple nominal datasets, similar results in LED
and SEA (Fig. 2(A)), and larger difference is only in Wave-
form, Fig. 2(B).

Ordered set focuses more on specializing one rule and as
a result it often produces less rules than the other strategy.
Although it is, indeed, a positive indicator it might not come
without a price. Disjunctive can serve as a simple example.
If we compare the two obtained rule sets in Tab. 1, we can
notice the explicitly expressed rules that generates the dataset,
whereas in the case of ordered rules one needs to consider the
previous rules and remaining combinations, which might not
be easy to interpret in more complex sets. Unordered rule
sets are more modular, because they can be interpreted per si,
while ordered rule sets must be interpreted in the context of
previous rules.

Overall, the experimental results point out that unordered
rule sets are more competitive than ordered rule sets in terms
of error rate. In terms of number of rules, unordered rule sets
tend to induce more rules than ordered rule sets.

1258



(A)

(B)

Figure 2: Error-rate curves of VFDRNB with different learn-
ing and prediction strategies in SEA (A), and Waveform (B)
datasets.

VFDRNB vs. VFDTc and C4.5rules. Having selected
the most appropriate settings for VFDRNB , the last series of
tests aim to disclose the differences between VFDRNB and
its most similar rival VFDTc proposed by Gama et al. (2003),
which also exploits NB classifier in the leaves to predict the
class. In the most simple datasets Stagger and Disjunctive
concept there is almost no difference between VFDTc and
VFDRNB , both in terms of in error rate. Both quickly con-
verge towards zero once the rules are learned (tree is grown).
These are nice examples of the benefit of the representation
provided by decision rules, which is much more convenient
than a tree. Only five rules were induced, as opposed to seven
leaves of decision tree in case of Disjunctive concept.

Figure 3(A) depicts the error-rate curves for VFDTc and
VFDRNB in LED dataset. It reveals peaks in the error, es-
pecially during the early phase. They are caused by creation
of new rules (leaves), consequential re-learning of NB and
using the weak early classification abilities of very general
rules. Nevertheless, learning process of this set requires lot
of examples and even after observing all 100K examples the
rules are not sufficient enough to make good prediction with-
out NB, therefore the oscillations remain. In Waveform prob-
lem, Fig. 3(B), both combined classifiers achieve almost the
same accuracy in prequential evaluation.

Table 2 summarizes the results from train and test exper-
iments. C4.5rules failed to run with training sets of 106
examples (in LED, Waveform, and Hyperplane). The results
reported here, corresponds to the maximum training set where
we succeed: 200k. For numeric data sets, C4.5rules
tends to generate very large theories, with excessive learning
times and memory consumption. VFDRNB is very competi-
tive against C4.5rules, using much less resources in terms of
memory and learning times. The number of rules of VFDRo is
as expected smaller than VFDRu in most of the cases with the
exception of LED, which is presented in Table 3. Although
the number of rules is quite large as opposed to VFDTc for

(A)

(B)

Figure 3: Error-rate curves of VFDTc and VFDRNB , both
with NB classifier within each rule (leaf), in LED (A), and
Waveform (B) datasets.

numeric datasets, it could be reduced by carefully setting the
necessary percentage of examples with vij value when com-
puting best split evaluation.

Learning Times. VFDR was implemented in Java within
the KNIME (Adä and Berthold, 2010) data mining tool. For
a fair comparison, we present the ratio of learning times of
the proposed algorithms relative to KNIME implementation
of VFDTc in the last columns of Table 3 for the set of experi-
ments reported here. Values greater than one, means that rules
are slower than VFDTc. We can observe than VFDRo has
learning times of the same order of magnitude than VFDTc,
while VFDRu is always slower than VFDRo. This is expected,
because the number of rules learned by VFDRu increases
faster than in VFDRo.

Bias-Variance Analysis. It is known that batch incremental
algorithms are sensitive to the order of examples. Their bias-
variance profile exhibit high variance. This is not the case of
Hoeffding based algorithms that used to have low variance.
This behavior is confirmed in the figures of the bias-variance
decomposition of the error for VFDRo

NB :

loss bias var
Waveform 19.56 15.85 3.71

Hyperplane 21.32 17.99 3.33

5 Conclusions

In this paper we introduced a new decision rule classifica-
tion approach for streaming data VFDR, which incrementally
learns from incoming examples and expands rules over time.
VFDR is a general purpose decision rule inducer, able to deal
with multi-classes, nominal and continuous attributes. VFDR
induces ordered and unordered rule sets. The experimental
results point out that unordered rule sets, in comparison to or-
dered rule sets, are more competitive in terms of error rate,

1259



Error rate % (variance)
VFDRo VFDRu

NB VFDRo
NB VFDTc C4.5rules

Disjunctive 0 0 0 0 0
Stagger 0 0 0 0 0

SEA 23.7 12.9 13.2 11.9 10.5

LED 26.4 (0.05) 25.6 (12.2) 26.1 (0.04) 26.0 (0.01) 27.1 (0.34)
Hyperplane 29.7 (14.63) 24.2 (16.1) 24.8 (12.7) 23.1 (15.3) 25.74 (15.6)
Waveform 25.0 (1.66) 16.9 (0.21) 18.9 (0.05) 15.74 (0.01) 20.4 (0.18)

Table 2: Comparison of error rate from holdout test set. Results are average of 5 runs with different seeds.

Size (number of rules/leaves) Time (relative to VFDTc)
VFDRu

NB VFDRo
NB VFDTc C4.5r VFDRu

NB VFDRo
NB C4.5rules

Disjunctive 5 5 7 6 1 1 1
Stagger 5 3 4 5 1 1 1

SEA 85 50 36 77 2 2 10
LED 24 52 47 218 2.6 1 2.1× 103

Hyperplane 892 415 273 425 4.4 1.4 0.2× 103

Waveform 758 376 142 143 1.8 0.7 1.5× 105

Table 3: Size of the learning model (measured in number of rules or leaves) and learning times.

and more modular, in terms of interpretability, at the cost of
inducing more rules. Moreover, the naive Bayes classification
strategy used by rules strong improves the any-time character-
istic of the classifier. The experimental evaluation show that
VFDRNB is much more efficient than C4.5rules in terms
of memory and learning times, and is competitive against
VFDT, the state-of-the-art in streaming decision tree learn-
ing. The advantage is a more comprehensible and modular
language to represent generalization, at least for tasks where
understandability is relevant. We are now extending VFDR to
deal with time-changing streams.

Acknowledgements: This work was supported by FCT
(PTDC/EIA-EIA/098355/2008) and Masaryk University.

References

Adä, I. and M. R. Berthold (2010). The new iris data: modu-
lar data generators. In KDD, pp. 413–422.

Clark, P. and T. Niblett (1989). The CN2 induction algorithm.
Machine Learning 3, 261–283.

Cohen, W. (1995). Fast effective rule induction. In Proceed-
ings of the ICML, 115–123. Morgan Kaufmann.

Domingos, P. (1996). Unifying instance-based and rule-based
induction. Machine Learning 24, 141–168.

Ferrer, F., J. Aguilar, and J. Riquelme (2005). Incremen-
tal rule learning and border examples selection from nu-
merical data streams. Journal of Universal Computer Sci-
ence 11(8), 1426–1439.

Frank, E. and I. H. Witten (1998). Generating accurate rule
sets without global optimization. In Proceedings of ICML,
pp. 144–151. Morgan Kaufmann.

Gama, J., R. Fernandes, and R. Rocha (2006). Decision trees
for mining data streams. Intelligent Data Analysis 10(1),
23–46.

Gama, J., R. Rocha, and P. Medas (2003). Accurate decision
trees for mining high-speed data streams. In Proceedings
of KDD, pp. 523–528. ACM Press.

Gama, J., R. Sebastião, and P. P. Rodrigues (2009). Issues in
evaluation of stream learning algorithms. In Proceedings
of KDD, pp. 329–338.

Kolter, J. Z. and M. A. Maloof (2003). Dynamic weighted
majority: A new ensemble method for tracking concept
drift. In Proceedings of ICDM, pp. 123–130. IEEE Com-
puter Society.

Maloof, M. and R. Michalski (2004). Incremental learning
with partial instance memory. Artificial Intelligence 154,
95–126.

Quinlan, R. (1993). C4.5: Programs for Machine Learning.
Morgan Kaufmann Publishers, Inc. San Mateo, CA.

Rivest, R. (1987). Learning Decision Lists. Machine Learn-
ing 2, 229–246.

Schlimmer, J. C. and R. H. Granger (1986). Incremental
learning from noisy data. Machine Learning 1, 317–354.

Street, W. N. and Y. Kim (2001). A streaming ensemble al-
gorithm SEA for large-scale classification. In Proceedings
KDD, pp. 377–382. ACM Press.

Wang, H., W. Fan, P. S. Yu, and J. Han (2003). Mining
concept-drifting data streams using ensemble classifiers. In
Proceedings of KDD, pp. 226–235. ACM Press.

Weiss, S. and N. Indurkhya (1998). Predictive Data Mining,
a practical Guide. Morgan Kaufmann Publishers.

Widmer, G. and M. Kubat (1996). Learning in the presence of
concept drift and hidden contexts. Machine Learning 23,
69–101.

1260




