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Abstract

We introduce a new nearest neighbor search al-
gorithm. The algorithm builds a nearest neighbor
graph in an offline phase and when queried with
a new point, performs hill-climbing starting from
a randomly sampled node of the graph. We pro-
vide theoretical guarantees for the accuracy and the
computational complexity and empirically show
the effectiveness of this algorithm.

1 Introduction

Nearest neighbor (NN) search is a fundamental problem in
computer vision, image retrieval, data mining, etc. The prob-
lem can be formulated as

X∗ = argmin
X∈D

ρ(X,Q),

where D = {X1, . . . , Xn} ⊂ R
d is a dataset, Q is a query,

and ρ is a distance measure.
A naive solution to the NN search problem is to compute

the distance from the query to every single point in the dataset
and return the closest one. This approach is called the lin-
ear search method and is guaranteed to find the exact near-
est neighbor. The computational complexity of the linear
search method is O(nd), where n is the size of the dataset and
d is the dimensionality. This complexity can be expensive
for large datasets. The difficulty of finding the exact near-
est neighbor has led to the development of the approximate
nearest neighbor search algorithms [Beis and Lowe, 1997;
Indyk and Motwani, 1998].

In this paper, we propose a graph-based approach for the
approximate NN search problem. We build a k-nearest neigh-
bor (k-NN) graph and perform a greedy search on the graph
to find the closest node to the query.

The rest of the paper is organized as follows. Section 2
briefly reviews the prominent NN search methods and those
that use a k-NN graph or greedy search to perform the NN
search. In Section 3.2, we introduce the Graph Nearest
Neighbor Search algorithm (GNNS) and analyze its perfor-
mance. In Section 4, we experimentally compare the GNNS
algorithm with the KD-tree and LSH methods on a real-world
dataset as well as a synthetically generated dataset.

2 Related works

There are a number of papers that use hill-climbing or k-
NN graphs for nearest neighbor search, but to the best of our
knowledge, using hill-climbing on k-NN graphs is a new idea.

Papadias [2000] assumes that each point (e.g., an image) is
specified as a collection of components (e.g., objects). Each
point has the form of Xi = (V1, . . . , Vm), where each Vj is
an object and can take values from a finite set (e.g., a set of
squares of different sizes). The objective is to find the point
in the dataset that has the closest configuration to the query
Q. Papadias [2000] says Xi and Xj are neighbors if one can
be converted to the other by changing the value of one of its
variables. Then several heuristics to perform hill-climbing on
such a graph are proposed [Papadias, 2000].

Paredes and Chvez [2005] aim at minimizing the number
of distance computations during the nearest neighbor search.
A k-NN graph is built from dataset points and when queried
with a new point, the graph is used to estimate the distance
of all points to the query, using the fact that the shortest path
between two nodes is an upper bound on the distance between
them. Using the upper and lower bound estimates, Paredes
and Chvez [2005] eliminate points that are far away from the
query point and exhaustively search in the remaining dataset.

Lifshits and Zhang [2009] define a visibility graph and then
perform nearest neighbor search by a greedy routing over the
graph. This is a similar approach to our method, with two
differences. First, Lifshits and Zhang [2009] search over the
visibility graph, while we search on the k-NN graph. k-NN
graphs are popular data structures that are used in outlier de-
tection, VLSI design, pattern recognition and many other ap-
plications [Paredes and Chvez, 2005]. The second difference
is that Lifshits and Zhang [2009] make the following strong
assumption about the dataset.
Assumption A1 Sort the points in the dataset according to
their closeness to a point U . Let rU (V ) be the rank of V in
this sorted list. Define R(X,Y ) = max{rX(Y ), rY (X)}.
Then it holds that

R(X,Z) ≤ C(R(X,Y ) +R(Y, Z)),

where C is a constant.
Under Assumption A1, Lifshits and Zhang [2009] prove

that the computational complexity of the construction of
the visibility graph and the nearest neighbor search are
O(poly(C)nlog2n) and O(C4 log2 n), respectively.
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Figure 1: A counterexample to Assumption A1.

Assumption A1 does not hold in general. For instance,
consider the simple 2-dimensional example shown in Fig-
ure 1, where we use the Euclidean distance as the metric. In
this example, we have R(x, y) = 1, R(y, z) = 2, and de-
pending on the number of points on the line between (−2, 0)
and (−3, 0), R(x, z) can be arbitrarily large. Thus, there is
no constant C that satisfies the inequality in Assumption A1,
or it can be arbitrarily large.

In the following two subsections, we briefly explain two
popular methods for approximate nearest neighbor search:
KD-trees and Locality Sensitive Hashing (LSH). Our pro-
posed approximate k-NN method will be compared against
these two methods in the evaluation section.

2.1 Locality Sensitive Hashing (LSH)

LSH [Indyk and Motwani, 1998] uses several hash functions
of the same type to create a hash value for each point of the
dataset. Each function reduces the dimensionality of the data
by projection onto random vectors. The data is then parti-
tioned into bins by a uniform grid. Since the number of bins
is still too high, a second hashing step is performed to obtain a
smaller hash value. At query time, the query point is mapped
using the hash functions and all the datapoints that are in the
same bin as the query point are returned as candidates. The
final nearest neighbors are selected by a linear search through
candidate datapoints.

2.2 KD-tree

A KD-tree [Bentley, 1980; Friedman et al., 1977] partitions
the space by hyperplanes that are perpendicular to the coor-
dinate axes. At the root of the tree a hyperplane orthogo-
nal to one of the dimensions splits the data into two halves
according to some splitting value. Each half is recursively
partitioned into two halves with a hyperplane through a dif-
ferent dimension. Partitioning stops after logn levels so that
the bottom of the tree each leaf node corresponds to one of
the datapoints. The splitting values at each level are stored
in the nodes. The query point is then compared to the split-
ting value at each node while traversing the tree from root to
leaf to find the nearest neighbor. Since the leaf point is not
necessarily the nearest neighbor, to find approximate nearest
neighbors, a backtrack step from the leaf node is performed

and the points that are closer to the query point in the tree are
examined. In our experiments, instead of simple backtrack-
ing, we use Best Bin First (BBF) heuristic [Beis and Lowe,
1997] to perform the search faster. In BBF one maintains a
sorted queue of nodes that have been visited and expands the
bins that are closer to query point first.

Further, we use the randomized KD-tree [Muja and Lowe,
2009], where a set of KD-trees are created and queried instead
of a single tree. In each random KD-tree, the datapoints are
rotated randomly, so that the choice of axes affects the result-
ing points less. At query time, the same rotation is applied to
the query point before searching each tree. The union of the
points returned by all KD-trees is the candidate list. Similar
to LSH, the best nearest neighbors are selected using linear
search in the candidate list.

3 The Graph Nearest Neighbor Search

Algorithm (GNNS)

We build a k-NN graph in an offline phase and when queried
with a new point, we perform hill-climbing starting from a
randomly sampled node of the graph. We explain the con-
struction of k-NN graphs in Section 3.1. The GNNS Algo-
rithm is explained in Section 3.2.

3.1 k-NN Graph Construction

A k-NN graph is a directed graph G = (D, E), where D is the
set of nodes (i.e. datapoints) and E is the set of links. Node
Xi is connected to node Xj if Xj is one of the k-NNs of Xi.
The computational complexity of the naive construction of
this graph is O(dn2), but more efficient methods exist [Chen
et al., 2009; Vaidya, 1989; Connor and Kumar, 2010].

The choice of k is crucial to have a good performance. A
small k makes the graph too sparse or disconnected so that the
hill-climbing method frequently gets stuck in local minima.
Choosing a big k gives more flexibility during the runtime,
but consumes more memory and makes the offline graph con-
struction more expensive.

3.2 Approximate K-Nearest Neighbor Search

The GNNS Algorithm, which is basically a best-first search
method to solve the K-nearest neighbor search problem, is
shown in Table 1. Throughout this paper, we use capital K
to indicate the number of queried neighbors, and small k to
indicate the number of neigbors to each point in the k-nearest
neighbor graph. Starting from a randomly chosen node from
the k-NN graph, the algorithm replaces the current node Yt−1

by the neighbor that is closest to the query:

Yt = argmin
Y ∈N(Yt−1,E,G)

ρ(Y,Q),

where N(Y,E,G) returns the first E ≤ k neighbors of Y in
G, and ρ is a distance measure (we use Euclidean distance
in our experiments). The algorithm terminates after a fixed
number of greedy moves T . If K = 1, we can alternatively
terminate when the algorithm reaches a node that is closer to
the query than its best neighbor. At termination, the current
best K nodes are returned as the K-nearest neighbors to the
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Input: a k-NN graph G = (D, E), a query point Q, the
number of required nearest neighbors K, the number
of random restarts R, the number of greedy steps T ,
and the number of expansions E.
ρ is a distance function. N(Y,E,G) returns the first E
neighbors of node Y in G.
S = {}.
U = {}.
Z = X1.
for r = 1, . . . , R do

Y0: a point drawn randomly from a uniform distri-
bution over D.
for t = 1, . . . , T do
Yt = argminY ∈N(Yt−1,E,G) ρ(Y,Q).
S = S⋃

N(Yt−1, E,G).
U = U ⋃{ρ(Y,Q) : Y ∈ N(Yt−1, E,G)}.

end for
end for
Sort U , pick the first K elements, and return the corre-
sponding elements in S.

Table 1: The Graph Nearest Neighbor Search (GNNS) algo-
rithm for K-NN Search Problems.

Figure 2: The GNNS Algorithm on a simple nearest neighbor
graph.

query. Figure 2 illustrates the algorithm on a simple nearest
neighbor graph with query Q, K = 1 and E = 3.

Parameters R, T , and E specify the computational budget
of the algorithm. By increasing each of them, the algorithm
spends more time in search and returns a more accurate re-
sult. The difference between E and k and K should be noted.
E and K are two input parameters to the search algorithm
(online), while k is a parameter of the kNN tree construction
algorithm (offline). Given a query point Q, the search algo-
rithm has to find the Knearest neighbors of Q. The algorithm,
in each greedy step, examines only E out of k neighbors (of
the current node) to choose the next node. Hence, it effec-
tively works on an ENN graph.

Next, we analyze the performance of the GNNS algorithm
for the nearest neighbor search problem (K = 1).

Theorem 1. Consider the version of the GNNS algorithm
that uses L1 norm as the metric and terminates when the
greedy procedure gets stuck in a local minimum. Assume

that the datapoints are drawn uniformly randomly from a d-
dimensional hypercube of volume 1. Let 0 < δ < 1. Choose
M such that

(M+1)d(d log(M+1)+log 1/δ) ≥ n ≥ Md(d logM+log 1/δ).
(1)

Construct graph G by connecting each Xi to the members
of the set Vi = {Xj : ‖Xi −Xj‖1 ≤ r}, where r = 3/M .
Then with probability at least 1−δ, for any query point Q and
any starting point Y0, the GNNS algorithm returns the true
nearest neighbor to Q, and its computational cost is bounded
by

min{nd, 2ddM2(d log(M + 1) + log 1/δ)}.
Proof. Discretize each hypercube edge into M equal inter-
vals. So the unit cube is partitioned into Md cubes of volume
(1/M)d. Denote the set of cubes by {A1, . . . , AMd}. We
compute the probability that there exists at least one point in
each cube.

P (∀j, ∃i, Xi ∈ Aj) = 1− P (∃j, ∀i, Xi /∈ Aj)

= 1− P

⎛
⎝Md⋃

j=1

∀i, Xi /∈ Aj

⎞
⎠

≥ 1−
Md∑
j=1

P (∀i, Xi /∈ Aj)

= 1−Md

(
1− 1

Md

)n

.

Let Md
(
1− 1

Md

)n ≤ δ. After reordering, we get

n ≥ d logM + log 1/δ

log
(
1 + 1

Md−1

) .

By using the linear approximation of log(1 + x) ≈ x for
x ≈ 0, we get

n ≥ Md(d logM + log 1/δ).

In summary, we have shown that for any 0 < δ < 1, if In-
equality (1) holds, then P (∀j, ∃i, Xi ∈ Aj) ≥ 1 − δ. Thus,
with probability 1−δ all cubes contain at least one data-point.

Now let Xi be an arbitrary point in D, and Q be a query
point that is not necessarily in D. There are at least 2d cubes
in Vi. Under the condition that all cubes contain at least one
data-point, there is at least one cube in Vi that contains a point
Xk such that ρ(Xk, Q) < ρ(Xi, Q), which is is easy to see
because we use L1 norm. Thus, the greedy approach makes
progress. Further, recall that each axis is partitioned into M
intervals. Hence, the algorithm takes at most Md steps. Be-
cause of (1), there are at most M(d log(M + 1) + log 1/δ)
points in each cube. Thus, the computational complexity is
min{nd, 2ddM2(d log(M + 1) + log 1/δ)}.

Remark 2. Because M = O(n1/d), the computational cost
is min{nd, 2dn2/d}. The theorem can be proven for other
distributions. The crucial assumption is the assumption on the
independence of the datapoints. The uniformity assumption
is made to simplify the presentation.
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4 Experimental Results

In this section, we compare the performance of our algo-
rithm with state-of-the-art nearest neighbor search techniques
(explained in Sections 2.2 and 2.1): randomized KD-trees
with best-bin-first search heuristic and LSH1. The experi-
ments are carried out on a real-world publicly available im-
age dataset [Howard and Roy, 2003] as well as a synthetically
generated dataset. We compare the methods in terms of both
speedup over the linear search, which is implementation de-
pendent, and the number of Euclidean distance computations,
which is implementation independent.

First, we explain the experiments with the real-world
dataset. We extracted 5 datasets of 17000, 50000, 118000 and
204000 (128-dimensional) SIFT descriptors2 [Lowe, 2004].
For each dataset, the query set containing 500 SIFT descrip-
tors is sampled from different images than the ones used
to create the dataset. The experiments are performed for
K = 1, 30, and 300 . The accuracy is measured by first com-
puting the percentage of the K nearest neighbors reported
correctly, and then averaging over 500 queries. For each
dataset, instead of building a new graph for each value of E,
we constructed a single large graph (k = 1000) and reused it
in all experiments.

We exhaustively tried LSH and KD-tree with different val-
ues of parameters and and chose a combination that results in
better speedup and precision (parameter sweep).

Figures 3 (a), (b), (c), and (d) show the results for K = 1
and datasets of different sizes. These figures are produced by
varying the number of node expansions E; The other parame-
ter, R is fixed and set to 1 and T is not used as we alternatively
terminated the search when it reached the node which is better
than its neighbors. Figures 4 (a), (b), (c), and (d) compares
the methods in terms of the ratio of the number of distance
computations that they perform over the number of distance
computations that the linear search performs. As we can see
from these figures, the GNNS method outperforms both the
KD-tree and LSH algorithms. The figures also show how the
performance improves with the size of dataset.

Figure 5 showes the results for the dataset of size 17000
and K = 30 and K = 300. In order to produce these
figures, we performed a parameter sweep on E and T and
chose a combination which results in better speedup and pre-
cision. The parameter R is set to 1. The full experimen-
tal results for K = 30, 300 as well as with more real-
world datasets can be found in https://webdocs.cs.
ualberta.ca/˜hajebi.

The second set of experiments were performed on synthet-
ically generated datasets of different dimensions to show how
the performances of different methods degrade as dimension-

1We used the publicly available implementations of KD-tree
[http://www.cs.ubc.ca/\urltildemariusm/index.
php/FLANN/FLANN] and LSH [http://ttic.uchicago.
edu/\urltildegregory/download.html]

2We used SIFT descriptors due to their popularity in feature
matching applications.
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Figure 3: The results for a NN search problem (K = 1).
Speedup vs. accuracy for different algorithms (GNNS, ran-
domized KD-tree, and LSH) on datasets of (a) 17k (b) 50k
(c) 118k (d) 204k points. The GNNS algorithm outperforms
the two other methods. The gray dashed line indicates the
speedup of 1.
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Figure 4: The results for a NN search problem (K = 1). The
x-axis is accuracy and the y-axis is the ratio of the number
of distance computations that different algorithms (GNNS,
randomized KD-tree, and LSH) perform over the number of
distance computations that the linear search performs. The
datasets have (a) 17k (b) 50k (c) 118k (d) 204k points. The
GNNS algorithm outperforms the two other methods. The
gray dashed line indicates the speedup of 1. The error bars
are standard deviations.
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Figure 5: The results for (a) 30-NN (b) 300-NN search prob-
lems (K = 30, 300). Speedup vs. accuracy for different al-
gorithms (GNNS, randomized KD-tree, and LSH) on dataset
of size 17000. The GNNS algorithm outperforms the two
other methods. The gray dashed line indicates the speedup of
1.

ality increases. To construct a dataset of dimension d, we
sampled 50000 vectors from the uniform distribution over
[0, 1]d. We also sampled 500 query vectors from the same dis-
tribution. Figures 6 and 7 show the results for the randomly
generated datasets. Figure 6 compares the GNNS and the
KD-tree methods. The GNNS method outperforms the KD-
tree method. Figure 7 shows the results for the LSH method,
which is much inferior to the two other methods. The fig-
ures also show how the speedup of different algorithms with
respect to the linear search degrades as we increase the di-
mensionality and the precision.

5 Conclusions and Future Work

We have introduced a new algorithm that performs hill-
climbing on a k-NN graph to solve the nearest neighbor
search problem. The drawback of this method is the expen-
sive offline construction of the k-NN graph. We experimen-
tally show the effectiveness of the GNNS method on a high-
dimensional real world problem as well as synthetically gen-
erated datasets.

In many cases, high-dimensional data lie on a low-
dimensional manifold. Dasgupta and Freund [2008] show
that a version of KD-tree exploits the low-dimensional struc-
ture of data to improve its NN search performance. We hy-
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Figure 6: The results for a NN search problem (K = 1).
Speedup vs. dimension for different precisions and algo-
rithms (GNNS and randomized KD-tree). Datasets have
50k points. The GNNS algorithm outperforms the KD-tree
method. The gray dashed line indicates the speedup of 1.
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Figure 7: The results for a NN search problem (K = 1).
Speedup vs. dimension for different precisions for LSH algo-
rithm. Datasets have 50k points.

pothesize that the GNNS algorithm has a similar property.
This remains as a future work. Another future work is to
remove the exponential dependence on dimensionality in the
average-case analysis, as is shown to be possible for a number
of nearest neighbor search methods [Goodman et al., 2004].
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