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Abstract

We propose a family of Passive-Aggressive Maha-
lanobis (PAM) algorithms, which are incremental
(online) binary classifiers that consider the distri-
bution of data. PAM is in fact a generalization of
the Passive-Aggressive (PA) algorithms to handle
data distributions that can be represented by a co-
variance matrix. The update equations for PAM
are derived and theoretical error loss bounds com-
puted. We benchmarked PAM against the original
PA-I, PA-II, and Confidence Weighted (CW) learn-
ing. Although PAM somewhat resembles CW in its
update equations, PA minimizes differences in the
weights while CW minimizes differences in weight
distributions. Results on 8 classification datasets,
which include a real-life micro-blog sentiment clas-
sification task, show that PAM consistently out-
performed its competitors, most notably CW. This
shows that a simple approach like PAM is more
practical in real-life classification tasks, compared
to more sophisticated approaches like CW.

1 Introduction

In tasks that require huge number of real-time classifiers, on-
line learning is the only viable option. For example, real-
time classification of status/micro-blog updates of millions of
social network users requires a personalized online classifier
to be maintained for every user [Li et al., 2010]. An online
learning algorithm updates its decision boundary incremen-
tally after processing each sample. Given a sample, it will
first classify it, so called making a prediction. The quantita-
tive difference in the prediction and true label is computed as
the loss, which is then used to adjust the classifier weights.
The goal is to maximize the correctness of future predictions.

The classical Perceptron [Block, 1962; Novikoff, 1962],
Second-order Perceptron (SOP) [Cesa-Bianchi et al., 2005],
suite of Passive-Aggressive (PA) algorithms [Crammer et al.,
2006] and its second order variants Confidence-Weighted
(CW) learning [Dredze et al., 2008] and Adaptive Regular-
ization Of Weight vectors (AROW) [Crammer et al., 2009b],
all belong to the same family of online algorithms, which per-
form well for a variety of real-time applications. However,
except for the Second-order Perceptron, these online learning
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algorithms do not explicitly account for the distribution of the
data [Cesa-Bianchi ef al., 2005]. PA algorithms that use the
squared Euclidean distance work well for data with spherical
distributions. However, for hyper-ellipsoidal data distribu-
tions, performance can be poor. In fact, PA assumes data to
be spherically distribution. To overcome this deficiency, we
propose using the Mahalanobis distance measure in place of
the Euclidean distance in PA, and call the new approach the
Passive Aggressive Mahalanobis (PAM) algorithm. PAM up-
date equations bear a close resemblance to that of the CW,
which took a different route by assuming that the weights are
normally distributed with a mean vector and covariance ma-
trix. However, PAM is different from CW in its update cri-
terion. CW minimizes the differences between the new and
old weight distribution whereas PAM simply maintains the
original PA goal by minimizing the weight vector differences
adjusted by the weight covariance.

2 Related Work

Online linear classification algorithms have been studied for
close to 50 years, starting with the Perceptron [Block, 1962;
Novikoff, 1962]. Recently, there has been a renewed in-
terest in Perceptron-like algorithms such as the Second-
order Perceptron [Cesa-Bianchi et al., 2005] and the Passive-
Aggressive (PA) algorithm [Crammer et al., 2006], with the
latter incorporating the margin maximizing criterion of mod-
ern machine learning algorithms. Algorithms that improved
upon the PA algorithm include the Confidence-Weighted
(CW) linear classification [Dredze et al., 2008] and its lat-
est version, the CW algorithm for multi-class classifica-
tion [Crammer et al., 2009a]. CW assumes that the weight
at each time step is Gaussian distributed with a mean vector
and covariance matrix. As such, the weight vector is updated
by minimizing the Kullback-Leibler divergence between the
new and old weight distributions.

There is also a related class of Bandit algorithms [Kakade
et al., 2008], whose learning process is similar to the Percep-
tron algorithm. However, in the prediction phase, the Ban-
dit algorithm does not know the true label of the instance.
The Bandit algorithm is actually more realistic with respect to
real-world online tasks like micro-blog classification, since in
practice the real class label is not known after each prediction
unless the user constantly validates every prediction.

Other online learning algorithms use the Newton weight



update method, including the LaRank and the OLaRank al-
gorithms [Bordes et al., 2007; 2008]. Some are inspired by
support vector machines [Cortes and Vapnik, 1995] and the
Huller algorithm [Bordes and Bottou, 2005].

3 Passive-Aggressive Mahalanobis

The online binary classification framework in this section fol-
lows the PA algorithm formulation [Crammer et al., 2006].

3.1 Online Learning

Online learning operates on a sequence of data with time
stamps. At time step t, the algorithm process an example
x; € R™ by first predicting its label g, € {—1,+1}. Af-
ter prediction, it computes the loss £(y;, §;) which is the dif-
ference between its prediction and the revealed true label
yt € {—1,+1}. The loss is then used to update the weight
with respect to some criterion. The goal is to achieve a mar-
gin of at least 1. So on a certain round if the margin is less
than 1, the algorithm suffers a loss. The loss can be modeled
using the hinge-loss function, which equals to zero when the
margin exceeds 1, as shown below.

0
1—y(w-x)

y(w-x) > 1
otherwise

fwi (x,9)) = { 0

Passive Aggressive Algorithms

The overall objective of online learning is to minimize the
cumulative loss over the entire sequence of examples. Cram-
mer [Crammer e al., 2006] formulated it as an optimization
problem and derived three versions of the PA algorithms as
follows. First, the optimization problem is formulated as fol-
lows.

argmin

wER™
S.t.

1
Wil = 3 | w—w, |
Uw; (x¢,y:)) =0

Crammer updates the weight vector w,; at each round as

2

1- yt(Wt : Xt)
[ x¢ [I?

Wiyl = Wi +1eyeXe and 1 = 3)

Second, to allow for incorrect predictions, a slack variable &
was introduced into the optimization problem (2) with two
penalties; linear and quadratic. The weight update equation
to the soft-margin problem has the same form as that of (3),
but with the weight coefficient 7; defined as follows.

1- yt(Wt : Xt)
[ xe [I?

Tt = min {C, } and Tt = T

2C

The three flavors were named PA, PA-I, and PA-II respec-
tively.

Il (12 +

Confidence Weighted Learning

Using a probabilistic approach, the confidence-weighted
(CW) online learning algorithm learns a Gaussian distribution
of weights with mean vector p and covariance matrix . The
weight distribution is updated by minimizing the Kullback-
Leibler divergence between the new weight distribution and

1- yt(Wt 'Xt)
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the old one while ensuring that the probability of correct clas-
sification is greater than a threshold as follows.

argrgin Drr(N (1, 2), N (pe, 2t))
s
Pryonus)lye(w-x;) > 0] > 1

(B4, Beq1) =
S.t.

)
where Pr denote the point probability. This optimization
problem has a closed form solution:

Het1 e oy deXy (5)

2t+1 = Et—ﬁtEtXtTXtEt (6)

where —(1+2¢Mt)+\/(1-z(‘z>/iwt)2_8¢>(Mt—¢>vt)’ 8, =
2at¢

Ty Vi = xI'Syx¢, My = yi(j1e - X¢), and ¢ is a confi-
dence parameter depending on 7).

3.2 Hard Margin PAM

PAM is similar to PA, except for its use of the Mahalanobis
distance measure in place of the Euclidean distance measure.
The new optimization problem is defined as follows.

1 -
W1 = argmin _(w — w;) 50 (w — wy)
WER™
(w; (x¢,9:)) =0

where X;_; is the covariance matrix of the weight vector dis-
tribution at round ¢ — 1. Solving the above problem, we have,

S.t.

&

and 71 = ———
T
X; L 1Xt

Wil = Wi + e 1%y (N
Finally, we obtain the hard margin Mahalanobis Passive-

Aggressive (PAM) algorithm as shown in Algorithm 1.
3.3 Soft Margin PAM

Extending PAM to deal with misclassified samples, we intro-
duce the slack variable £ as follows.

1 _
Wiy = argmin §(W —w) 'S (w—wy) +

wWER™
(@3 {(w; (x¢,y1)) <& and £2>0

where C' is the positive aggressiveness constant, which con-
trols the aggressiveness of each update step. The bigger the
C, the larger the update. We thus have the following solution.

i

By defining a different objective function that changes
quadratically with the slack variable &, we have the follow-
ing optimization problem.

S.t.

1-— yt(wt . Xt)

T
X; Mp_1%¢

7, = min {C,

1
Wiy, = argmin §(w —w) TS (W —wy) + C¢?
wWER™
O(ws (xt,91)) <€
Solving the above problem, we have the following result.

1 — yt(wt . Xt)
X?Et_lxt + %

)
s.t.

Tt =



Algorithm 1 Passive-Aggressive Mahalanobis (PAM)
Input:
C = positive aggressiveness parameter
Output:
None
Process:
1: Initialize ¥y < I, wy < O;
2: fort=1,2,...do

3:  Receive instance x; € R™
4:  Predict §; = sign(wy - x)
5:  Receive correct label y; € {—1,+1}
6:  Sufferloss ¢; + max{0,1 — y:(ws - x¢)}
7. if 4; > 0 then
4
8 Set 74 ¢ ——— (PAM)
! xIY 1%y .
7 ¢ min {O, 7t} (PAM-I)
! ) XI'Y 1%y
t
DI (PAM-II)
X?Et_lxt + %
9: Update wy < W1 + Tyl 21Xy
I Ty,
S e N, — t 1X;Xt t—1
1+ X Etflxt
10:  end if
11: end for

The two updates are named PAM-I and PAM-II, respec-

tively. Both share the same general form w;11 = w; +
Ty 2t—1X¢, With a different update step as follows.
14
ri=min {C, —=t—1 (PAM-D
X; 2 1X¢
and
&
T = (PAM-II)

T 1
X3 Etflxt + 50

3.4 Covariance Matrix Estimation

We describe a way to approximate the covariance matrix X
over the weight vector w. Consider the evolution of the ob-
jective function starting at £ = 0 and X9 = I. Atround T, we
have the loss function 1 — yrwr - x7 where wr is the weight
vector at round 7. Denoting y as a vector [y1,y2, - ., yr]
and X = [x1X2...Xr] as a matrix of column input vectors.
We can write the PAM weight update as,

1—-yXwr =0 or y—Xwr =0
Multiplying the above equality by X*', we have,

X'y —=Xwr)=0 or X'Xwy=X"y
Multiplying the above equality by (X7 X)~!, we have,

wr = (XTX)"1XTy

Assuming an i.i.d. noise model, we can write y = Xw +
e, where e is an error vector. Substituting y into the above
equality, we have,

wr = (XTX)"1XT(Xw +e) =w + (XTX) " 1XTe
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The covariance matrix of w has the form,
Y7 = Cov(wr) = E[(wr — w)(wr — w)7]
or
Yr =E[XTX) 1XTee! X(XXT)!]
= (XTX)"'X"TE[ee”|X(XXT)"!
Since, the PAM weights are updated to achieve a margin of
at least 1, we can assume that E[ee”] = ¢?1. The covariance
matrix can be approximated as follows.

Yr = (XX~ (XXT) !
Following the work of [Cesa-Bianchi er al., 2005], we can
write,

vl =2t Fxx! )
Applying the Sherman-Morrison formula to (9), we have,
I D
Y= — t—1Xe Xy 2up—1 (10)

From Equation (9), we can conclude that 33, L 2;11 and
¢ X X;_1. Like the PA family, all three PAM algorithms
share the same weight update equation, differing only in the
update rate 7, as shown in Algorithm 1. In fact, the PAM-
II weight update resembles that of Adaptive Weight Regu-
larization [Crammer et al., 2009b] (AROW). The difference
between PAM-II and AROW is that PAM-II does not explic-
itly regulate the update of the covariance matrix ¥;. PAM
was primarily motivated by adding a data noise model to PA,
while AROW and CW started out by assuming a distribution
of weights. The end results are very similar, differing only in
the update rates.

Ma et al. [Ma et al., 2010] examined in depth several strate-
gies to estimate the covariance matrix efficiently, along with
their practical implications specifically for CW, but which can
be used for any second-order learning algorithms, including
PAM. In this paper, we will not focus on the practical issue of
computing the covariance, but instead measure the classifica-
tion performances of both CW and PAM assuming that a full
covariance matrix is available and feasible.

3.5 PAM Error Analysis

In this section we provide several theoretical results for PAM,
omitting the proofs due to lack of space.

Theorem 1 (Relative Loss Bound) Given a sequence of M
examples [(Xx1,y1), - - -, (Xar,yar)], any weight vector u €
R", and loss U7 = 0 for all t, the cumulative relative loss of
PAM is upper bounded by

fo < (| u ||2 + uTXngu) m?xx;‘FEtxt (11
t
where U is the set of indices for examples leading to the
weight updates and Xy X = 3, oy xix{ .
Theorem 2 (PAM-I Mistake Bound) Given a sequence of
examples [(X1,91),- .., (Xar,yam)] and any weight vector

u € R", the number of mistakes made by PAM-I is upper
bounded by

1
ZHul?+ o"XuXfu
M«
+C0Y ét)

where C'is a positive aggressiveness parameter.

T
max{maxx; >;Xy,
{ i t St (12)



Theorem 3 (PAM-II Loss Bound) Given a sequence of ex-
amples [(x1,y1), - .., (Xa, ym)] and any weight vector u €
R™, the cumulative relative loss of PAM-1I is upper bounded
by

1
2 < ( 5 —)( 2
; t > m?)cxt tX¢ + 20 [ al

(13)
T XoXfu+C 2 (6)?)

+(=2

1+ 5=

In [Crammer er al., 2006], the squared upper loss bound
of the PA algorithm was defined as ||u||?(max |x|)2. This
bound depends only on the norm of weight vector u. It does
not consider the input data distribution while the upper bound
of the PAM algorithm depends on both the norm of u and
u” X X} u, the data spectral term. We know that the second
term is finite and bounded by the maximal eigenvalues of the
matrix XUXE. Another term in the loss bound of the PAM-I
and the PAM-II algorithms is X?Etxt, which is a trade-off
factor between the hinge-loss term and the data spectral term.
In CW learning, the matrix X, is called the confidence, which
decreases monotonically with observed data. We also have
Yo = I therefore we always have x! ¥;x; < X! X;, which
causes the data spectral term to increase with the hinge-loss
quantity. However, it is very difficult to compare the upper
loss bounds of the two families because both depends on the
input distribution.

4 Performance Evaluation

A total of 8 datasets were used including two binary classi-
fication datasets (CRX and BUPA datasets from UCI [Asun-
cion and Newman, 2007]), two binary web datasets (WebKB
and Twitter Sentiment), and two multi-class datasets (USPS
and MNIST). For the multi-class datasets, one random class
out of C' classes was selected as positive, and a negative class
of equal size was generated by sampling (the same number
of samples as the positive class) from the remaining C' — 1
classes. Where applicable, all experiments were repeated 10
times with different randomizations, and the average results
shown/plotted. Results on the twitter dataset was single-run,
since the data are deterministically ordered and binary.

4.1 Cumulative Error Rate

We use the standard cumulative error rate, which is the ratio
of mistakes over the total number of examples. To ensure a
fair comparison of our proposed algorithms with the original
Passive-Aggressive algorithms, we grid-searched the optimal
aggressiveness parameter C' in all PA-based algorithms. To
be fair, we compare our PAM-I and PAM-II with the original
PA-I and PA-II, respectively. We excluded the PA results as
it performed worse than the PA-I and PA-II [Crammer et al.,
2006]. For brevity, we only show the cumulative error rate
comparisons between PA-II, PAM-II, and CW here.

The cumulative error rates on the two binary datasets are
shown in Figure 1. For BUPA, all three algorithms started
off with similar loss, but PAM-II starts to pull away from the
pack after 60 examples, and consistently exhibit lower log-
mistake rate thereafter. For CRX, PAM-II leads after iteration
30, with an overall lower mistake rate thereafter.

1430

ANl
02 —— PAM-I|
——cw

log(mistakes)
log(mistakes)

o 50 100 150 200 250 300 50 o 100 20 a0 400 500 600 700
number of examples number of examples

(a) The BUPA dataset (b) The CRX dataset

Figure 1: Cumulative error for BUPA and CRX.
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Figure 2: Cumulative error rate for USPS and MNIST.

Figure 2 shows the cumulative error rates on the two letter
recognition datasets. PAM-II performed better right from the
start, but not significantly better overall because the negative
class in this case is heterogenous (formed by a uniform equal-
sized sample of the non-positive class);better results can be
expected in a one-of classification.

The WebKB dataset contains 1051 web documents from
two classes, each with two views. We tested all algorithms
only on the textual view, with results shown in Figure 3.
Again, PAM achieved consistently lower log-mistake rate,
widening the gap with increasing number of examples.
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Figure 3: Cumulative error rate for WebKB.

4.2 Classification Accuracy

In practice, classification performance in terms of F-measure
is typically more important than cumulative error rates. The



positive (+) and negative (-) class F-measures for all 5
datasets are listed in Table 1 with the best results in bold.
PAM-II consistently outperform other algorithms, including
CW. Although, CW performed better than the original PA-I
and PA-II, it still falls a little behind PAM. For BUPA, PAM-II
is more than 2% better than CW. PAM-II achieved the largest
winning margin against on CRX+, where it is more than 11%
better than PA-II, and 2% better than CW. Overall, PAM-II
beats CW only by a marginal 1-2%. Again, the positive class
improvements over PA-II are significantly better because it is
much more homogeneous compared to the artificially consol-
idated negative class.

Table 1: F1 (%) for positive (+) and negative (-) classes.

| Dataset | PA-II | PAM-IT | Cw |
BUPA+ 61.21 +2.78 | 64.28+1.13 | 61.79+2.43
BUPA — 57.856+1.31 | 60.20 = 2.55 | 57.61 &= 2.00
CRX+ 68.544+0.40 | 80.37 +£0.51 | 78.28 +0.93
CRX— 7T7.83+0.62 | 84.13 +0.62 | 82.54 +0.60
USPS+ 94.08 £2.77 | 95.26 =2.56 | 94.81 +2.79
USPS— 93.84 +£2.78 | 95.05 +2.56 | 94.57 £ 2.79
MNIST+ | 57.85+3.43 | 59.51 +£1.72 | 58.64 +=0.90
MNIST— | 58.97+2.47 | 60.47 +£1.48 | 58.52+1.12
WEBKB+ | 77.02+1.14 | 7890 +1.63 | 76.49 +1.40
WEBKB— | 90.98 £ 0.66 | 92.94 +0.84 | 90.78 = 0.74

4.3 Online Microblog Data

To illustrate the utility of online algorithms, we apply them to
learn emotions from real-life micro-blogs. The Twitter' sen-
timent dataset [Li er al., 2010] is a collection of micro-blogs
(tweets) written by 6 users. Each tweet is manually labeled as
emotional (positive) or non-emotional (negative). An online
model was applied to each user’s tweets in chronological se-
quence. Each model was initialized to some random weights;
after it classifies an incoming tweet, the tweet’s true label is
revealed to update the model weights, and the online classifi-
cation/learning continues until the last tweet is predicted.
From the individual loss plots in Figure 4, PAM-II again
consistently outperformed the other algorithms. However,
the advantage of PAM-II depends very much on the dataset.
For instance, for user DenyceLawton (c), PAM-II did signif-
icantly better than the others but for another user CarlaMed-
ina (b), PAM-II performed only marginally better. On closer
examination, we found that CarlaMedina writes equally fre-
quently in Spanish and English. Since our human labeler is
not Spanish literate, a large portion of the tweets have been
labeled incorrectly. For example, Spanish emotions were not
properly labeled, labeled emotional tweets contain a mix of
Spanish and English with English terms acting as the decisive
factor. As a result, the labeling for user CarlaMedina is very
noisy. Another consequence of not knowing the language is
the highly imbalanced class distribution, with user CarlaMed-
ina having the smallest raw count of 250 positive (emotional)
labeled samples. Specifically, users Audrey Walker, CarlaMe-
dina, DenyceLawton, IheartBrooke, RealMichelleW, and

"hitp://twitter.com
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SabrinaBryan have 15.5%, 19.4%, 41.6%, 18.9%, 17.0%, and
17.4% positive tweets respectively. For PAM-II, this means
that the model would have very little chance to make a wrong
prediction and significantly adjusting its weight; an occa-
sional positive sample would cause the margin to be reduced.
For such a case, PAM does not benefit much from consider-
ing the sample distribution, since the covariance matrix would
account for a far smaller number of samples.

For CarlaMedina, PAM II started to decisively outperform
CW only after around 250 samples, by when it should have
seen approximately 50 (19.4% of 250) positive samples, as-
suming a uniform class distribution. For other marginal users
like AudreyWalker (483 positive, PAM wins after 40 sam-
ples), RealmichelleW (495 positive, PAM wins after 100),
and SabrinaBryan (551 positive, PAM wins after 200), who
all have around 500 total raw positive tweets, their cumulative
PAM loss rates were all able to pull away from the competitor
earlier than CarlaMedina (342 positive, PAM wins after 250),
simply because they have a larger number of positive tweets.

5 Conclusion

We proposed PAM, a generalization of the Passive-
Aggressive algorithms [Crammer et al., 2006] that takes
into account the data spectral properties. PAM was eval-
uated on several datasets and found to consistently outper-
form other online algorithms, including its cousin Confidence
Weighted (CW) learning. Results on online classification
tasks have shown an average of 4% to 12% improvements
in Fl-measure. We have also validated the practicality and
superiority of PAM on a real-world twitter emotion classifi-
cation dataset.

Compared to PA, PAM runs slower because it needs to
compute the covariance matrix, which scales quadratically
with the number of features. To solve this problem, we can
deploy the approximate version of the PAM algorithm by cal-
culating the diagonal matrix in the same way as the CW algo-
rithm [Dredze et al., 2008; Ma et al., 2010].

We are currently extending the PAM family of algorithms
for multi-class and structural data problems. We are also re-
fining the analytical error loss bounds of PAM, so as to stip-
ulate the data conditions for which PAM will be decisively
superior and vice-versa. For future work, we would also want
to evaluate extensively the practical performances of AROW
versus PAM-II, given their similarities in the weight update
equations. In particular, we want to find out if the adap-
tive update of the covariance matrix in AROW is superior to
PAM-II’s static covariance update approach.
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