Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence

Extracting Temporal Patterns from Interval-Based Sequences

Thomas Guyet and René Quiniou
AGROCAMPUS-OUEST
65 rue de Saint-Brieuc, CS 84215, 35 042 Rennes Cedex, France
thomas.guyet@agrocampus—-ouest,
INRIA, Centre de Rennes - Bretagne Atlantique
Campus de Beaulieu, 35 042 Rennes Cedex, France

rene.quiniou@inria.fr

Abstract

Most of the sequential patterns extraction meth-
ods proposed so far deal with patterns composed
of events linked by temporal relationships based
on simple precedence between instants. In many
real situations, some quantitative information about
event duration or inter-event delay is necessary to
discriminate phenomena. We propose the algo-
rithm QTIPrefixSpan for extracting temporal
patterns composed of events to which temporal in-
tervals describing their position in time and their
duration are associated. It extends algorithm Pre-
fixSpan with a multi-dimensional interval cluster-
ing step for extracting the representative temporal
intervals associated to events in patterns. Experi-
ments on simulated data show that our algorithm
is efficient for extracting precise patterns even in
noisy contexts and that it improves the perfor-
mance of a former algorithm which used a cluster-
ing method based on the EM algorithm.

1 Introduction

In many application domains data mining methods are used
to extract sequential patterns from data (e.g. medicine, agron-
omy, e-commerce, industry, man-machine interaction). Clas-
sical sequential data mining aims mainly at extracting pat-
terns where the temporal dimension lies on a simple ordering
of items (occurrences in time of items in patterns). However,
such an ordering is often insufficient: a quantitative char-
acterization of event durations or delays between event oc-
currences is needed to refine extracted patterns and produce
knowledge enabling the distinction between specific behav-
iors. For example, transactions separated by a day, a month
or a year are not similarly correlated.

Our goal is to propose a method for mining temporal se-
quences made of events, stamped with date and duration,
and for extracting frequent sequential patterns with tempo-
ral intervals characterizing event duration and relative event
position in time. In this paper, we present an efficient al-
gorithm, QTIPrefixSpan, intertwining sequential pattern
extraction and temporal interval characterization by cluster-
ing. We compare its computation time with existing algo-
rithms. We also compare the efficiency and quality of several

1306

distance measures from symbolic data analysis for extracting
the representative temporal features of a sequence.

2 Related work

Many efficient methods have been proposed for extracting in-
teresting sequences from large sequential databases. Most
of them deal with instantaneous events represented as points
on the time axis and linked by symbolic temporal relations
based on simple precedence [Srikant and Agrawal, 1996;
Pei et al., 2001; Zaki, 2001]. Sometimes, global constraints,
on temporal extents or gaps, can be specified to prune the pat-
tern search space [Lee and De Raedt, 2004; Pei et al., 2007,
Masseglia et al., 2009].

To cope with events having a non null duration, one must
enrich the representation of patterns with temporal relations,
either symbolic or numeric, on intervals. Symbolic temporal
relations, such as Allen’s temporal relations [Allen, 1983],
have been widely used to extend “classical” algorithms. Kam
and Fu [Kam and Fu, 2000] or Hoppner [Hoppner, 2002]
extends GSP [Srikant and Agrawal, 1996] to take into ac-
count symbolic temporal relations. The main difference lies
in the candidate pattern generation phase which handles some
Allen’s temporal relations among interval-based events. Wu
and Chen [Wu and Chen, 2007] pointed out that the major
drawback of these algorithms is the ambiguity of the rep-
resentation of pattern temporal relations and proposed algo-
rithm TPrefixSpan to fix it.

Concerning quantitative temporal pattern extraction, sev-
eral methods have been proposed for processing point-based
time stamped event sequences. Most of these methods extract
temporal patterns whose constraints correspond to the enve-
lope, the smallest temporal interval, covering all their instan-
taneous occurrences. In [Dousson and Duong, 1999], Dous-
son and Duong have proposed to extract temporal patterns
called chronicles — graph patterns constrained by quantitative
temporal constraints on the delay between point-based events
— from time stamped events. The methods in [Giannotti er
al., 2006] and [Yoshida et al., 2000] extract delta-patterns,

i.e. rules having the form a M> b meaning that the delay

between a and b lies between ¢; and ¢,,. Characterizing sets of
instants with intervals enables the anti-monotonicity property
over the pattern lattice. So, this property can be used to prune
candidate patterns as early as possible.

However, these methods cannot extract quantitative tem-
poral patterns from interval-based time stamped event se-
quences. QTemplIntMiner [Guyet and Quiniou, 2008] and
QTPSpan [Nakagaito et al., 2009] solve this problem by con-
sidering the quantitative duration of events during temporal
pattern mining. QTempIntMiner represents temporal interval
sequences by hyper-cubes and extends GSP with a temporal
sequence clustering algorithm for extracting typical tempo-
ral intervals. But QTempIntMiner uses the EM algorithm for
clustering which makes it inefficient. QTPSpan is based on
QFIMiner [Washio et al., 2007]. This algorithm mines sets
of items with attached interval-based quantitative attributes.
Extracted patterns are itemsets with associated quantitative
constraints elaborated by clustering the quantitative attribute
values linked to the itemsets that support the pattern.

3 Notations

In this section we detail the formal notations and definitions
used in the paper for representing the temporal pattern extrac-
tion problem introduced above.

3.1 Temporal sequence

Definition 1 (Temporal sequence). A temporal sequence S
is an ordered set of events, where an event A = (A, [l,u])
is composed of a symbol A and a non empty interval [l,u],
where l,u € R,l < u are dates.

S = {(si,[li, wi]) }ien, » such that Vi, j € N, 0 <i < j <mn,

li<lj\/(li:lj/\(8i<8j\/($i:Sj/\’u7;<Uj)))

The size of a sequence S is the number of events in S:
|S| = n. @ denotes the concatenation operation on temporal
sequences.

l; (resp. u;) is the beginning (resp. end) occurrence date of
the interval-based event in the temporal sequence. Events in
a sequence are ordered by beginning dates and then by lex-
icographic order. In contrast to a representation using delay
between events, the definition of the values [; et u; requires a
reference instant for each temporal sequence.

Definition 2 (Symbolic signature). The symbolic signature
of a temporal sequence S = {(si, [li, wi]) };cy, , noted S, is
the sequence of its symbols: S = {Si}ieNn' The order of sym-
bols in the symbolic sequence is the same as in the temporal
sequence.

Definition 3 (Multi-dimensional interval). A multi-
dimensional interval of dimension n is a tuple of n intervals
I = ([liywi])en, -
Definition 4 (Projection over a symbolic signature, 7). The
projection of a temporal sequence S = {(s;, [lj,u;])};cn,
over a symbolic pattern signature M = {m; };cn, of size k
is a multi-dimensional interval of dimension k.

Tm(S) = ([lis us))ien, with (ji)ien, € Ny, such that
Vi7 i < ka ji < ji+l

If M is not a subsequence of S then mwa(S) = 0.

7(8) denotes the projection of the whole sequence over its
proper signature: 75(S) = ([li, wi);cn, -

Example 1. Let £ be the sequence
{(4,[1,2]), (C, [1.5, 4]) (B,13,4]),(C,[5,6])} depicted
in Figure 1. Then €& = { ,C B, } miaBy(€) =
([1,2],[3,4]) and =(€) = ([1,2], [1.5,4], [3,4], [5, 6]).
_Ci [C]
}0 ‘1A 2 }3 }4 }5 }6 }7 -

Figure 1: The interval sequence £.

Definition 5 (Temporal sequence dissimilarity). Let S and
82 be two temporal sequences. d(S',S?), the dissimilarity
between S' and S?, is defined by:

d(Sl SZ) _ oo if 8T # 82, (different symbolic signature)
T 8 (m(SY, 7(S?)

where § is a distance measure on multi-dimensional intervals
(cf. Section 4.3).

3.2 Frequent temporal pattern extraction

Definition 6 (Temporal pattern). A temporal pattern is a
representative temporal sequence of a set of temporal se-
quences (instances of the pattern).

As [Giannotti ef al., 2006], our pattern definition relies on
the notion of sub-sequence representativity. A temporal pat-
tern statistically represents a set of temporal sequences, but
the notion of representativity is not given explicitly. This
should be distinguished from patterns such as chronicles or
delta-patterns whose temporal information is built from the
temporal enveloppe of covered events in the sequence.

Exact matching of temporal intervals is too constraining
to extract interesting patterns from a sequence. e-covering
relaxes the matching operation between intervals.

Definition 7 (Temporal pattern e-covering). A temporal
pattern P = {(p;, [l ,u}])},cn €-covers a sequence S =
{(ss, I3, uz])}zeN , noted S <. P, if and only if there exists
a projection of S over P such that its dissimilarity with P is
less than e:

dJ C N,

1(PA(os [5,05)),c)) <

Example 2. Let consider the three patterns p; =
{(C,[1,2]), (A, 12,4}, p2 = {(4,1,2]), (C, [2,4])} and
ps = {(4,[1, 2]) (C,[4,5)}). Let ¢ = 1and 6 be the
interval distance CityBlock (sum of absolute difference val-
ues between corresponding interval bounds, cf. Section 4.3).
p1 does not e-cover £ (cf. Example 1) because £ does not
contain the sub-sequence {C,A}. py e-covers £ because
0 (([1,2],12,4)), ([1,2],]1.5,4])) = 0.5 < €. p3 does not e-
cover £ becauses the dissimilarity of each occurrence of ps in
& is greater than e: 6 (([1,2],[4,5]), ([1,2],[1.5,4])) =3.5
and & (([1,2], [4,5)), ([1,2].[5,6])) = 2

Definition 8 (Frequent temporal pattern extraction).
Given a frequency threshold fp.n, € [0,1], a maximal dis-
similarity ¢ € R™ and a database of temporal sequences D,

1307

the frequent temporal pattern extraction consists in building
temporal patterns (P;) such that the frequency of sequences
that e-cover a temporal pattern P; is greater than f,i,.

A temporal pattern is representative of a set of e-covered
temporal sequences. € represents the acceptable temporal dis-
tance between a sequence and its representative. This is an
additional parameter compared to the classical setting of se-
quential pattern mining.

4 Algorithm presentation

In this section we will detail algorithm QTIPrefixSpan
for extracting interval-based sequential patterns. First of all,
we introduce a data structure used by this algorithm.

4.1 Data structure

In frequent itemset or sequence mining, the computation
of the support or frequency is very time consuming. To
avoid systematic scans of the sequence database [Srikant and
Agrawal, 1996] have proposed to use a data structure that as-
sociates a pattern to the set of its supporting sequences. We
have adapted this data structure for counting the sequences
which support a temporal pattern m.

For every m, £L(m) = {stid;} gathers the set of its rep-
resentative instances. Each element of £(m) is a 3-tuple
stid = (tid, pos,is) where tid is the identifier of a tempo-
ral sequence of D, is is a representative instance of pattern
m, ie. a sub-sequence of the sequence tid e-covered by m
(s << m), and pos is the position of the last symbol of ¢s in
sequence tid.

L(m) represents the sequence database projected on m in
the sense of PrefixSpan, i.e. the set of suffixes (located by
pos) of every sequence tid having an instance of m as prefix.

Example 3. Let ¢ = 4 and tid = 1 be the identifier of £
in D). The temporal pattern ps (cf. Example 2) e-covers two
sub-sequences of € (cf. Example 1):

L(ps) = {(1, 2, {(A,[1,2]), (C,[1.5,4])}),
(1, 4, {(A,[1,2)), (G, [5,6]) 1)}

4.2 Algorithm

QTIPrefixSpan (see Algorithm 1) is a recursive depth-
first algorithm based on PrefixSpan [Pei et al., 2001]. It ex-
plores the extensions of a temporal pattern p, given as input.
It makes successive projections of the sequence database to
reduce the complexity of computing the support and of clus-
tering the extended temporal patterns.

In the first step (lines 3-5), the algorithm extends the pre-
fix p with one symbol e from S; (S is built in a preliminary
step). Next, the algorithm performs the projection of the se-
quence database on the pattern np = p @ e (lines 6-10). As
the list £(np) represents the projected database (cf: Section
4.1), this step just builds the stid list associated to np. At this
stage, the temporal dimension of e is ignored.

In the second step (lines 11-18), the function
TemporalPatternConstruction is called to build a
list of temporal patterns { M7} having the same signature as
np and whose temporal features are computed by classifying
multi-dimensional intervals (cf. Section 4.3). In addition,

1308

Algorithm 1: QTIPrefixSpan

input : D: temporal sequence database, fnin: frequency
threshold, e: pattern similarity threshold, p : temporal
pattern

output: F'P: set of frequent temporal patterns

Construction of Sy // Frequent symbols in D
foreach e € S; do
//Extension of temporal pattern p
np=pde
Lnp) =0
//Projection over the sequence database
foreach stid € L(p) do
s = D(stid.tid)
foreach i: i < stid.pos + 1A\ s; =edo
| L(np) = L(np) U (stid.tid, i, stid.is @ s;)
//Construction of temporal constraints and recursion
{Mr} =TemporalPatternConstruction(np)
foreach ¢ € {Mr} do
if ¢ ¢ already_explored then
already_explored = already_explored U q
if |£(q)| > fmin * |D| then
FEaxtentedPatterns =
QTIPrefixSpan(D, fmin,€q)
FP = FPU ExtentedPatterns

this function updates the data structure for each built pattern.
Next, the non-frequent temporal patterns are pruned (line
16). Each frequent pattern ¢ € M7 that has not been
already explored is added to the list of explored patterns and
QTIPrefixSpan is called recursively to extend g.

4.3 Multi-dimensional interval clustering

The algorithm TemporalPatternConstruction
(cf. Algorithm 2) is used in algorithm QTIPrefixSpan
(line 12) for building the representative temporal patterns of
a set of temporal sub-sequences having the same symbolic
signature. The method consists in 1) clustering the set of
multi-dimensional intervals resulting from the projection of
stid.is contained in L(p), 2) building, for each obtained
cluster, a new pattern ¢ having the same symbolic signature
as p and the characteristic temporal intervals of the multi-
dimensional intervals in the cluster, 3) building £(q) from
L(p).

For the clustering, line 5, we choose to evaluate two
methods: KMeans and Affinity Propagation (AP) [Frey and
Dueck, 2007] which we have adapted to the clustering of
multi-dimensional intervals. For this purpose, we have se-
lected two similarity measures for clustering objects, here
n-dimensional intervals: the Haussdorf distance, noted dp,
the CityBlock distance, noted dop. Other distance mea-
sures between multi-dimensional intervals are given in [Ir-
pino and Verde, 2008]. Given I = (I}, ul])xen, and J =

(1, ui)) ke, » we have:

dH(Iv‘]): ZZ:l
dep(I,J) = Y,y

J
k

)

max (|l£ - l;g|, \ui —u

0 — L]+ Jup, — |

Algorithm 2: TemporalPatternConstruction

input : p: temporal pattern, £(p): p sub-pattern instances
output: { Mr}: set of temporal pattern with symbolic signature
p temporally representative of instances in £(p)

//Construction of the set of temporal intervals to be clustered
Ex=10
foreach stid € L(p) do

| Ex = ExUn(stid.is)

C = clustering(Ex)
//Construction of temporal patterns
{Mr} =10

foreach C' € C do

)

L(q) = {stid € L(p), d(stid.is,q) < €}
{Mr}={Mr}Ugq

—

In line 10, the list of instances of the temporal pattern q is
updated. As with projected databases in PrefixSpan, we avoid
an exhaustive scan of the sequence database by searching the
instances of the temporal pattern ¢ starting only from its sub-
patterns instances. As a precondition of the algorithm, we
notice that £(p) contains the instances of sub-patterns of p:
p(1..]p| — 1). Thus we build £(q) from this stid list.

To find the optimal number of clusters for the interval dis-
tribution, we test different values of the parameter k for K-
Means or s for AP, and choose the most adequate to the data
using the Bayesian Information Criterion (BIC).

5 Experiments

In the following experiments, we evaluate the computing per-
formances of the proposed algorithm and assess the quality of
extracted patterns on simulated data. We compare the results
with those of QTempIntMiner [Guyet and Quiniou, 2008] and
of a GSP-like algorithm, so called QTIAPriori. This last
algorithm uses the same principles as QTIPrefixSpan (in-
tertwining sequence mining and interval clustering) but uses
an APriori-based breadth-first exploration of the sequence lat-
tice. The algorithms have been implemented in Matlab!.

5.1 Simulated data generation

We have implemented a temporal sequence generator for pro-
ducing datasets that can be tuned with respect to the particular
features of patterns to be searched (particularly their numeri-
cal temporal features) and of the sequence database (number
of sequences, noise level). The principle used to generate
a temporal sequence database consists in building sequences
from temporal pattern prototypes and, next, in adding ran-
dom sequences (noise) in the sequence database at a rate P,
0<rP<1.

A temporal pattern prototype is a set of 5-tuples
{(Es, o, 0n,, s 0d;) bien, Where Ej is a symbol, pup,, a,

'The experiments were done on a PC with a Xeon processor
(only one core was used), with 8Go of RAM. The source code of
the algorithms and of the data generator can be downloaded from
http://www.irisa.fr/dream/QTempIntMiner

1309

(resp. o0p,,04;) are the means (resp. standard deviation) of
the beginning date and of the duration of F;. A prototype
specifies a temporal pattern ({(E;, [1,, o, + pa;]) }ien,) tO
be discovered. The instances of such a pattern are generated
from a gaussian distribution of dates (resp. durations) cen-
tered on py, (resp. pg) with a standard deviation oy, (resp. og).
More the standard deviation is large, more the temporal vari-
ations are important and more the extraction of the original
pattern will be difficult. To simplify the result presentation,
we fix a unique parameter tN € RT for quantifying all the
standard deviation values. This parameter quantifies the tem-
poral noise of a dataset.

5.2 Results

All the curves presented in the sequel were obtained by aver-
aging the results on several (from 5 to 10) different datasets
generated from the same parameters. Where not stated oth-
erwise, the following default parameter values were used:
|D| =100,7P = 0.4,tN = 0.2, finin = 0.1and e = co. We
used the Hausdorff distance and looked for the temporal pat-
tern {(4,[2,3]),(B,[5,5.5)), (C,[8,10]), (B, [12,12.5])} .

Figures 2-(a) and 2-(b) compare the computation
time of algorithms QTempIntMiner, QTIAPriori and
QTIPrefixSpan with respect to the size of the sequence
database, on the one hand, and to the size of searched
patterns, on the other hand. In both case, we can see
that the computation times are exponential. In addi-
tion, QTIAPriori and QTIPrefixSpan are significantly
faster than QTempIntMiner.

More precisely (cf. Figure 2-(c)), QTIPrefixSpan runs
twice as fast as QTIAPriori, whether it is associated to
KMeans or to AP. The KMeans clustering leads to better per-
formances than the AP clustering. QTIAPriori-KMeans
is even faster than QTIPrefixSpan-AP for patterns of
size greater than 4. Figure 2-(d) illustrates the ability of
QTIPrefixSpan-KMeans to cope with complexity. The
computation time rises exponentially with respect to the num-
ber of sequences but the rate is equal to 1.26, so it is quite
close to 1. The mean time for extracting temporal patterns of
size 4 from a database of 100000 sequences, corresponding
to 600000 symbols, is about 15 min.

The quality of patterns extracted by QTIAPriori and
QTIPrefixSpan can be evaluated with respect to several
criteria: i) the presence or absence among the extracted pat-
terns of some pattern that e-covers the prototype; ii) the dis-
similarity between the temporal intervals in the prototype and
in the extracted patterns, i.e. the precision of temporal inter-
vals associated to extracted patterns; iii) the number of ex-
tracted patterns having the same symbolic signature as the
prototype’s, so called “clones?. This last criterion concerns
the results readibility: the lower the number of clones, the
easier the results analysis will be to the user.

The main factors that impact these criteria are the temporal
noise level ¢t N, the dissimilarity threshold e and the minimal
frequency threshold f,;,. These factors are related: if the
data are very noisy then a high € will be needed to insure that

2Our method may extract several frequent patterns with the same
symbolic signature but with discriminative temporal intervals.

(@)
1200

—<— QTemplntMiner
—=— QTIPrefixSpan-KMeans (Hausdorff)

1000

>— QTIAPriori-KMeans (Hausdorff)

Time (s)

4.5 5.5
Patterns size

(b)
a5

—&— QTIPrefixSpan—KMeans (Hausdorff)
QTIPrefixSpan—AP (Hausdorff)

< QTIAPriori—-KMeans (Hausdorff)

>— QTIAPriori—AP (Hausdorff)

40

35

30

25

Time (s)

20

4.5
Patterns size

()

1200

1000

b [—=— QTemplintMiner
—&=— QTIPrefixSpan—KMeans (Hausdorff)

><— QTIAPriori-KMeans (Hausdorff)

Time (s)

400

500 600 700
Number of examples

(d)

—<— QTIPrefixSpan—KMeans (Hausdorff)

0.5 1.5 2 25
Number of examples Y105

Figure 2: Mean computing time (in seconds) with respect to
the size of searched temporal patterns (a and b) and to the
number of sequences (c and d).

noisy instances are classified in the same cluster. But if € is
too high (with respect to tN) then the clusters will be larger
and pruning using f,;, Will be less efficient and this will
affect the overall algorithm performance.

For sufficiently high values of € and low values of f,,,;, the
three algorithms can extract the prototype pattern from the se-

1310

quence dataset. Moreover, when we add a second prototype
having the same symbolic signature but different temporal in-
tervals the two patterns are still correctly extracted. In the
latter case, GSP or PrefixSpan can extract only one pattern.

Figure 3 illustrates the quality of patterns that are extracted
by the algorithms from simulated data that contains only one
prototype among random sequences. Figure 3-(a) gives, for
QTIPrefixSpan, the number of patterns F'P (line 18 of al-
gorithm 1) and the number of prototype clones, with respect
to e. When € is small (e < .1), few patterns having the size
of the prototype are generated: the expected similarity of pat-
tern instances imposes a too strong constraint with respect to
noise. For .1 < e < .8, the number of generated patterns
grows very much. Due to the strong similarity that is still
required by the value of ¢, the temporal clustering induces
many clusters but with a number of instances that remains
below fin. For .8 < € < 1.7, several frequent patterns are
extracted. For 1.7 < ¢, the number of extracted frequent pat-
terns stabilizes to 1: e is sufficiently large for considering that
the dissimilarity between temporal intervals is quite reason-
able.

We can see on Figure 3-(b) that even with noise, the best
temporal pattern extracted by the three algorithms is close
to the searched prototype. A Hausdorff distance equal to
1 is very low for a temporal pattern where temporal in-
tervals may last 12 time units. For QTIAPriori and
QTIPrefixSpan, when the temporal noise moves up, the
precision logically moves down. We can see also, that the
choice of the clustering method has more impact on the qual-
ity of results than the choice of the search method (GSP or
PrefixSpan). KMeans can cope with harder temporal noise
than AP: the mean dissimilarity obtained with KMeans is less
than that obtained with AP. To finish, QTempIntMiner is as
precise, even more precise, than the two other algorithms for
big patterns: the quality induced by the clustering based on
EM is better than that of KMeans or AP.

6 Conclusion

We have presented the problem of quantitative temporal
pattern extraction from temporal interval sequences where
events are qualified by a type and a numerical date and dura-
tion, i.e. associated with numerical temporal intervals. Such
patterns are particularly expressive: they can discriminate in-
put sequences not only on the succession of events but also on
their relative position in time and on their respective duration.
We have proposed the algorithm QTIPrefixSpan for ex-
tracting temporal patterns that contains quantitative temporal
information from temporal interval sequences. The compar-
ison with QTempIntMiner shows that our algorithm is more
efficient in runtime and can extract more precise temporal pat-
terns on simulated datasets.

The improvements brought to interval-based sequence
mining enable an efficient computation of large datasets. Ap-
plications, such as the characterization of cardiac diseases
from electrocardiograms or faults in monitored industrial
plants from time series, are investigated now to illustrate the
practical interest of mining such temporal patterns. The clus-
tering step is the major source of complexity of the proposed

(a)

—=— Nb of clones e—covered by prototypel
—<— Total nb of patterns (various sizes)

Nb of extracted patterns
-——

T 2 3 4 5 6 7 8 © 10 11 12 18 14 15 16 17 18 1

(b)

—e— QTIPrefixSpan—KMeans (Hausdorff)
H —=—QTIPrefixSpan—AP (Hausdorff)
—<— QTIAPriori-KMeans (Hausdorff)

l| —— QTIAPriori—AP (Hausdorff)

—+— QTemplIntMiner

Dissimilarity

011 O,‘15 0.2 0.25 013
tN (temporal noise)

Figure 3: (a) mean number of extracted patterns with respect
to € for QTIPrefixSpan-KMeans. (b) mean dissimilarity
between the best extracted pattern and the prototype with re-

spect to the temporal noise.

algorithms. We are investigating different ways to improve its
efficiency such as defining heuristics to choose the number of
clusters a priori or introducing incrementality into clustering
methods.

References

[Allen, 1983] J. Allen. Maintaining knowledge about tem-
poral intervals. Communications of the ACM, 26(11):832—
843, 1983.

[Dousson and Duong, 1999] C. Dousson and T.V. Duong.
Discovering Chronicles with Numerical Time Constraints
from Alarm Logs for Monitoring Dynamic Systems. In
Proceedings of the 16th International Joint Conference on
Artificial Intelligence, pages 620-626, 1999.

[Frey and Dueck, 2007] B. Frey and D. Dueck. Cluster-
ing by passing messages between data points. Science,
315:972-976, 2007.

[Giannotti et al., 2006] F. Giannotti, M. Nanni, D. Pedreschi,
and F. Pinelli. Mining sequences with temporal annota-
tions. In Proceedings of the Symposium on Applied Com-
puting, pages 593-597, 2006.

[Guyet and Quiniou, 2008] T. Guyet and R. Quiniou. Min-
ing temporal patterns with quantitative intervals. In Pro-
ceedings of the International Workshop on Mining Com-
plex Data, 2008.

1311

[Hoppner, 2002] F. Hoppner. Learning dependencies in mul-
tivariate time series. In Proceedings of the Workshop on
Knowledge Discovery in (Spatio-)Temporal Data, pages
25-31, 2002.

[Irpino and Verde, 2008] A. Irpino and R. Verde. Dynamic
clustering of interval data using a wasserstein-based dis-
tance. Pattern Recognition Letters, 29:1648-1658, 2008.

[Kam and Fu, 2000] P.-S. Kam and A.W. Fu. Discovering
temporal patterns for interval-based events. In Proceegins
of data Warehousing and Knowledge Discovery (DaWakK),
pages 317-326, 2000.

[Lee and De Raedt, 2004] S. D. Lee and L. De Raedt.
Database support for data mining applications : discover-
ing knowledge with inductive queries, chapter Constraint
based mining of first order sequences in SeqlLog, pages
154-173. 2004.

[Masseglia et al., 2009] F. Masseglia, P. Poncelet, and
M. Teisseire. Efficient mining of sequential patterns with
time constraints: reducing the combinations. Expert Sys-
tems with Applications, 36(2):2677-2690, 2009.

[Nakagaito er al., 2009] F. Nakagaito, T. Ozaki, and
T. Ohkawa. Discovery of quantitative sequential patterns
from event sequences. In Proceedings of the International
Conference on Data Mining Workshops, pages 31-36,
2009.

[Pei et al., 2001] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto,
Q. Chen, U. Dayal, and M.-C. Hsu. PrefixSpan mining
sequential patterns efficiently by prefix projected pattern
growth. In Proceedings of International Conference on
Data Engineering, pages 215-226, 2001.

[Pei er al., 2007] J. Pei, J. Han, and W. Wang. Constraint-
based sequential pattern mining: the pattern-growth
methods. Journal of Intelligent Information Systems,
28(2):133-160, 2007.

[Srikant and Agrawal, 1996] R. Srikant and R. Agrawal.
Mining sequential patterns: Generalizations and perfor-
mance improvements. In Proceedings of the Fifth Inter-
national Conference on Extending Database Technology,
pages 3—17, 1996.

[Washio et al., 2007] T. Washio, K. Nakanishi, and H. Mo-
toda. A classification method based on subspace cluster-
ing and association rules. New Generation Computing,
25:235-245, 2007.

[Wu and Chen, 2007] S.Y. Wu and Y.-L. Chen. Min-
ing nonambiguous temporal patterns for interval-based
events. Transactions on Knowledge and Data Engineer-
ing, 19(6):742-758, 2007.

[Yoshida et al., 2000] M. Yoshida, T. lizuka, H. Shiohara,
and M. Ishiguro. Mining sequential patterns including
time intervals. In Proceedings of the conference on Data

Mining and Knowledge Discovery: theory, tools, and tech-
nology, pages 213-220, 2000.

[Zaki, 2001] M. Zaki. SPADE: An efficient algorithm
for mining frequent sequences. Machine Learning,
42(1/2):31-60, 2001.

