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Abstract

Consistency-based feature selection is an important
category of feature selection research yet is defined
only intuitively in the literature. First, we formally
define a consistency measure, and then using this
definition, evaluate 19 feature selection measures
from the literature. While only 5 of these were la-
beled as consistency measures by their original au-
thors, by our definition, an additional 9 measures
should be classified as consistency measures. To
compare these 14 consistency measures in terms
of sensitivity, we introduce the concept of quasi-
linear compatibility order, and partially determine
the order among the measures. Next, we propose
a new fast algorithm for consistency-based feature
selection. We ran experiments using eleven large
datasets to compare the performance of our algo-
rithm against INTERACT and LCC, the only two
instances of consistency-based algorithms with po-
tential real world application. Our algorithm shows
vast improvement in time efficiency, while its per-
formance in accuracy is comparable with that of
INTERACT and LCC.

1 Introduction

Designing lean, efficient and accurate feature selection algo-
rithms is one of the central problems in machine learning the-
ory. The literature has three major approaches for designing
feature selection algorithms: the filter, wrapper and embed-
ded approaches (e.g. [Molina et al., 2002]). The wrapper and
embedded approaches are rather pragmatic in nature, aimed
at optimizing the output of the learning algorithms that will
be used. By contrast, filter algorithms study intrinsic prop-
erties of datasets, and attempt to find optimal feature subsets
that yield good learning results, regardless of choice of learn-
ing algorithms. Also, the filter approach has a practical ad-
vantage over the other two in that the algorithms are usually
much faster. In this paper, our interest is in the filter approach.

Filter approach algorithms can be classified into two cat-
egories according to how they evaluate relevance of feature
subsets. One group evaluates relevance for individual fea-
tures, and selects features based on an evaluation rule (e.g.
select the features with higher relevance than a threshold).
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In the second group, algorithms use measures to evaluate
relevance of subsets of features. The advantage of the first
group is higher time efficiency, since an algorithm evaluates
relevance only as many times as the features appearing in a
dataset.

Nevertheless, algorithms of the first group have the weak-
ness that they may pass over relevant features when features
interact to determine class labels ([Zhao and Liu, 2007]). For
example, let F; and F5 be mutually independent uniformly
random binary features, that determine binary class labels C
as in C = F; @ Fy, where @ denotes the binary addition.
Although F; and F5 together determine the class labels, con-
sidered individually, they are completely irrelevant in deter-
mining class labels.

Consistency-based feature selection was proposed as a so-
lution to this problem (e.g. [Zhao and Liu, 2007]), and sev-
eral consistency measures are proposed ([Liu er al., 1998;
Pawlak, 1991; Arauzo-Azofra et al., 2008; Shin and Xu,
2009]). In consistency-based feature selection, consistency
measures are used to evaluate relevance of feature subsets. A
consistency measure is intuitively defined as a metric to mea-
sure the distance of a feature subset from the consistent state.
A feature set {Fy,...,F,} is said to be consistent, when

Pr(C=c¢|F1=f1,...,Fn=fn)=0o0rl
holds for all ¢, f1,..., f,. When a feature subset is consis-
tent, the inconsistency value is 0, and as an inconsistent fea-
ture subset approaches the consistent state, the measure de-
creasingly approaches 0. To illustrate, {F1,F2} in our pre-
vious example is measured to be 0, whereas the measure for
{F,} and {F,} should be high. A consistency-based algo-
rithm solves the aforementioned problem by selecting feature
subsets with a sufficiently small inconsistency value.

Despite the advantage of the consistency-based approach
in handling interaction effects, there are three important out-
standing issues regarding the measure:

1. We only have an intuitive definition for consistency mea-
sures. A formal definition is lacking.

2. Although several measures are proposed as instances of
consistency measures, we don’t have a basis to compare
them.

. Due to the relatively heavy computational cost required
to evaluate a consistency measure, consistency-based al-
gorithms exhibit low time efficiency.



We address these issues as follows.

1. We propose the determinacy and monotonicity condi-
tions as axioms for the definition of consistency mea-
sures. Using this definition, we identify additional fea-
ture selection measures in the literature as inconsistency
measures.

. To compare these inconsistency measures in terms of
sensitivity, we introduce the concept of quasi-linear
compatibility order.

. We propose a new consistency-based algorithm that
shows vast improvement in time-efficiency over other
consistency-based algorithms, while exhibiting compa-
rable performance in accuracy.

2 Consistency measures defined

In this section, we provide a formal definition for consistency
measures, and use this definition to reclassify feature selec-
tion measures listed in the detailed survey by Molina et al.
([Molina et al., 2002]). For convenience, we use the nota-
tions shown below.

Symbol  Definition
€2 The countable population of features.
PBo(2)  The set of all of the finite subsets of €2.
X  Anelement of Po(£2).
C A random variable to represent a class label.
P(Q,C) The set of probability distributions over Q U {C'}.
€ A finite dataset.
P(€) The empirical probability distribution induced from
E.
a[X] The vector of values of a € £ with respect to X.
a[C] Theclass label of a € £.
x—e ={a€f|a[X]=2a}
Ex=w0=¢ ={a|a[X]=w=a[C]=¢}

2.1 Definition

The concept of a consistency measure was introduced to eval-
uate the distance of a given feature set from the consistency
state. Using the notations introduced above, consistency of
feature sets is formally defined as follows.

Consistency state. For P € P(2,C), X C € is said to be
consistent with respect to P, when

PC=¢| X =x)=0,1
holds for any value vector « to X and class label &.

A consistency measure determines a non-negative value
(P, X) given a probability distribution P € P(Q2,C) and
a feature subset X € P, (€2), and hence,

i PR, C) x Po(2) — [0, 0).

Here, we focus on two crucial properties of the distance.
One, is that the distance between two points is 0, if, and only
if, the points are identical. The other is that, the closer two
points are to each other, the smaller is the distance value. The
determinacy condition introduced in this section corresponds
to this first property of the distance, while the monotonicity
condition corresponds to the second property.
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The determinacy condition can be formulated in a straight-
forward manner as follows.

Determinacy. u(P, X) = 0 holds, if, and only if, X is con-
sistent with respect to P.

By contrast, it is not straightforward to provide the simi-
lar expression for the second property of the distance in the
case of consistency measures. This is because it is impossible
to reasonably determine which of feature subsets X or Y is
closer to the consistency state. Assume that P is the empirical
probability distribution derived from a finite dataset £. Then,
the inconsistency rate measure of X ([Liu et al., 1998)), is
defined as follows.

pier (P, X)) = Z (P(X

x

z) —max P(X = ,C = g))

If pier(P, X) = 0.5 and pigr(P,Y) = 0.01, X and Y be-
come consistent when we remove 50% and 1% examples in
& appropriately. This interpretation reasonably lead us to con-
clude Y is closer to the consistency state than X . Yet, with-
out contradiction, we can also assume that X becomes con-
sistent if we add one more feature to X, while Y requires
many features to be added to become consistent. This would
result in a contradiction. Thus, in order to determine which
feature subset in X and Y is closer, we require an interpreta-
tion model, which can vary according to specific algorithms.
As an exception when two feature subsets are in an inclusion
relation, we don’t need such a model . Thus, the monotonicity
condition defined below should hold, regardless of the inter-
pretation model.

Monotenicity. If X 2V, (P, X) < u(P,Y) holds for an
arbitrary probability distribution P € P(€2, C).

Although the monotonicity condition was known in the lit-
erature, the literature emphasizes the importance of the condi-
tion for algorithm efficiency ([Pawlak, 1991; Liu et al., 1998;
Arauzo-Azofra et al., 2008; Shin and Xu, 2009]). By con-
trast, in this paper, we claim that the conditions of deter-
minacy and monotonicity should be the axioms that define
a consistency measure.

An example of a consistency measure according to our def-
inition is the binary measure defined below.

0,
1

if X is consistent with respect to P,

i (P; X) { otherwise.

)

2.2 Reclassifying feature selection measures

For our analysis, we took advantage of the excellent survey by
Molina et al., that lists six types of measures: Dependence,
Information/Uncertainty, Error probability, Divergence, In-
terclass distance and Consistency. Ben-Bassat shows that the
first four categories overlap ([Ben-Bassat, 1982]).

We ignored the types Dependence and Informa-
tion/Uncertainty from the scope of our analysis, since
these evaluate the relation between individual features and
class labels. As described earlier, consistency measures
evaluate relevance of feature subsets instead of individual
features. We investigated 19 measures, and found that 14
were consistency measures. Surprisingly, only 5 of these 14
were described as such in the Molina survey.



Error probability. The error probability defined bellow is
also known as Bayesian risk.

pep(P. X) =1 = E(max P (C = y | X = @)

Bayesian risk is equivalent to the inconsistency rate measure
([Liu et al., 1998]) when applied to the empirical probabil-
ity distributions derived from finite datasets, and Liu et al.
proved that the inconsistency rate satisfies the conditions of
determinacy and monotonicity.

Divergence. When class labels are binary, a divergence
(distance) between two probability distributions of px () =
P X=x|C=0)andgx(x)=P(X =« | C =1)can
be used as a measure for feature selection. The divergences
of Chernoff, Bhattacharyya, Kullback-Leibler!, Kolmogorov,
Matusita and Patrick-Fisher are commonly derived from the
formula

Ix =Y [(px (@), qx (x)). (1)

The definitions for f are given in Table 1.

Table 1: Instances of divergence

f(z,y) = divergence =

Chernoff xoytTs —InJ
Bhattacharyya VZY —InJ
Kullback-Leibler (2 —y)In J
Kolmogorov |z —y| J
Matusita ~ (vz — /7)? VJ
Patrick-Fisher (x —y)? VI

Jx can be converted to measures for feature selection as
described in Table 2, and the resulting measures satisfy the
determinacy and monotonicity conditions for the cases of
Chernoff, Bhattacharyya, Kolmogorov and Matusita. In ex-
amining the monotonicity condition, Lemma 1 plays a crucial
role.

Lemmal. If f(z +y,z +u) < f(z,z) + f(y,u) holds for
arbitrary x > 0,y > 0,2 > 0and u > 0, Jx < Jy holds
for X C Y. Also, if flz+y,2+u) > f(z,2) + f(y,)
holds for arbitraryx > 0,y > 0,2 > 0andu > 0, Jx > Jy
holds for X C Y.

Interclass distance. Interclass distance determines a dis-
tance between two classes as an average of the distances be-
tween all of the examples that belong to the classes. To illus-
trate, for two examples a, b in a dataset £, we let dx (a,b) =
> xex |a[X] — b[X]|, which is the L1-norm of the vector

a[X] — b[X] in the space RX. Then, a distance between

classes & and 7 is defined by
1

Dx(&m) = > Y dx(ab).

(IGSC:E bEEC:n

o= Il o=y |

ISince there is no essential difference between the class labels 0
and 1, we examine a symmetric version of Kullback-Leibler diver-
gence.
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Table 2: Determinacy and monotonicity for divergences

Divergence Symbol n nn D M
Chernoff  pnch/ tnnch J J Y Y
Bhattacharyya  pingh/ tnngh J J Y Y
Kullback-Leibler  pink/pnnk. €7 e’ N Y
Kolmogorov  pinkol/ fennkol - % 1-J Y Y
Matusita IanMa/,UnnMa - g 1—-J Y Y
Patrick-Fisher  pinpr/ptanpr 1 — 51— % Y N

The symbols “n” and “nn” indicate “normalized” and “non-normalized”, respec-
tively. For a normalized divergence, px () and gx () are determined by
px(x) = P(X x | C = 0) and gx () P(X ==x | C =1),
whereas they are determined by px () P(X x, C 0) and
gx (x) = P(X = x,C = 1) for a non-normalized divergence. Also, the symbols
“D” and “M” mean “Determinacy” and “Monotonicity”, and the values A and B used
in the row of Patrick-Fisher are defined as follows.

A=>"PX==|C=0°+> PX==|C=1)

@
B=Y PX=2,C=0>+> P(X==20C=1)
@x @x

On one hand, by applying a positive decreasing function to
Zg +n Dx (&,m) for example, we can derive a measure from
the interclass distance so that it satisfies the monotonicity
condition, since, if X € Y, dx(a,b) < dy(a,b) holds.
On the other hand, even for such a measure, the determi-
nacy condition does not hold. When X is consistent, any
pair a € Ec—¢ and b € Ec—,, satisfies a[X] # b[X], and
hence, dx (a,b) # 0. Nevertheless, this does not mean that
Dx (&,m) > Dy (€,m) would always hold for consistent X
and inconsistent Y.

Other consistency measures. In [Molina et al., 2002], the
inconsistency rate pier ([Liu et al., 1998]) is discussed. Other
consistency measures in the literature are: rough set con-
sistency measure ps ([Pawlak, 1991]), inconsistent example
pair measure Licp ([Arauzo-Azofra et al., 2008]), conditional
entropy fce and complementary symmetric uncertainty ficsy
([Shin and Xu, 2009]).

3 Comparing consistency measures

A method to compare consistency measures would provide a
basis to select a particular measure for a specific task. For
example, suppose we wish to select a measure with higher
predictive accuracy. How can we go about doing this? Com-
paring measures is difficult, since one feature selection algo-
rithm cannot always outperform others for all classification
algorithms and all datasets. One approach that would provide
an approximate answer would be: test the feature selection
algorithm in combination with a wide variety of classifica-
tion algorithms and datasets — but this is time consuming and
very impractical. To the best of our knowledge, the litera-
ture does not guide us on how we could compare consistency
measures.

To fill in this gap in the literature, we introduce the terms
sensitivity and quasi-linear compatibility order to serve as a
theoretical basis to compare measures. Now, a measure with
a threshold, classifies its evaluation targets into two groups,



those with values smaller than the threshold and, the rest.
We are interested in the former group. A measure that can
identify any group of targets that another measure identifies
is termed to have a higher sensitivity, and can therefore be
considered to be better. We do the comparison in terms of
the relative sensitivity of the measures. It is reasonable for
example, to expect that measures with a higher sensitivity,
when implemented in feature selection algorithms, will result
in better accuracy performance for a majority of classification
algorithms and a majority of datasets.

3.1 Quasi-linear compatibility order

Consider the simple case when two consistency measures fi;
and po satisfy puo = apy. In this case, we can intuitively
conclude that they are equivalent. This intuition is justified
by verifying V(§ > 0)[['(d : p1) = T'(«d : p2)], where
T3 1) = {(P, X) € P(,C) x Po() | (P, X) < 6}

represents the set of (P, X) that are identified by a measure p
with a threshold §. Although this reasoning gives us some di-
rection, it is still too restrictive in two senses. First, it doesn’t
give us any idea about which of two measures is more or less
sensitive. Second, since a consistency-based algorithm deals
with situations where feature subsets are close to the consis-
tency state, we are only interested in comparing measures in
a neighborhood of § = 0.

Therefore, we extend the aforementioned idea of compar-
ison, and introduce quasi-linear compatibility order as fol-
lows.

Definition 1. Let 111 and pio be consistency measures. We say
that pi1 is no less sensitive than po with respect to quasi-linear
compatibility, if, and only if,

3(a > 0)3(8 > 0)¥(6 < 8)[T(0 : ) S T(0d = )]
holds. Moreover, we denote the relation by 11 > L.

This definition implies all of (P, X) identified by a less
sensitive measure with a sufficiently small threshold § should
be also identified by a more sensitive measure with a thresh-
old linearly converted from §.

Definition 2. When both of (11 =< po and 1 = po simulta-
neously hold, we denote the relation by py ~ ps.

The relation ~ is an equivalence relation, and > becomes
a partial order over the quotient space by the relation ~. We
call this order quasi-linear compatibility order. When 1 =<
po and py o4 po, we denote this by pg < pio.

Theorem 1 provides us with a useful method to compare
given inconsistency measures.

Theorem 1. Assume (1 and po are both consistency mea-
sures and 0 is not an isolated point of the range of (11>. When
we define S(z) and I(x) by

S(x) = sup{p2(P, X) |

(P.X) € P(9,C) x Fo(S), js (P, X) = 2} and

I(w) = inf{ps (P, X) |

(Pa X) € P(Qa C) X mO(Q)a ,Ufl(Pa X) = :E}’
we have the following properties.

2 Among the consistency measures in 2.2, all but the binary mea-
sure fpin meet this condition.

S(z)
x

1. p1 = pe holds, if, and only if, limsup,_,, < 00

holds.

2. w1 > peo holds, if, and only if, the following two relations
hold simultaneously.

lim sgp{ul(P,X) | p2(P,X) <y}=0 (2
Yy—

liminf 2% < o 3)

x—0 xX

3.2 Comparing sensitivity of consistency measures

We investigated the order in sensitivity among the consis-
tency measures identified in 2.2. For example, I, (ticr) >
—log(1 — pier) and Sy, (ticr) = —(1 — pticr) log(1 — picr) —
ticr log picr hold, and hence, picr > pice follows from
Siee (i
lim sup —He 22 co (Hicr) =0
Ligr—0 Hicr

limm fnf Lpee (icr)

>1 and
Hier—0 Hicr

Similarly, we have the order in sensitivity of consistency mea-
sures depicted below.

Hicp
N

Hicr ~ Hep ™~ HnnKol
Y

{,UnCh » #nnChs #nBhs #nnBhs MnKols #nMas #nnMas Hrs, Hces Hesu }
Y

Hpin
4 Ouwr Algorithm - CWC

Since the number of feature subsets is an exponential function
of the size of the entire feature set, selection of a search or-
ganization has a great impact on the time efficiency of the
resulting algorithms. Here, [Zhao and Liu, 2007] made a
significant contribution by showing that their algorithm with
a linear search organization, INTERACT, can exhibit suffi-
ciently good performance in accuracy. INTERACT evaluates
only as many feature subsets as the involved features. Never-
theless, INTERACT failed to show sufficient improvement in
time-efficiency. In fact, the authors of [Zhao and Liu, 2007]
used only relatively small datasets for experiments with IN-
TERACT.

This low-efficiency of INTERACT is because the incon-
sistency rate pjcr, which is implemented in INTERACT, is a
continuous measure, that is, it can take an arbitrary value in
a certain interval, and hence, evaluation of the measure is
computationally costly.

Our new algorithm, CWC (Combination of Weakest Com-
ponents), attempts to combine the binary measure i, and a
linear search organization. CWC is a greedy backward elimi-
nation algorithm. We can expect some improvement in time-
efficiency with CWC, since evaluation of ppjn is much faster
than any other continuous consistency measures.

The algorithm of CWC is described in Fig. 1. In the algo-
rithm, the denoisation of £ are based on the following rules.

Rule 1. Eliminate all minor examples.
Rule 2. Eliminate all inconsistent examples.

Rule 3. Eliminate all examples with occurrence 1.
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Algorithm: CWC
INPUT: A feature set €2, an example set £,
OUTPUT: A minimal subset X € € such that
poin(P(€), X) = 0.
STEPS:
Let X = Q.

If pin(P(€), X)) = 1, remove presumable noise from &.
For each X € X from the first to the end.

If upin(P(€), X \ {X}) =0,let X = X \ {X}.
End For.

Figure 1: The algorithm of CWC

Two examples a and b are called inconsistent, when they have
the same feature values (a[Q2] = b[}]), but different class la-
bels (a[C] # b[C]). For inconsistent a and b, if the number of
cases of a is effectively smaller than that of b, a is called mi-
nor. In this paper, we test two different denoising algorithms,
aggressive and moderate. The aggressive algorithm executes
all of Rule 1, 2 and 3 in that order, whereas the moderate
algorithm does not employ Rule 3.

Also, when examining each individual feature, CWC does
not assume any particular order of features. However, the lin-
ear search organization tends to discard features tested earlier
with higher probability than those tested later ([Zhao and Liu,
2007]). Hence, the resulting accuracy will be usually better,
when features are aligned in some appropriate order (e.g. the
increment order of symmetric uncertainty).

As shown in 3.2, upin is the least sensitive measure. Hence,
it is reasonable to expect that the combination of the weakest
measure and the weakest search organization would signifi-
cantly sacrifice performance in accuracy in exchange for im-
provement in time efficiency. But as we see in Section 4.1,
CWC shows vast improvement in time efficiency and per-
formance in accuracy comparable with LCC ([Shin and Xu,
2009]). LCC provides improvement in accuracy performance
by addressing a theoretical flaw in INTERACT.

Since pjcr is more sensitive than i, LCC may possibly
show better accuracy when an optimal threshold is given.
However, it is impractical to look for an optimal threshold on
a trial-and-error basis, since LCC is as slow as INTERACT.

4.1 Experimental results

Settings. We compared CWC with other feature selection
algorithms with respect to runtime, accuracy and number of
features selected. The main goal of CWC is to improve run-
time efficiency compared to other consistency-based algo-
rithms. Accuracy and number of features selected are two
important measures in the literature to evaluate feature selec-
tion algorithms. In addition, since CWC includes a denoising
process, we investigate its reluctance to noise in datasets.

We selected INTERACT and LCC as the consistency-
based algorithms for comparison. Other known consistency-
based algorithms cannot be used for our experiments because
of their impractical low time efficiency. In addition, we com-
pared CWC with widely known non-consistency-based algo-
rithms, FCBF ([Yu and Liu, 2003]), ReliefF ([Kononenko,
1994]) and CFS ([Hall, 2000]).

The datasets for the experiments on runtime, accuracy and
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feature numbers are taken from NIPS 2003 Feature Selection
Challenge and WCCI 2006 Performance Prediction Chal-
lenge. Thus we have large-scale datasets of various types
(e.g. dense vs. sparse) (Table 4). For the experiment on
noise tolerance, we first generated synthetic datasets that in-
clude the unique minimum feature subset that is consistent,
and then added noise by flipping class labels.

Consistency-based algorithms handle only discrete fea-
tures. So we discretized datasets with continuous features
before running CWC, LCC and INTERACT, on them. For
the discretization, we employ a very simple algorithm that di-
vides the range of features equally into five class labels. In ad-
dition, we align features in the order of symmetric uncertainty
before CWC, LCC and INTERACT run on the datasets.

In the experiment with CWC on runtime, accuracy and
number of features, we show only the results with respect to
the moderate denoising, since the moderate denoising turns
out to pass over less relevant features than the other, when
noise exists in the datasets. For noise tolerance performance,
we compared aggressive versus moderate denoising.

To make the comparison fair, we first developed a platform
for consistency-based feature selection in C++, and then im-
plemented CWC, INTERACT and LCC on the platform. For
the legacy feature selection algorithms, we used an imple-
mentation on top of Weka ([Witten and Frank, 2005]).

Runtime. For legacy algorithms (Table 5), we linearly con-
verted the experiment observations by a factor of 5.1 assum-
ing the algorithms run directly on top of the operating sys-
tems. We did this because our C++ implementation of IN-
TERACT is 5.1 times faster than its Weka implementation.

CWC performed better than all but FCBF. In particular, its
superiority over INTERACT and LCC is remarkable. The
total runtime of CWC (646.8 sec) is only 2.2% that of IN-
TERACT and LCC (29254.4 sec).

Accuracy. Table 6 shows the values of AUC of ROC curve
when we apply Naive Bayes, J48 and 1ibSVM classifying
algorithms to the results of the feature selection algorithms
tested. For each combination of feature selection algorithm,
dataset and classifying algorithm, Table 6 exhibits the aver-
age of the five AUC values obtained through a five-fold cross-
validation. The row titled “all” shows the corresponding val-
ues for the raw datasets without performing feature selection
first. We used the default parameters chosen by Weka for
these classifying algorithms.

To determine the threshold § for INTERACT and LCC, we
selected 6 = 0.01, which is the positive threshold that showed
the best accuracy on average, based on multiple trials. Ta-
ble 3 summarizes Table 6. The second column of Table 3
shows the number of times a feature selection algorithm per-
formed the best in Table 6. The other columns show averages
of AUC/ROC values. It is significant that CWC holds first
place in all columns of Table 3.

Number of features selected. The ratios of the features
that the algorithms selected to the total number of features
are sufficiently small (Table 7). The difference in the ratios
is not significant except in the case of INTERACT. However,
the very low percentage (0.11%) for INTERACT is at the cost
of its low performance in accuracy.



Table 4: Attributes of the datasets used

ada madelon arcene  sylva gina ad dexter  hiva nova  gisette dorothea
Number of Features 48 500 10000 216 970 1558 20000 1617 16969 5000 100000
Number of Examples 4147 2000 100 13086 3153 3279 300 3845 1754 6000 800
Table 5: Runtime in seconds using PC with Intel Core Duo 3.16 GHz and 4 GB memory
ada madelon arcene  sylva gina ad dexter hiva nova gisette  dorothea
cwe  0.031 0.062 0.063  0.75 0.484 9.70 155.7 3.89 402.3 40.6 33.2
interact/lcc  0.217 2.64 36.6 5.45 17.2 29.3 606.3 50.5 2579.8 753.6 25172.8%
febf 01941 05827 05827 1.957 1947 5247 233 3.1t 55t 25.21 —
cfs  17.57 48.61 3300 1197 22147 37237 3557 932.4f —* 3977.6 —*
relief 03887 07771 42157 106" 136" 408" 159187 370" 50267 3513 _

t The displayed values are estimated assuming the algorithms run directly on top of operating systems.
1 Since INTERACT failed to process Dorothea when features are ordered, we run it without ordering features.

* The algorithms could not complete the job probably because of lack of memory.

Table 6: AUC of ROC curve (6 = 0.01 for INTERACT and LCC)

NaiveBayes
ada madelon arcene  sylva gina ad dexter  hiva nova gisette dorothea  Ave.
cwe  0.891 0.684 0.94 0998 0.912 0941 0976 0.796 0.938 0.964 0.972 0.900
Ilcc 0.891 0.674 0.920 0998 0900 0943 0971 0.795 0933 0.950 - 0.898
interact  0.883 0.681 0920 0989 0.853 0.883 0.860 0.491 0.760 0.901 - 0.829
fcbf  0.888 0.680 0.994 0992 0906 0921 0977 0.741 0916 0.971 - 0.897
cfs 0.878 0.675 0.996 0998 0910 0.942 0.992 0.741 - 0.969 - 0.900
relief  0.869 0.679 0.889 0.999 0.887 0921 0.927 0.624 0.715 0.939 - 0.859
all  0.892 0.628 0.707  0.997 - 0943 0910 0.725 0930 0.943 0.841 0.843
J48
ada madelon arcene  sylva gina ad dexter  hiva nova gisette dorothea  Ave.
cwe  0.862 0.777 0.934 0991 0.888 0.910 0875 0.669 0.827 0.964 0.701 0.874
Icc  0.857 0.774 0.872 0990 0.887 0.906 0.849 0.595 0.813 0.949 - 0.850
interact  0.819 0.798 0.885 0969 0.837 0.848 0.805 0.491 0.754 0.900 - 0.817
fcbf  0.870 0.636 0927 0937 0.882 0.891 0.896 0.556 0.775 0.946 - 0.838
cfs  0.870 0.797 0.841 0.992 0901 0923 0.923 0.540 - 0.949 - 0.860
relief  0.821 0.800 0.794 0992 0.859 0907 0869 0491 0.634 0.947 - 0.831
all  0.852 0.701 0.709 0958 0.855 0915 0.783 0.588 0.824 0.924 0.683 0.809
LibSVM

ada madelon arcene sylva gina ad dexter  hiva nova gisette dorothea  Ave.

cwe  0.756 0.820 0.892 0982 0907 0.859 0.887 0500 0.786 0.962 0.786 0.841

lecc  0.746 0.828 0.894 0957 0.873 0889 0.883 0.500 0.786 0.941 - 0.830
interact  0.723 0.806 0.924 0923 0812 0.847 0.833 0500 0.765 0.878 - 0.805
fcbf  0.734 0.618 0908 0902 0.852 0.776 0.883 0.522 0.760 0.939 - 0.793
cfs  0.730 0.786 0.926 0968 0.910 0.847 0.913 0.503 - 0.969 - 0.839
relief  0.731 0.816 0.878 0.984 0.708 0.851 0.827 0.500 0.596 0.964 - 0.807
all  0.506 0.500 0.500 0.500 0.500 0.755 0.500 0.500 0.500 0.500 0.775 0.529

The values displayed in italic font represent the best performing feature selection algorithms in each column.

Table 7: Number of features selected

ada madelon arcene sylva gina ad dexter hiva nova gisette dorothea Ave. % of total'
cwe 31 14 5 19 23 35 31 48 87 22 28 253 0.57
lec 31 13 6 2 25 4 20 9 55 21 - 14.6 0.33
interact 5 10 4 2 6 3 9 0 55 21 - 4.8 0.11
fcbf 9 5 17 11 16 50 62 12 47 33 - 239 0.54
cfs 9 8 45 13 55 26 58 13 - 80 - 34.1 0.77
relief 10 8 53 13 16 50 49 13 47 79 - 323 0.73

1 The percentage of number of features selected to the total number of features.
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Table 3: Rank of algorithms in accuracy

Algorithm  #of Top AUC (Av.) NB 148 SVM

cwce 14 0.872 0.900 0.874 0.841

cfs 12 0.866 0.900 0860  0.839

Icc 5 0.859 0.898 0.849  0.830

fcbf 2 0.842 0.897 0.838  0.793

relief 3 0.832 0.859  0.831  0.807

interact 1 0.817 0.829 0.817  0.805

Table 8: Noise tolerance

Noise Rate 0% 5% 10%
Prec. Rec. Prec. Rec. Prec. Rec.
cwc (aggressive) 1.00 090 1.00 089 1.00 0.88
cwe (moderate) 1.00  1.00 039 098 035 0.96
lec (5 = 1.0) 1.00 0.80 0.39 0.98 0.35 0.95
interact (§ = 1.0) 1.00 0.50 1.00 0.29 0.79 0.33

Noise tolerance. We ran an experiment to investigate how
the aggressive and moderate denoising algorithms would re-
sult when noise exists in datasets. For this experiment, we
generated 10 different synthetic datasets, each of which in-
cluded 10 relevant features, 81 irrelevant features and 500
examples, and then added 5% and 10% noise. Since the 10
relevant features form the unique minimum consistent feature
subset, we can evaluate precision and recall directly from the
outputs of the feature selection algorithms.

Table 8 shows the averages of precision and recall scores
over the 10 datasets tested. The data for LCC and INTER-
ACT are just informative. The precision of CWC with the ag-
gressive denoising algorithm is not affected by noise at all. In
contrast, in terms of recall, CWC with the moderate denois-
ing algorithm performs better. We can explain these results as
follows. The aggressive algorithm eliminates more noise, and
therefore, its precision scores are better. Also, since it elim-
inates more effective examples that support the right answer,
its recall scores suffer.

We think that, if the numbers of features selected are small
enough, reluctance to pass over relevant features is more im-
portant for the classification purpose. Therefore, in the ex-
periments for accuracy, we presented only the results for the
moderate denoising. In fact, we observed that the results for
the moderate denoising were mostly better than those for the
other, and the numbers of features selected were always small
enough (Table 7).

5 Discussion

At first glance, the experimental results seem to contradict
the property shown in 3.2 namely, that the binary measure
is least sensitive. This contradiction is only apparent since
it is likely that LCC and INTERACT outperform CWC when
appropriate thresholds are chosen. For example, we can prove
that, if the entire feature set of a given dataset is consistent
from the beginning, the output of CWC is identical to those
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of LCC and INTERACT when the threshold is zero. This
implies that LCC and INTERACT may possibly outperform
CWC with positive thresholds in such a case.

Note CWC performs good enough in terms of accuracy,
and it is much faster. For LCC or INTERACT, we should
question whether the resulting improvement in accuracy,
(which is likely to be relatively small) is worth the investment
in time required to find appropriate thresholds on a trial-and-
error basis. This time investment can be huge, since even on
a single run LCC and INTERACT are slow.

Taking advantage of the high efficiency of CWC, we could
improve performance in accuracy further. For example, we
can iteratively run CWC, changing inputs (e.g. order of fea-
tures) under an appropriate strategy.
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