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Abstract

Network community detection—the problem of di-
viding a network of interest into clusters for intelli-
gent analysis—has recently attracted significant at-
tention in diverse fields of research. To discover
intrinsic community structure a quantitative mea-
sure called modularity has been widely adopted as
an optimization objective. Unfortunately, modular-
ity is inherently NP-hard to optimize and approxi-
mate solutions must be sought if tractability is to be
ensured. In practice, a spectral relaxation method is
most often adopted, after which a community parti-
tion is recovered from relaxed fractional values by a
rounding process. In this paper, we propose an iter-
ative rounding strategy for identifying the partition
decisions that is coupled with a fast constrained
power method that sequentially achieves tighter
spectral relaxations. Extensive evaluation with this
coupled relaxation-rounding method demonstrates
consistent and sometimes dramatic improvements
in the modularity of the communities discovered.

1 Introduction

Many important systems can be represented as networks, with
entities represented by vertices and relationships represented
by edges. Prominent examples include the world wide web,
social networks, biological networks, communication net-
works, etc. [Easley and Kleinberg, 2010]. Research on net-
works has attracted significant recent interest, particularly in
computing sciences and artificial intelligence, in response to
the rapid increase in size and availability of real world net-
works and the practical needs to analyze them.

When analyzing such networks, an important question has
often been “How many communities are there and what are
the memberships?”. Community (i.e. cluster) structure seems
to be inherent in real-world networks: vertices tend to clus-
ter in groups where vertex connections within the same group
are dense, while the connections are sparser between vertices
from different groups. The ability to find and analyze such
groups has proved invaluable in understanding network struc-
ture.

Computationally, the quality of a partition obtained de-
pends on the quality of the objective function being used

[Leskovec et al., 2010]. Recently, the modularity function,
Q, which measures the quality of a particular grouping of
vertices in a network, has been widely accepted. Girvan and
Newman [2002] have shown across a variety of simulated and
real-world networks that larger Q values are correlated with
better graph vertex groupings.

Unfortunately, maximizing Q is fundamentally difficult,
hence heuristic approximation methods have been proposed
for locally optimizing it. Among them, a spectral method
proposed [Newman, 2006] has attracted broad attention. Af-
ter relaxation, the method computes a decision vector where
each element corresponds to the partition assignment of a ver-
tex. To recover a hard partition from such a relaxed solu-
tion it has been standard practice to round each element in-
dividually based simply on their sign. Although simple, this
conventional rounding strategy has achieved good empirical
results and has been deployed extensively in the analysis of
real-world networks and other graph partition applications.

In this paper we propose an iterative rounding strategy for
recovering the final decisions. Unlike conventional round-
ing, which purely operates on the individual signs, we take
the magnitude of each element into consideration in a se-
quential manner. That is, in successive rounds only a por-
tion of elements with large magnitudes are rounded to hard
decisions. The remaining elements are then re-optimized in
the next iteration by solving a residual problem. The solu-
tion to the residual problem is again partially rounded into
decisions, and so on. At the core of our proposal is a new
constrained power method that achieves fast computation of
the residual problem. This sequential approach more tightly
approximates the global modularity objective by interleaving
partial rounding with tighter spectral relaxation of the succes-
sive residual problems. Through extensive evaluations, the
iterative rounding method reports significant and consistent
improvement over the conventional approach.

2 Preliminaries

Modularity is the standard objective function used in network
cluster analysis. It quantifies the quality of a given division
of a network into communities. Good divisions, which have
high modularity values, are those with dense edge connec-
tions between the vertices within a community but sparse
connections between vertices in different communities.
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Consider an undirected graph G = (V,E) where V =
{v1, v2, · · · , vn} is a set of vertices and E is a set of edges
between vertex pairs. Let wij be an element of the adjacency
matrix W of the network, which gives the number of edges
between vertices vi and vj . We further denote di =

∑
j wij

as the degree of vi andm = 1

2

∑
i di as the total edge number.

For a candidate partition of the vertices into clusters, the
modularity is defined to be the portion of the edge connec-
tions within the same cluster minus the expected portion if the
connections were distributed randomly. Assuming the degree
di associated with each vertex vi is preserved, under uniform
random selection the expected number of edges between two

vertices vi and vj is
didj

2m
. Thus the observed number minus

the expected number is wij −
didj

2m
. Summing over all pairs

of vertices within the same group, the modularity, denoted by
Q, is given by

Q =
1

2m

∑
ij

[
wij −

didj
2m

]
δ (ci, cj)

where ci is the group to which vertex vi belongs, and δ is the
Kronecker delta function.

The value of Q lies in the range [−1, 1]. It is positive when
the observed connections within the same group exceed the
expected number under random connections. Given a larger
than expected portion of connections, one can reasonably in-
fer the presence of an underlying cluster structure. Thus, the
cluster structure can be searched precisely by checking the
network divisions that have large modularity values.

An equivalent formulation is often used. Define sir to
be 1 if vertex vi belongs to group r and 0 otherwise. Then
δ (ci, cj) =

∑
r sirsjr and hence

Q =
1

2m

∑
ij

∑
r

[
wij −

didj
2m

]
sirsjr =

1

2m
tr
(
STBS

)

where tr denotes the trace of a matrix, S is the matrix having
elements sir , and B is the modularity matrix having elements

bij = wij −
didj
2m

.

All rows and columns of the modularity matrix sum to zero,
which means that the modularity of an undivided graph is
always zero.

Unlike most statistical clustering models or graph partition
techniques, which require a prior setting of partition num-
bers or group sizes [Jain et al., 1999; Shi and Malik, 2000;
Ng et al., 2002], the modularity score determines the parti-
tion number and the group size automatically without manual
intervention. This measure also allows the possibility that no
good division of a network exists, corresponding to the case
that the modularity value is zero (and cannot be increased by
further division of vertices).

3 Spectral Modularity Maximization

Maximizing Q is NP-hard [Brandes et al., 2006], therefore
researchers have sought approximate solutions. In practice,
a spectral relaxation method is widely used, that obtains rea-
sonable empirical results in both optimization accuracy and
computation time [Newman, 2006].

3.1 Two-Way Partitions

To first understand the spectral method, consider a simple
case where the graph is divided into two groups. One defines
si = ±1 to indicate the group membership of vi, yielding

Q =
1

4m

∑
ij

bijsisj =
1

4m
sTBs

where s is the column vector with elements si.
The vector s can be expressed as a linear combination of

the normalized eigenvectors ui of the modularity matrix B,
so that s =

∑n

i=1
aiui with ai = uT

i s. Then one obtains

Q =
1

4m

∑
i

aiu
T
i B

∑
j

ajuj =
1

4m

n∑
i=1

(
uT
i s

)2
λi,

where λi is the eigenvalue of B corresponding to the eigen-
vector ui.

Assume that the eigenvalues are labeled non-increasingly,
λ1 ≥ λ2 ≥ · · · ≥ λn. To maximize Q, the assignment vec-
tor s needs to concentrate as much weight as possible in the
terms involving the leading (largest algebraic) eigenvalues,
which, if s were unconstrained, could be achieved by setting
s proportional to the leading eigenvector u1. But with “±1”
constraints, s cannot be chosen freely, which makes the opti-
mization difficult.

Fortunately there is a convenient approximation available.
Ignoring the inconvenient fact that it is not possible to make
s perfectly parallel to u1, one simply divides the vertices into
two groups according to the signs of each element of u1.
Although this approximation is straightforward, it has often
been found to give reasonable results in practice.

3.2 Multi-Way Partitions

The simple two-way partition method can be extended to
multi-way partition method recursively. That is, using succes-
sive two-way partitions that divide the graph into subgraphs,
the process can be continued on each subgraph until no fur-
ther increases in Q can be found.

Formally, for each subgraphG′ = (V ′, E′) with n′ vertices
we define an n′ × n′ subgraph modularity matrix B′ with
elements

b′ij = wij −
didj
2m

− δ (i, j)

(
d′i − di

m′

m

)
,

where d′i =
∑

j:vj∈V ′ wij and m′ = 1

2

∑
i:vi∈V ′ di. The

subgraph modularity is given by Q′ = 1

4m
s′TB′s′, where s′

is a column vector with n′ elements. Maximizing Q′ with
respect to s′ gives the further contribution to the modularity
Q obtained by subdividing the subgraph. When G′ = G, B′

reduces to B since d′i → di and m′ → m in that case.

The division process on each subgraph is halted when there
exists no division that further increases the graph modular-
ity; that is, no division that yields a positive value for Q′.
This happens when the modularity matrix B′ has no positive
eigenvalues, hence the leading eigenvalue provides a simple
check for terminating the division process.
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3.3 Combination with Exchange Heuristics

In practice, the spectral method is often used in conjunction
with exchange heuristics. In this approach, one uses spectral
partitioning to obtain an initial broad division of the graph
into subgraphs, then refines this division by moving vertices
between groups using the Kernighan-Lin algorithm [Lin and
Kernighan, 1973].

Given two groups of vertices, the refinement proceeds as
follows. Successively find the vertex that, when moved to the
other group, obtains the largest increase in Q, or the smallest
decrease if no increase exists. Repeatedly make such moves,
but ensuring that each vertex is moved only once. When all
vertices have been moved, search all intermediate states to
find the division that obtained the greatest Q. Starting again
from this state, repeat the exchange process, until no further
improvement is possible for Q.

As reported in [Newman, 2006], this combination gives
excellent results on many open networks and has become a
standard baseline when comparing community detection al-
gorithms.

3.4 Computational Issues

The modularity matrix B has special structure that can be ex-
ploited to efficiently compute the leading eigenvector via the
power method. The power method approximates the domi-
nant eigenvalue (the eigenvalue with the largest magnitude)
and its eigenvector by iteratively multiplying a given matrix
with an initial vector. For example, starting from a random
vector v0, the power method iteratively refines v by matrix-

vector multiplication and renormalization vi+1 = Bvi

‖Bvi‖ , and

approximates the dominant eigenvector of B efficiently.

For modularity matrices, although the leading eigenvector
might not be dominant, one can still apply the power method
by using a simple trick. Without loss of generality assume
the eigenvalues of B satisfy λ1 > λ2 ≥ · · · ≥ 0 ≥ · · · ≥
λn−1 > λn. Using the power method, first compute B’s
dominant eigenvalue. If the eigenvalue is positive, it is λ1,
and its eigenvector is precisely the leading eigenvector u1 we
seek. If the eigenvalue is negative, it is λn, the most negative

eigenvalue. In this case, shift the matrix B+ |λn|
2

I , where I is
an n × n identity matrix. The shifted matrix has eigenvalues

λ1 + |λn|
2

, λ2 + |λn|
2

, · · · , λn

2
but the same eigenvectors as

B. Applying the power method to this new matrix returns

λ1 +
|λn|
2

, with the desired eigenvector u1.

With trivial modifications, the power method can also be
used to calculate the leading eigenvector for the subgraph
modularity matrix B′. We omit the details here.

4 Iterative Rounding for Community

Detection

We now present our main proposal for improving the modu-
larity of the communities discovered in a network.
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(a) Conventional Rounding
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(b) Iterative Rounding

Figure 1: Conventional Rounding and Iterative Rounding.

4.1 Conventional Rounding vs Iterative Rounding

In the spectral approach, given the computed eigenvector, a
vertex partition is usually recovered by simple rounding

si =

{
+1
−1

u1i > 0
otherwise

where u1i denotes the i-th element of the leading eigenvector
u1. We refer to this strategy as conventional rounding.

Note that the conventional rounding strategy is based on
the signs of the eigenvector elements, regardless of their mag-
nitudes (absolute values). However, the elements with differ-
ent magnitudes contribute differently to Q, and therefore af-
fect the confidence in the rounding decisions. For example, if
u1i has a large magnitude, then si will have a significant influ-
ence on uT

1 s in the objective, and we would be more confident
in inferring its rounded value. However, if the magnitude is
small, si’s contribution to the objective is less evident, and
one would be less confident to make the rounding decision.
In this latter case, we would like to postpone the rounding
decision to a later phase.

Based on the idea, we propose a successive rounding
method that only rounds variables with top magnitudes. That
is, unlike conventional rounding that makes the entire parti-
tion decision in a single batch, we propose to recover more
accurate community structure incrementally, using a strategy
we will refer to as iterative rounding.

The two rounding schemes are illustrated in Figure 1. In it-
erative rounding, we first find an approximate solution to the
original problem. Then, given a relaxed result, we do not turn
all the elements into decisions like conventional rounding, but
instead only round those with large magnitudes. Then we pro-
ceed to the next iteration by studying the residual problem,
which often has a structure similar to the original but with
fewer elements. This process is repeated until no variables
are left un-rounded.

4.2 Constrained Power Method

To explain how the residual problems are efficiently solved
in the context of iterative rounding, consider an illustration of
the approach. In the first iteration, we have the same problem,
max sTBs, as the conventional spectral method. We simply
use the power method and get the leading eigenvector. Then,
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rather than deploy conventional rounding, we only round the
elements with largest magnitudes into decisions.

After the first iteration, we are left a residual problem to

solve. Now suppose s =

(
s1
s2

)
where s1 denotes the

rounded elements that are held fixed, and s2 contains the un-
rounded elements yet to be set. We can re-write the objective
as the maximization of(

s1
s2

)T (
B11 B12

B21 B22

)(
s1
s2

)

= sT2 B22s2 + 2sT2 B21s1 + sT1 B11s1

where B11, B12, B21 and B22 are four sub-matrices of B.
Equivalently we have a residual problem to maximize

L = sT2 B22s2 + 2sT2 B21s1

with respect to s2, subject to the unit length constraint.
We can apply the gradient-based method for the maximiza-

tion by iteratively updating s2 along the gradient direction
and renormalizing it, with which the convergence is guaran-
teed.

We also find a procedure we call constrained power method
that gives excellent results. In gradient-based update s2 con-
verges when the gradient ∇L is parallel to the current esti-
mate of s2, or ∇L = 2λs2 where λ is a scalar number. Then
we have

s2 =
B22s2 +B21s1

λ
.

We can force λ to be positive. Since s2 is of unit length,
it must hold that ‖B22s2 +B21s1‖ = λ. Thus we reach a
simple update rule for s2:

si+1

2 =
B22s

i
2 +B21s1∥∥B22si2 +B21s1

∥∥ .
The update occurs in a similar manner as in the power
method. When B21s1 = 0, the constrained power method
reduces exactly to the power method.

Starting with the previous fractional result as s02, the con-
strained power method often converges quickly in practice.
Given the updated relaxed solution produced by the con-
strained power method, we again only round those elements
in s2 that have large magnitude. After this partial rounding,
we are left another residual problem sharing the same struc-
ture. The constrained power method and iterative rounding
are applied successively for each residual problem. The pro-
cess is terminated once s2 has no elements, hence all vertex
grouping decisions have been made.

It is also possible to apply the projected power method de-
veloped in [Xu et al., 2009] for the optimization problem in
each iteration, which exhibits similar performance as the con-
strained power method on community detections. We omit
the details here.

4.3 Complexity Analysis

To analyze the time complexity for iterative rounding in spec-
tral partitions, we first borrow some results on the power
method from [Newman, 2006]. For a sparse network with n

vertices and m ≤ kn edges where k is a constant, the power
method effectively requires O (n) matrix-vector multiplica-
tions to converge, where each multiplication requires O (n)
floating point operations. In total, the power method requires
O
(
n2

)
time to calculate the leading eigenvector of the mod-

ularity matrix.

Similarly to the power method, the constrained power
method has a complexity of O

(
n2

)
for a problem with n

variables. Furthermore, suppose after each iteration an ε
(0 < ε ≤ 1) fraction of the variables are rounded into integer
decisions. Then in the subsequent round the residual problem
becomes one with n (1− ε) variables, and the constrained

power method would therefore requireO
(
n2 (1− ε)

2
)

oper-

ations to converge. Repeating this argument, the complexity
of iterative rounding becomes:

n2 + n2 (1− ε)2 + n2 (1− ε)4 + n2 (1− ε)6 + · · ·

=
1

2ε− ε2
n2

≤
1

ε
n2

and we come to the following observation.

For a network with n vertices, the complexity of iterative
rounding is O

(
1

ε
n2

)
where ε is the fraction of variables to

round in each iteration.

Comparing with the complexity of O
(
n2

)
for conventional

rounding in network community detection, we can see the
difference is up to a factor 1

ε
, which is usually a constant

value in practice. Suppose in each iteration 1

4
of the variables

are rounded, then the run time of iterative rounding would
be around 4 times the run time of the conventional rounding
method. Although the estimate is not theoretically strict, as
we will see in our evaluations, it fits practice well.

5 Evaluation

We compared the proposed iterative rounding strategy to the
conventional spectral method. In a series of experiments we
observed consistent and sometimes very large improvements.
In particular,

• for two-way partitions (cf. Section 3.1), iterative round-
ing demonstrates significantly improved Q values;

• for multi-way partitions (cf. Section 3.2), iterative
rounding demonstrates significantly improved Q values;

• for partitions refined by exchange heuristics (cf. Sec-
tion 3.3), iterative rounding demonstrates significantly
improved Q values;

• iterative rounding has reasonable computation overhead
comparing with conventional rounding.

These evaluations were conducted on all fourteen networks
contained in a standard benchmark collection. 1 These bench-
mark networks cover a variety of application areas and are
briefly described in Table 1.

1http://www-personal.umich.edu/∼mejn/netdata/
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Table 1: Networks used in the evaluations and their sources.
The vertex numbers are listed in brackets.

Network Source

karate friendships of 34 members in a karate club
(34) [Zachary, 1977]

dolphins frequent associations of 62 dolphins
(62) [Lusseau et al., 2003]

lesmis character interactions from Les Misérables
(77) [Knuth, 1993]

polbooks co-purchase of politics books at Amazon.com
(105) (www.orgnet.com)
adjnoun adjacency of adjs and nouns in David Copperfield
(112) [Newman, 2006]

football US college football games during Fall 2000
(115) [Girvan and Newman, 2002]

celegans neural network of C. Elegans
(297) [Watts and Strogatz, 1998]

polblogs hyperlinks of US politics web logs
(1224) [Adamic and Glance, 2005]

netsci co-authorship on network theory and experiment
(1461) [Newman, 2006]

power topology of US Western States Power Grid
(4941) [Watts and Strogatz, 1998]

hepth co-authorship on preprints of High-Energy Theory
(7610) [Newman, 2001]

astroph co-authorship on preprints of Astrophysics
(16046) [Newman, 2001]

condmat co-authorship on preprints of Condensed Matter
(16264) [Newman, 2001]

internet snapshot of Internet in level of autonomous systems
(22963) (www.routeviews.org)

5.1 Two-Way Partitions

In this case, we divided each network into two partitions and
checked the Q value obtained by two rounding methods re-
spectively. The results are listed in Table 2. On all fourteen
networks, iterative rounding demonstrates improvedQ values
over conventional rounding.

For small networks, two rounding methods reported com-
parable Q values and the improvement from iterative round-
ing is not large. On the smallest “karate” network with
34 vertices, the improvement is only slight, from 0.371 to
0.372. However, on larger networks the improvements are
much more significant. One example is on “hepth” network
with 7, 610 vertices, where the conventional rounding result
is 0.034 while the iterative rounding achieves a modularity
score of 0.455.

5.2 Multi-Way Partitions

Next, we investigated multi-way partitioning, wherein two-
way partitions are repeated until no further increase of Q is
possible. These results are listed in Table 2, where it can
be seen that improvements achieved by iterative rounding re-
main consistent. On all networks, iterative rounding obtained
better Q values than conventional rounding.

Similarly to the two-way case, the improvement is partic-
ularly significant on large networks. On “karate” network,
the increase is only from 0.393 to 0.417; while on the larger
“hepth” network, it becomes 0.739 to 0.829; and on the

Table 2: Q values by conventional rounding (CR) and itera-
tive rounding (IR). Each item has three values (A/B/C). A
is for two-way partitions, B is for multi-way partitions, and
C is for multi-way partitions refined by exchange heuristics.
For networks with over 10, 000 vertices, the refined results
were not obtained on our computer.

Networks CR IR

karate .371/.393/.420 .372/.417/.420
dolphins .390/.491/.519 .403/.526/.526
lesmis .361/.532/.550 .381/.551/.560
polbooks .445/.467/.521 .457/.523/.527
adjnoun .191/.243/.308 .214/.298/.308
football .376/.493/.599 .400/.601/.605
celegan .261/.332/.400 .313/.381/.401
polblogs .424/.424/.425 .426/.426/.426
netsci .131/.671/.908 .496/.953/.954
power .062/.898/.924 .491/.933/.934
hepth .034/.739/.812 .455/.829/.839
astroph .195/.586/ .417/.725/
condmat .210/.677/ .453/.823/
internet .301/.419/ .370/.620/

largest “internet” network the improvement is from 0.419 to
0.620.

5.3 With Exchange Heuristics

As discussed in Section 3.3, the spectral partition method is
often used in conjunction with exchange heuristics, which
provides further refinement for the community partitions dis-
covered. In our experiments, we also compared the Q values
achieved by the two rounding methods after this fine-tuning.

The refined Q values are listed in Table 2. On “karate” net-
work, both methods successfully detected the partition struc-
ture with Q = 0.420 which is known to be optimal via math-
ematical programming [Agarwal and Kempe, 2008]. On “ad-
jnoun” network, the two methods obtained the same result
after refinement. On all the other nine networks where the
exchange heuristic was applicable on a conventional com-
puter, iterative rounding achieved improved Q values to con-
ventional rounding.

An interesting observation is that iterative rounding bene-
fits less from the exchange heuristic. For conventional round-
ing, the exchange heuristic helps to increase Q significantly
on most networks. However for iterative rounding, the in-
crease is not as evident. On the other hand, on eight out
of eleven networks, the iterative rounding multi-way results
alone (without refinement) are better than the conventional
rounding results with refinement, further exhibiting the effec-
tiveness of iterative rounding.

5.4 Run Time Comparison

We recorded the run time of conventional rounding and iter-
ative rounding on networks with more than 1, 000 vertices.
Both rounding methods were implemented in Matlab and run
on an Intel Xeon workstation with 32G RAM. For iterative
rounding, we set ε = 1

4
, meaning that 1

4
of the variables were

rounded in each iteration.
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Figure 2: Run time (in seconds) of two-way partitions by con-
ventional rounding (CR) and iterative rounding (IR) on net-
works with over 1, 000 vertices.

The two-way partition time is listed in Figure 2. The multi-
way partition time is not listed because the two rounding
methods typically produce partitions with different numbers
and sizes which makes the results not directly comparable.
From these results, we can see that iterative rounding brings
reasonable computation overhead, given the additional time
required to solve the residual problems. It is approximately
3 to 7 times slower than conventional rounding in the experi-
ment, consistent with our complexity analysis in Section 4.3.

6 Conclusion

This paper studies the community detection problem in net-
works. For this problem, a spectral relaxation algorithm is
widely used in combination with a standard rounding strat-
egy. Our work focuses on improving the results of these
methods by a sequential rounding approach. This rounding
strategy has achieved significantly improved results in empir-
ical studies.

The study of rounding strategies is difficult. Not much
work has been investigated [Fleischer et al., 2006]. In prac-
tice, however, the strategy can be extremely important, es-
pecially for relaxation-based methods. As we have seen in
Section 5, it sometimes governs the success of an algorithm.
Thus more investigations along this line deserve our further
attention. We expect such results to be applicable to a variety
of related spectral partition problems, such as normalized cut.
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