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Abstract

The problem of feature selection has aroused con-
siderable research interests in the past few years.
Traditional learning based feature selection meth-
ods separate embedding learning and feature rank-
ing. In this paper, we introduce a novel unsuper-
vised feature selection approach via Joint Embed-
ding Learning and Sparse Regression (JELSR). In-
stead of simply employing the graph laplacian for
embedding learning and then regression, we use the
weight via locally linear approximation to construct
graph and unify embedding learning and sparse re-
gression to perform feature selection. By adding
the �2,1-norm regularization, we can learn a sparse
matrix for feature ranking. We also provide an
effective method to solve the proposed problem.
Compared with traditional unsupervised feature se-
lection methods, our approach could integrate the
merits of embedding learning and sparse regression
simultaneously. Plenty of experimental results are
provided to show the validity.

1 Introduction

The problem of reducing data’s dimensionality is a key re-
search topic for both artificial intelligence and machine learn-
ing. In the literature, there are mainly two distinct ways for
dimensionality reduction: feature selection and feature learn-
ing (or ’feature extraction’). Feature selection tries to extract
a few relevant features to represent the original data while
feature learning combines several original features to form
new representations. Compared with feature learning which
can create new features, feature selection does not change the
original representations of data variables. If we are required
to keep the original physical meanings of each feature, fea-
ture selection is preferred. Additionally, there is another ad-
vantage for feature selection. When we have determined the
selected features, we only need to calculate or collect these
concerning features. In feature learning, however, all features
are still needed for dimensionality reduction.

Consequently, many researches have been proposed to ad-
dress the problem of feature selection in the past few years.
There are mainly two different kinds of feature selection
approaches: supervised and unsupervised. Since we have

no label information in unsupervised feature selection, it is
more difficult than supervised scenario and there are rela-
tively fewer investigations dedicated to this topic. Most un-
supervised feature selection approaches are either based on
filters [Dash et al., 2002] [Nie et al., 2008], wrappers [Roth
and Lange, 2004] or embeddings [Dy et al., 2004]. Although
the performances of traditional unsupervised feature selec-
tion approaches are prominent in many cases, their efficien-
cies can also be improved since (1) from the view of man-
ifold learning [Cai et al., 2007], the high dimensional data
are nearly lying on a low dimensional manifold. Traditional
methods have not taken fully considerations about the man-
ifold structure. (2) Different from feature learning, tradi-
tional feature selection approaches only employ data statis-
tical character to rank the features essentially. They are often
lack of using the learning mechanism as in feature learning,
which is proved to be powerful and widely used in many areas
[Nie et al., 2010b].

Recently, to leverage both the manifold structure and learn-
ing mechanism, some investigations have emerged. Typical
methods include: Pca Score (PcaScor) [Krzanowski, 1987],
Laplacian Score (LapScor) [He et al., 2005], Spectral Fea-
ture Selection (SPEC) [Zhao and Liu, 2007], Multi-Cluster
Feature Selection (MCFS) [Cai et al., 2010] and Minimum
Redundancy Spectral Feature selection (MRSF) [Zhao et al.,
2010]. Commonly, these methods use various graphs to char-
acterize manifold structure at first. LapScor and SPEC then
compute different metrics to rank each feature. MCFS and
MRSF, however, add sparse constraints in multi-output re-
gression. Compared with traditional unsupervised feature se-
lection approaches, these methods have proved to perform
better in many cases [Zhao et al., 2010]. Nevertheless,
their performances can also be improved since these methods
all separate manifold characterization and feature selection.
Once the graph is determined to characterize manifold struc-
ture, it is fixed in the following ranking or regression steps.
Thus, the performance of feature selection is largely deter-
mined by the effectiveness of graph construction. On the
contrary, if the graph laplacian can adaptively change w.r.t.
the following ranking or regression procedures, i.e., the graph
not only can characterize manifold structure, but also indicate
the requirements of regression, these methods would perform
better.

In this paper, we introduce a novel unsupervised feature
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selection approach via Joint Embedding Learning and Sparse
Regression (JELSR). Instead of simply using the graph lapla-
cian to characterize high dimensional data’s structure and
then regression, we propose to adopt locally linear approx-
imation weight to construct a new graph and unify these two
objectives in forming a new problem. By adding the �2,1-
norm regularization, we can learn a sparse transformation ma-
trix for feature selection. We also provide an effective method
to solve the proposed problem. Compared with traditional un-
supervised feature selection approaches, our method could in-
tegrate the merits of manifold learning and sparse regression.
Many experimental results are provided for demonstration.

The rest of this paper is organized as follows. We will for-
mulate JELSR and provide an effective solution algorithm in
Section 2. Section 3 will present the convergence behavior
and relations to other approaches. Section 4 provides some
comparing results on various kinds of data sets, followed by
the conclusion and future works in Section 5.

2 Feature Selection via Joint Embedding

Learning and Sparse Regression

In this section, we will first introduce some notations. The
concrete formulation is then proposed. Finally, we provide
an effective algorithm to solve this problem.

Before going into the details of our algorithm, let us intro-
duce some notations. Denote {xi ∈ R

d|i = 1, 2, · · · , n} as
the unlabeled examples. We would like to select s features
to represent the original data, where s < d. For a matrix
Q ∈ R

u×v , its �r,p-norm is defined as follows.

‖Q‖r,p =

(∑u

i=1

(∑v

j=1
|Qij |r

)p/r
)1/p

. (1)

For brief, the �2-norm is also denoted as ‖ · ‖2 in the fol-
lowing. Define α > 0, β > 0 as two balance parameters.

2.1 Formulations

There are mainly three objective functions of our algorithm.
We would like to introduce them in sequence.

Considering that Spectral Regression (SR) performs well
in feature learning and graph laplacian could fully character-
ize manifold structure, we would like to inherit their advan-
tages in formulating our feature selection algorithm. Evoked
by the intuition that nearby points should have similar proper-
ties, we would like to construct a weight graph G = (V, E,S)
to reveal their local connections, where V = {xi} is the graph
vertex set and E contains edges of the constructed graph.

The key point in constructing graph is to determine its
weight matrix S, where Sij reveals the similarity between
points xi and xj . Commonly, the graph is constructed by con-
necting every point to its k-nearest neighbors and the weights
for connected points are computed by gaussian function. Mo-
tivated by the prominent performance in using locally linear
approximation weight to construct graph [Roweis and Saul,
2000], we would like to employ similar strategy to measure
local similarity. More concretely, the graph is constructed by
following steps:

Step 1. Constructing a k-nearest graph G. The i-th node
corresponds to xi. For xi, it only connects with the points in

its k-nearest neighborhood set N (xi). Thus, G is a directed
graph.

Step 2. Computing the similarity matrix S. For the i-th
point xi, its weight Sij > 0 if and only if xj ∈ N (xi).
Otherwise, Sij = 0. The nonzero weight is determined by
using the following locally linear approximation strategy.

arg min
S,

∑
j Sij=1

=
n∑

i=1

‖xi −
∑

xj∈N (xi)

Sijxj‖22. (2)

Recalling the basic idea of feature learning, we will repre-
sent the original data xi by its low dimensional embedding,
i.e., yi ∈ R

m, where m is the dimensionality of embedding.
Through this kind of replacement, the most valuable informa-
tion is retained and the feature redundancies are eliminated.
As a result, the first objective is

arg min
YYT=Im×m

n∑
i=1

‖yi −
n∑

j=1

Sijyj‖22 = tr(YLYT ) (3)

where L = (In×n − S)T (In×n − S) is the graph laplacian.
yi ∈ R

m is the embedding of xi for i = 1, 2, · · · , n and
Y = [y1,y2, · · · ,yn].

As in SR, the second objective function of our algorithm
is to regress each sample to its low dimensional embed-
ding. More concretely, assume {xi} is centered and denote
W = [w1,w2, · · · ,wm] ∈ R

d×m as the matrix formulated
by all transformation vectors {wi}mi=1, the second objective
function is

argmin
W

n∑
i=1

‖WTxi − yi‖22 = ‖WTX−Y‖22. (4)

The third objective function is designed for feature selec-
tion. Denote ŵi as the i th row vector of W, i.e.,

W =
[
ŵT

1 , ŵ
T
2 , · · · , ŵT

d

]T
. (5)

Essentially, ŵi corresponds to the transformation vector of
the i-th feature in regression. It can also be regarded as a
vector that measures the importance of the i-th feature.

Considering the task of feature selection, we expect that
the transformation matrix holds the sparsity property for fea-
ture selection. More concretely, we expect that only a few
numbers of ŵi are non-zeros. As a result, the corresponding
features are selected since these features are enough to regress
the original data xi to its low dimensional representation yi.
When we employ the 2-norm of ŵi as a metric to measure
its contribution in this regression, the sparsity property, i.e.,
a small number of ŵi are non-zeros, indicates the following
objective function.

argmin
W

d∑
i=1

‖ŵi‖2 =
d∑

i=1

(
m∑
j=1

W 2
ij)

1/2 = ‖W‖2,1. (6)

Here ‖W‖2,1 denotes the �2,1-norm as defined in Eq. (1).
By combining the objective functions in Eq. (3), Eq. (4)

with Eq. (6), our JELSR algorithm can be formulated as fol-
lows.
L(W,Y) = arg min

W,YYT=Im×m

tr(YLYT ) + β(‖WTX−Y‖22 + α‖W‖2,1),
(7)
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where α and β are two balance parameters.
After deriving W, we use the 2-norm of ŵi, i.e., ‖ŵi‖2

to rank the features. The larger ‖ŵi‖2 is, the more important
this feature is. We can either select a fixed number of the most
important features or set a threshold and select the feature
whose ‖ŵi‖2 is larger than this value. In the following, we
select a fixed number, i.e., s, features for evaluation.

2.2 Solutions

Considering the optimization problem in Eq. (7), since we
have added the �2,1-norm regularization for feature selection,
it is hard to derive its closed solution directly. Inspired by
[Nie et al., 2010a], we will solve this problem in an alterna-
tive way. As we will explain later, through this kind of proce-
dure, we update the embedding Y and the sparse regression
matrix W alternatively. In other words, we select the features
by joining embedding learning and sparse regression, which
has not been considered in the literature.

Note that ‖W‖2,1 is convex. Nevertheless, its derivative
does not exist when ŵi = 0 for i = 1, 2, · · · , d. For conve-
nience, we would like to denote L(W) = ‖WTX−Y‖22 +
α‖W‖2,1. Thus, when ŵi �= 0 for i = 1, 2, · · · , d, the
derivative of L(W) w.r.t. W is

∂L(W)

W
= 2XXTW − 2XYT + 2αUW, (8)

where U ∈ R
d×d is a diagonal matrix whose i-th diagonal

element is
Uii =

1

2‖ŵi‖2 . (9)

As seen from Eq. (8), we construct an auxiliary function.
It is obvious that the derivative in Eq. (8) can also be regarded
as the derivative of the following objective function.

C(W) = ‖WTX−Y‖22 + αtr(WTUW). (10)

Consequently, we try to solve the following problem to ap-
proximate the solution to Eq. (7).

L(W,U,Y) = arg min
W,U,YYT=Im×m

tr(YLYT ) + β(‖WTX−Y‖22 + αtr(WTUW))
(11)

where U is defined as in Eq. (9).
We would like to explain why we can deriving a sparse

solution by minimizing Eq. (11). Recalling the definition
of Uii in Eq (9), we know that tr(WTUW) = ‖W‖2,1/2
when ŵi is not equal to 0. Thus, the objective of minimizing
tr(WTUW) will add the sparsity constraint on W. Intu-
itively, if ‖ŵi‖2 is small, then Uii is large and the minimiza-
tion of Eq. (10) tends to derive ŵi with much smaller �2-
norm. After several times of iteration, the norms of some ŵis
are close to zero and we get a sparse W. Besides, the above
approximation can not be used if ŵi �= 0 for i = 1, 2, · · · , d.

As seen from above formulation, the objective function in
Eq. (11) is convex with respect to W and Y if U is fixed.
When W is fixed, we can determine U by Eq. (9) directly.
Thus, we update W and Y when U is fixed and compute U
when W is fixed.

When U is fixed, we would like to take the derivative of
L(W,U,Y) with respect to W and set it to zero, i.e., we
have the following equation.

∂L(W,Y,U)

W
= 2XXTW − 2XYT + 2αUW = 0

(12)

or equivalently,

W = (XXT + αU)−1XYT . (13)

By substituting above W into Eq. (11), we will have

L(W,U,Y)

=tr(YLYT ) + β(‖WTX−Y‖22 + αtr(WTUW))

=tr(YLYT ) + β(tr(WTXXTW)− 2tr(WTXYT )

+ tr(YYT ) + αtr(WTUW))

=tr(YLYT ) + β(−tr(WT (XXT + αU)W) + tr(YYT ))
(14)

Denote A = XXT + αU, Eq. (14) becomes

L(W,U,Y)

=tr(YLYT ) + βtr(YYT )− βtr(YXTA−1XYT )

=tr(Y(L+ βIn×n − βXTA−1X)YT )

(15)

Considering the objective function in Eq. (15) and the con-
straint YYT = Im×m, the optimization problem becomes

argmin
Y

tr(Y(L+ βIn×n − βXTA−1X)YT )

s.t. YYT = Im×m

(16)

If A and L are fixed, the optimization problem in Eq.
(16) can be solved by eigen-decomposition of matrix (L +
βIn×n − βXTA−1X). We pick up the eigenvectors corre-
sponding to the m smallest eigenvalues.

When W is fixed, we can update U by employing the for-
mulation in Eq. (9) directly.

In summary, we solve the optimization problem in Eq. (7)
in an alternative way. More concretely, if U is fixed, we can
first solve the optimization problem in Eq. (16) to update Y
and then employ Eq. (13) to update W. After that, we fix W
and update U, which is defined in Eq. (9).

We now explain why our method could join embedding
learning and sparse regression. Considering the above algo-
rithm, we solve the problem in Eq. (16) to compute Y. In
other words, the objective of sparse regression has also af-
fected the derivation of low dimensional embedding, i.e., Y.
Traditional methods, such as MCFS and MRSF, minimize
tr(YLYT ) merely.

Additionally, since JELSR is solved in an alternative way,
we would like to initialize U by an identity matrix. The ex-
perimental results show that our algorithm converges fast by
using this kind of initialization. The number of iteration is
often less than twenty. Besides, the above solving procedure
can not be used when ŵi = 0 for i = 1, 2, · · · , d. This is
another reason why we use this type of initialization.

In summary, the procedure of JELSR is listed in Table 1.
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Table 1: Procedure of JELSR.
Input: Data set {xi|i = 1, 2, · · · , n}; Balance parameter
α β; Neighborhood size k; Dimensionality of embedding
m; Selected feature number s.
Output: Selected feature index set {r1, r2, · · · , rs}.
Stage one: Graph construction
1. Construct the nearest neighborhood graph G;
2. Compute the similarity matrix S, graph laplacian L;

Stage two: Alternative optimization
1. Initialize U = Id×d;
2. Alternatively update U, Y and W until convergence.

a. Fix U, update Y by solving the problem in Eq. (16),
update W by using Eq. (13);

b. Fix W, update U by Eq. (9);
Stage three: Feature selection
1. Compute the scores for all features {‖ŵi‖2}di=1;
2. Sort these scores and select the largest s values.

Their corresponding indexes form the selected feature
index set {r1, r2, · · · , rs}.

3 Discussions

In this section, we will analyze JELSR in two aspects, i.e., the
convergence behavior and the relations to other approaches.

3.1 Convergence Analysis

As seen from Table 1, since we have solved JELSR in an alter-
native way, we would like to show its convergence behavior.
First, a lemma [Nie et al., 2010a] is provided.

Lemma 1. For any non-zero vectors a,b ∈ R
m, the follow-

ing result follows

‖a‖2 − ‖a‖22
2‖b‖2 ≤ ‖b‖2 − ‖b‖22

2‖b‖2 . (17)

The convergence behavior of JELSR is summarized in the
following theorem.

Theorem 1. The optimization procedure in the second stage
of Table 1 will monotonically decrease the objective of the
problem in Eq. (7) in each iteration.

Proof. As seen from the algorithm in Table 1, when we fix
U as Ut in the t-th iteration and compute Wt+1, Yt+1, the
following inequality holds,

tr(Yt+1L(Yt+1)T ) + β(‖(Wt+1)TX−Y‖22
+ αtr((Wt+1)TUtWt+1))

≤tr(YtL(Yt)T ) + β(‖(Wt)TX−Y‖22
+ αtr((Wt)TUtWt)).

(18)

Since ‖W‖2,1 =
∑d

i=1 ‖ŵi‖2, the above inequality indi-
cates

tr(Yt+1L(Yt+1)T ) + β(‖(Wt+1)TX−Y‖22

+ α‖Wt+1‖2,1 + α
d∑

i=1

(
‖ŵt+1

i ‖22
2‖ŵt

i‖2
− ‖ŵt+1

i ‖2))

≤tr(YtL(Yt)T ) + β(‖(Wt)TX−Y‖22

+ α‖Wt‖2,1 + α
d∑

i=1

(
‖ŵt

i‖22
2‖ŵt

i‖2
− ‖ŵt

i‖2)).

(19)

Recalling the results in Lemma 1, we know that

‖ŵt+1
i ‖22

2‖ŵt
i‖2

− ‖ŵt+1
i ‖2 ≥ ‖ŵt

i‖22
2‖ŵt

i‖2
− ‖ŵt

i‖2. (20)

Combining Eq. (19) with Eq. (20), we have the following
results.

tr(Yt+1L(Yt+1)T ) + β(‖(Wt+1)TX−Y‖22 + α‖Wt+1‖2,1)
≤ tr(YtL(Yt)T ) + β(‖(Wt)TX−Y‖22 + α‖Wt‖2,1).

(21)

This inequality indicates that the objective function in Eq.
(7) will monotonically decrease in each iteration.

Additionally, since the objective function has lower
bounds, such as zero, the above iteration will converge. Be-
sides, the following experimental results show that it con-
verges fast, the time of iteration is often less than 20.

3.2 Relations to other Approaches

First, considering the above deduction of our algorithm, we
know that JELSR is related to LapScor [He et al., 2005].
LapScor selects features that can best preserve the similar-
ity revealed by S. Both JELSR and LapScor construct a
graph to characterize data manifold. JELSR uses the lo-
cally linear approximation weights while LapScor employs
the gaussian function. Compared with LapScor, JELSR uses
a more prominent way, i.e., sparse regression, to learn fea-
ture weights. It could inherit the metric of SR [Cai et al.,
2007]. Moreover, SPEC is also based on spectral analysis
and it can be regarded as an extension of LapScor. Neverthe-
less, SPEC exploits both labeled and unlabeled data through
a regularization framework and emphasizes the problem of
semi-supervised feature selection. JELSR, however, focuses
on the unsupervised case.

Second, JELSR has close relationship with MCFS [Cai et
al., 2010]. MCFS computes the same embedding as Lapla-
cian Eigenmaps [Belkin and Niyogi, 2003] and then regresses
each point to this embedding by adding the �1 norm regular-
ization. Compared with MCFS, JELSR uses a different graph
to characterize data structure. More importantly, JELSR uni-
fies the procedures of embedding learning and sparse regres-
sion, which are separated in MCFS. Thus, it performs better
than MCFS in many cases.

Finally, JELSR also has close relationship with MRSF
[Zhao et al., 2010]. MRSF first computes the embedding
by eigen-decomposition of graph laplacian and then regresses
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Figure 1: Acc of Kmeans on four data sets with different number of selected features. The x-axis represents the number of
selected features and the y-axis is the Acc results. (a) Umist; (b) Isolet; (c) Orl; (d) Sonar.

with �2,1 norm regularization. More concretely, MRSF can be
regarded as solving the following two problems in sequence.

arg min
YYT=Im×m

tr(YLYT )

argmin
W

‖WTX−Y‖22 + α‖W‖2,1.
(22)

Comparing the formulation in Eq. (22) with that in Eq. (7),
we can see the main difference between JELSR and MRSF
is that JELSR unifies the two objectives of MRSF. In other
words, JELSR could join the procedures of embedding learn-
ing and sparse regression. MRSF separates these two steps.
Thus, its performance is largely determined by the effective-
ness of graph construction. More importantly, we have the
following result.

Theorem 2. If we compute the graph laplacian L in Eq. (3)
by employing gaussian function, MRSF in Eq. (22) can be
regarded as a special case of JELSR in Eq. (7) when β → 0.

The above theorem indicates that JELSR can be regarded
as a unified framework in viewing different learning based
feature selection approaches.

4 Experiments

We present three different groups of experiments. The first
group is the clustering results of Kmeans on different data
with different numbers of selected features. To show whether
the performance comparison of different algorithms are dom-
inated by clustering method, we propose to use another ap-
proach, i.e, Normalized Cut(Ncut), for clustering in the sec-
ond group. Finally, since there are mainly two different pa-
rameters, i.e., α and β, we would like to provide the results
with different parameters. Let us describe the experimental
data sets at first.

There are mainly four different types of data sets. They
are images, including Umist, Orl, and others, including Iso-
let5 and Sonar data. Their sizes range from about 200 to
about 1600. The dimensionality ranges from about 30 to
about 1500. Two different metrics, including clustering Ac-
curacy (Acc) and Normalized Mutual Information (NMI) are
employed to measure the clustering performances. We com-
pare our algorithm with other learning based unsupervised
feature selection approaches, including PcaScor, LapScor,
SPEC, MCFS and MRSF.

In the first group, we employ Kmeans for clustering by re-
peating 100 times. With different numbers of selected fea-
tures, the Acc and NMI results are show in Fig. 1, Table 2
and Table 3, where the parameters are selected by grid search
in a heuristic way. Other parameters, such as k and m, are
empirically determined as in traditional subspace learning ap-
proaches.

As seen from Fig. 1, Table 2 and Table 3, it is clear that
JELSR performs better than other approaches in most cases.
Besides, although Acc and NMI are two different metrics,
they both indicate the advantages of our algorithm.

In the second group, we employ another clustering algo-
rithm, i.e., Ncut, for evaluation. On Umist data, we select
s = 10 and s = 50 features. On Isolet data, we set s = 10
and s = 45 for illustration. The Acc results are in Fig. 2.

t=10 t=50
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t=10 t=45
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MRSF

JELSR

(b)

Figure 2: Acc of Ncut on different data sets with different
number of selected features. (a) Umist with the selected fea-
ture numbers s=10 and s = 50; (b) Isolet with the selected
feature numbers s=10 and s = 45.

Similarly, although we employ different clustering meth-
ods, JELSR also outperforms other algorithms.

Finally, we first determine two parameters by grid search
and then change them within certain ranges. The Acc results
of Kmeans with different α and β are shown in Fig. 3.

As seen from Fig. 3, when two parameter are changed
within a certain range, the performance of JELSR also
changes within a certain range.

5 Conclusion

In this paper, we proposed a novel unsupervised feature se-
lection algorithm. Different from traditional methods, our
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Table 2: NMI of different methods on Umist data set with different numbers of selected features by using Kmeans for clustering
(mean ± std).

s PcaScor LapScor SPEC MCFS MRSF JELSR
s=5 0.5049±0.0151 0.4985±0.0088 0.4614±0.0087 0.5286±0.0121 0.5839±0.0124 0.6234±0.0160
s=15 0.5337±0.0122 0.5178±0.0147 0.5191±0.0145 0.6260±0.0182 0.6142±0.0124 0.6515±0.0187
s=25 0.5450±0.0132 0.5271±0.0152 0.5268±0.0152 0.6418±0.0204 0.6535±0.0167 0.6888±0.0204
s=35 0.5854±0.0150 0.5268±0.0171 0.5293±0.0167 0.6352±0.0201 0.6549±0.0167 0.6886±0.0250
s=45 0.6248±0.0131 0.5493±0.0172 0.5339±0.0150 0.6651±0.0195 0.6699±0.0186 0.6984±0.0193

Table 3: NMI of different methods on Isolet data set with different numbers of selected features by using Kmeans for clustering
(mean ± std).

s PcaScor LapScor SPEC MCFS MRSF JELSR
s=5 0.3608±0.0047 0.3588±0.0047 0.3667±0.0048 0.3778±0.0055 0.4816 ±0.0052 0.5139±0.0064
s=15 0.3813±0.0077 0.4971±0.0076 0.4958±0.0078 0.5769±0.0083 0.5736 ±0.0094 0.6153±0.0152
s=25 0.5110±0.0107 0.5035±0.0093 0.5401±0.0081 0.6612±0.0145 0.6561 ±0.0106 0.6900±0.0155
s=35 0.5391±0.0114 0.6026±0.0100 0.6055±0.0097 0.7034±0.0134 0.6799 ±0.0145 0.7272±0.0159
s=45 0.5583±0.0115 0.6107±0.0099 0.6059±0.0098 0.6703±0.0146 0.6544 ±0.0107 0.7191±0.0151
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Figure 3: Acc and NMI of Kmeans on Umist data set when α
varies from 1.5 to 2.4 and β varies from 1e-2 to 1e-1. (a) The
Acc results; (b) The NMI results.

algorithm could combine embedding learning and sparse re-
gression. We also provided an efficient algorithm to solve the
�2,1-norm regularization problem. The convergence behavior
was also analyzed. Further research includes the extension of
JELSR to supervised case. We will also focus on the acceler-
ating issue of our algorithm.
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