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Abstract

In this paper, a novel method is developed for en-
abling Multi-Kernel Multi-Label Learning. Inter-
label dependency and similarity diversity are si-
multaneously leveraged in the proposed method.
A concept network is constructed to capture the
inter-label correlations for classifier training. Max-
imal margin approach is used to effectively for-
mulate the feature-label associations and the label-
label correlations. Specific kernels are learned not
only for each label but also for each pair of the
inter-related labels. By learning the eigenfunctions
of the kernels, the similarity between a new data
point and the training samples can be computed in
the online mode. Our experimental results on real
datasets (web pages, images, music, and bioinfor-
matics) have demonstrated the effectiveness of our
method.

1 Introduction

For many real-world applications, semantics richness re-
quires multiple labels to sufficiently describe the data, thus
one object ( image, video, text, etc.) might be related with
more than one semantic concepts simultaneously. For exam-
ple, in the image annotation task, an image that shows a bird
flying in the sky is associated with two labels (concepts) bird
and sky at the same time. Multi-label learning deals with the
data associated with more than one concepts simultaneously
and has already been applied to web page classification, text
categorization, image annotation, bioinformatics etc. One
strategy for multi-label learning is to deem multi-label prob-
lem with c labels as a classification problem with 2¢ classes,
and standard multi-class algorithms can be applied straight-
forward [Tsoumakas and Katakis, 2007]. The main draw-
backs of this strategy include: 1) high cost of computation; 2)
most classes might have no positive training data [Hariharan
et al., 2010]. An alternative strategy for multi-label learning
is to independently decompose the task into c binary classifi-
cation problems, one per label [Boutell et al., 2004; Li et al.,
2009]; however, it would lose the correlations between labels,
which is significant to the performance of multi-label classi-
fication. For example, the concepts bird and sky often co-
occur in the same image, while bird and of fice may seldom
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co-occur. To exploit the correlations between labels, many al-
gorithms have been introduced recently, such as CMLF (Col-
lective Multi-Label with Features) [Ghamrawi and McCal-
lum, 20051, M3N(Max-Margin Markov Network) [Tasker et
al., 2003], SSVM(Structural SVM ) [Tsochantaridis et al.,
2004], SMML (Structured Max-Margin Learning) [Xue et
al., 2010] and CML(Correlative Multi-Label framework) [Qi
et al., 2007]. Another strategy is to transform multi-label
learning into a ranking problem(ranking the proper labels be-
fore others for each data) [Elisseeff and Weston, 2002]. The
above existing algorithms all employ the same feature extrac-
tor for different concepts and ignore the similarity diversity,
which might be unsuitable for the real applications. For ex-
ample, suppose that there are two images: one contains the
concepts sky and bird, the other contains the concepts sky
and building. These two images are similar when the con-
cept sky is concerned; however, they are dissimilar to each
other when the concept bird or building is concerned.

It is well-accepted that extracting more suitable features
and designing more accurate similarity functions play an es-
sential role in achieving more precise classification [Sonnen-
burg et al., 2007]. With the proliferation of kernel-based
methods such as SVM, kernel function or kernel matrix has
been widely used to implement feature transformation or de-
termine the data similarity. Many existing algorithms em-
ploy the same kernel for all the labels (concepts) and show
that Gaussian kernel is powerful [Jebara, 2004]. However,
the diverse data similarity cannot be characterized effectively
by using one single kernel and multiple kernels are neces-
sary [Tang et al., 2009; Bach ef al., 2004]. To overcome the
disadvantage of traditional one-kernel-fit-all setting, some al-
gorithms learn multiple kernels for each label (concept) [Xi-
ang ef al., 2010; Rakotomamonjy er al., 2007]; however,
the inter-label correlations are not leveraged sufficiently for
achieving more effective multi-kernel learning.

In this paper, a novel method is developed for achieving
Multi-Kernel Multi-Label Learning with Max-Margin Con-
cept Network such that inter-label dependency and similarity
diversity are sufficiently leveraged at the same time. The con-
cept network is constructed for characterizing the inter-label
correlations more effectively, so that we can leverage such
inter-label correlations for classifier training and enhancing
the discrimination power of the classifiers significantly. The
site potentials encode the feature-label associations while the



edge potentials actually capture the label-label correlations
that are dependent on the features. A maximal margin ap-
proach is used to formulate the above site and the edge po-
tentials. Based on the design of the potential functions in
our model, we decouple our objective function label by la-
bel; nevertheless, the inter-label interactions remain to be
captured, which differs in a crucial way from the state-of-
art algorithms. In order to embed the label information and
the inter-label (inter-concept) correlations, we learn specific
kernels not only for each label but also for each pair of inter-
related labels. On the other hand, those multiple kernels share
the common basis which can be learned by spectral decompo-
sition of a Gram kernel matrix. Furthermore, by learning the
eigenfunctions of the kernels, the similarity between a new
data point and the training samples can be computed in the
online mode.

The rest of this paper is organized as follows: In Section
2 we formulate the proposed model for multi-kernel multi-
label learning. We focus on the multi-kernel learning tech-
nique and model inference with eigenfunction in Section 3
and 4, respectively. Our experimental results on real datasets
(web pages, images, music, and bioinformatics.) are given in
Section 5. Finally, we conclude this paper in Section 6.

2 The Proposed Model

In a multi-label learning framework, multiple labels for each
sample are represented as a c—dimensional binary vector y =
[V1,.--,¥e), where y; = 1(I = 1,...,¢) indicates that the
sample belongs to the class /, and y; = 0 otherwise. We build
a discriminative model # " ®(x,y) which scores the feature-
label pair (x,y), and the parameter vector 6 can be learned
from the labeled samples {(x!,y'),..., (x",y™)}. For any
test sample x, the associated labels can be inferred by y =
argmaxy 0 ®(x,y).

In real world, semantic concepts usually do not appear in-
dependently but occur correlatively. A concept network is
constructed to characterize the inter-label correlations more
precisely and to learn the inter-related classifiers in the fea-
ture space. Each concept (label) [ corresponds to one cer-
tain node (site) in the concept network. If concepts [ and
t are inter-related, there is an edge between the correspond-
ing two nodes, denoted by [ ~ ¢. Given n labeled training

samples {(x',y'),...,(x",y")}, we can define empirical
conditional probabilities p(t|l) = Zniliy;}:t and p(l|t) =
=11

S yivi

n ]

and then connect an edge between [ and t if

i=1Jt
% > po, Where Pg is a predefined threshold.

The concept network consists of two components: con-
cepts (labels) and the inter-concept correlations. To capture
the feature-concept associations and the inter-concept corre-
lations in a unified framework, our model is formulated as:

(x)+0o Z W), (%)

I~

c
0T e(x,y) =Y mv ¢ (1
1=1
where o is a trade-off parameter, m; = 1(y,—1) — €l(y,—0)
and 7], = L(y,=y,=1) — €Ly, 2y,)- (L(,) is an indicator
taking on value 1 if the predication is true and O otherwise.
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0 < ¢,€ < 1 are used to deal with class-imbalance by bi-
asing toward the positive samples.) v; and wy; are the sub-
vectors of 6 associated with the node (label) [ and the edge
(label-label pair) I ~ ¢ on the concept network, respectively.
¢1(x) and ;¢ (x) are (nonlinear) functions mapping sample
features x to kernel spaces with respective to the node [ and
the edge | ~ t, respectively. Since there exists a gap between
the similarity for observations and the similarity for seman-
tic concepts in many applications, different concepts (labels)
concern different features and it is better to learn different
mapping functions for different concepts. We would employ
multi-kernel technique to implement both the concept specific
and the pairwise concept specific feature mappings (for detail
see Section 3) such that similarity diversity can be effectively
characterized.

The first part of Eq. (1) is the site potential of the concept
network, which captures the association between the labels
and the features, and maximizing the site potential is equiv-
alent to maximizing the margin between sample x and the
hyperplane for each concept in the kernel space. Meanwhile,
the second part of Eq. (1) is the edge potential taking into
account label-label correlations, where y; = y; = 1 means
that semantic concepts ! and ¢ co-occur while y; # y; indi-
cates that one of these two concepts is present and the other
is absent, so maximizing such edge potential is equivalent to
maximizing the margin between the samples and the hyper-
plane which cuts the kernel feature space into two halves (one
corresponding to y; = y; = 1 while the other y; # y;). By
considering both site and edge potentials in a unified frame-
work, we sufficiently leverage the associations between fea-
tures and labels, and the correlations among labels and their
dependence on the features. To learn the proposed model, the
objective function is defined as:

min f (0

1 2 ~ i
i S0)= S+ 2 3¢

st. 0T [@(x',y") — ®(x',y)] > A(y',y) — &
Vie{l,...,n},Vy € {1,0}°
2

where ¢ is a slack variable, and 67 [®(x?,y!) — ®(x',y)]
can be viewed as the margin between the prediction and the
true label. A(y',y) = >, 1(yiy,) represents the multi-
label loss scaling with the number of wrong labels in y.There
are n X 2¢ constraints and the optimization problem is too
complex to be solved directly. Based on the design of our
model, we factor the proposed global model formulation as
the sum of local models:

GT(P(X?y) = Zﬁl—r\yl(x7 yl>yM)
=1

3)

and each local model with respect to concept [ is as follows:
W W%y, y0) = My @i(x) + o Z W i (x) 4)
teN;

where ¢J; is the parameter sub-vector of 6 corresponding to
concept [, and NV; = {t|t ~ [} denotes the set of re-



lated concepts for [. y; is the [th component of multi-
label vector y, and yy; is the subvector of y correspond-
ing the related concepts for I. Like [Xiang er al., 2010;
Sontag et al., 20101, our optimization can be approximately
decoupled into c¢ interdependent subproblems. For each | €

{1,...,c},

() = =||9]|” + A 5
gllg}fl 1) || IH ZZQ (5)
Vie{l,...,n},Vy; € {1,0}

(6)

Since y, yi € {1,0}, there are only two cases: either y;

yl ory;=1-y;. Ify; = yl, the constraints in (6) always

hold; so, we can only focus on the case y; = 1 — y; and the

constraints in (6) can be further written as:

qjl(xlv 1- ylz?Yj\/l)] >1- gli
Vie{l,...,n}

O W (x",y},yk) is the local model score based on the

observation x’ and the completely true labels, while
9] Wi(x',1 — y},¥};,) is the local model score based on the
observation x* and the almost true labels. In the decou-
pled formulation, the model parameter sub-vector vJ; can be
learned with ease. Although the model parameter sub-vectors
are learned label by label, the correlations between labels are
still be taken into account due to the second item in the right-
side of Eq. (4). Now, there are only n constraints in the opti-
mization problem (5) s.t. (7) foreachl € {1,...,c}, which
is similar to 2-class SVM. The dual of the optimization prob-
lem is as follows:

9 (X vy — @)

n

max Z o) — 3 Z Z ajad (AT T AW
1=l

i=1 j—1 (®
st. A>al>0,Vie{l,...,n};
where o denotes the dual variable, and
qu;:\Ill(xiaY§7yj\ﬁ)_\Ijl(xi71_yf7Yj\G) ©

The primal variable 1J; can be computed from the dual vari-
ables: ¥ = Zf lozlA\I” According to (4) and (9), we
have:

(AT) TAT] = B (x', x7) + Z Bk (x', %) (10)
teN]

where KCj(x?,x7) o (xDor(x?), Kp(xt,x7)

o (x") 1 (x7). The coefficients 3, and 3], can easily be de-

rived from (4) and (9). (For saving space, we do not present
them here.)

3 Multi-Kernel Learning

Similarity is important to the classification performance and
Gaussian (RBF) kernel actually characterizes the similarity
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between samples. We first define an orlgmal kernel regard-
less of label information as: K(x%,x7) = ¢ (x")p(x?)
exp{— pd(x x7)}, where d(x’, x7 ) denotes the distance be-
tween x* and x7, and p is a scaling parameter K(xt,x7)
measures the similarity between samples x* and x’. For all
samples in the training set {x!,...,x™}, the pairwise sim-
ilarities consist a Gram kernel matrix K with K (i,j) =
K(x?,x7), which is symmetric and can be decomposed as:
K =5}, nrugu, , where uy, is the eigenvector with re-
spective to eigenvalue 7. Let ug () and ug (j) denote the ith
and jth components of the eigenvector uy respectively, we
get K(i,7) = > p_; meuk(i)ug(4). It has been shown that
the eigenvalue spectrum of the Gram matrix decays rapidly
when the RBF kernel is employed [Williams and Seeger,
2000]. Thus, to reduce the complexity, we can also just se-
lect m dominant eigenvectors with large eigenvalues: K =~
E)Z; mewgu] and K(i,) ~ Sy mowr(iur(j), (m <
n).

In order to incorporate the label information, we learn the
concept-specific kernel matrix for the [-th label, denoted as
K, by maximizing the similarities between data with the
same label. Meanwhile, inspired by [Liu er al., 2009;
Sun et al., 2010; Yan et al., 2007], we require K; to be in
the neighborhood of the original Gram matrix K. The cost
function is as follows:

T 2
max Y KiYo — || K - K[, (11)
where Y., is the [—th column of the matrix Y € {0, 1}™*°.
Y.; corresponds to the labels with respect to the [—th concept
for all samples and the quadratic form YlTKlY.l measures

the sum of the similarities between data with the label [, the

Frobenius matrix norm HK 1 — K ||fm measures the divergence
between K;and K, and -y is the controlling parameter. As-
sume that the concept-specific kernel matrix K; shares the
common basis as K: K; = 2211 wlkuku;, then the cost
function (11) can be expressed as:

a; Y, uu! Y. — 12
mmeZwlk WU Y — ’lewlk 771c) (12)

k=1

Similarly, to sufficiently leverage the correlations among
the semantic concepts and their dependence on the input fea-
tures, the pairwise label specific kernel matrix K;; can be
learned by maximizing the following cost function:

T 2
HIl(&:(Yl Ky _TltHKlt —KHF (13)
where Y is also the controlling parameter and the quadratic
form Y_lTK 1Y ; measures the sum of the similarities between
data with the label [ and ¢. Maximizing Y,;rK 1Y ; means that
two images should be similar in the kernel space if they are
associated with two inter-related labels [ and ¢ respectively.
It will enhance the discrimination power of the classifiers by
learning from the samples associated with other related labels
on the concept network. Again, we let K, share the common
basis as K: Kj; = EZ’:l thukuz, and the cost function
(13) is rewritten as:



m m

max Y GurY [ wpug Ve = Yo > (Gk — i)

(14)
Citk Pt Pt

Both (12) and (14) are optimization problems of quadratic
functions and can be solved directly.

4 Model Inference by Eigenfunction: Online
Mode

For any new image x the inference problem
is to find the optimal label configuration y"°*
argmaxy 0T ®(x"? y). The size of multi-label space
is exponential to the number of classes, and it is in-
tractable to enumerate all possible label configurations
to find the best one. Therefore we employ an approxi-
mate inference technique called Iterated Conditional
Modes (ICM) [Winkler, 1995] due to its effectiveness.
First, we initialize a multi-label configuration (e.g., de-
termine each label by maw,,mv," ¢;(x) without allowing
for inter-label dependency initially ).  Then, in each
iteration, given y,,, we sequentially update y; using
the local model: if ¥ ¥;(x™%)y, = 1,yu;,) is larger
than 9] ¥;(x"%y; = 0,yn;) then y; = 1; otherwise
yi = 0. Since ¥, = >.;_ oAV, the prediction rule
actually uses kernels and dual variables as well. To
get K(x™% x%) and K (x"¢V,x"), we first calculate:
K(xmew xt) exp{—pd(x"*¥,x")}.  According to
[Williams and Seeger, 20001, the eigenfunctions of kernel
satisfy:

new
[l

[ xpoix = o) as)
where ¢(.) is a eigenfunction and p(x) is the probability
density in the input space. p(x) can be estimated by empirical
distribution, and Eq. (15) can be approximated as:

1 & . .

EZ’C(lexl)%(XZ) = Ny (x') (16)
i=1

Then %,Kv[(bk(xl)7 vy (bk(Xn)]T = [r]k[(bk(xl), vy (zﬁk(x")]—r

because K (i,j) = K(x*,x7). We can find n; = L, and

é1(x") = ug(i), where 7, is the eigenvalue of the Gram ma-

trix K and u(7) is the ith component of the eigenvector uy.
Using Eq. (16), for any new data

R ;
gz,)k(xnew) _ nik Z’C(Xnew,xl)uk(i) (17)
=1

Thus KC;(x™%, x*) and Kj(x™*, x*) can be computed as
follows:

Ky(x™ev, x") = Z wig G (X" Juy (i)

k=1

m (18)
Kt (Xnew7 Xi) _ Z Cltk@bk (Xnew)uk (Z)
k=1
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S Experiments

In the experiments, we compare our method 'Ours’ with
the state-of-the-art methods: 1) RML [Petterson and Cae-
tano, 2010]; 2) ML-KNN [Zhang and Zhou, 20071; 3) Tang’s
method [Tang et al., 2009]; and 4) RankSVM [Elisseeff and
Weston, 2002]. We consider four real applications: web page
classification, image annotation, music emotion tagging, and
gene categorization.

Web Page Classification. We first conduct the experi-
ment on a collection of eleven datasets' for real Web pages
linked from the domain yahoo.com. Each dataset contains
5000 documents (2,000 for training and 3,000 for testing),
and about 15% ~ 45% of them belong to multiple categories
simultaneously. Each Web page uses the ”Bag-of-Words”
representation [Dumais et al., 1998]. The detailed descrip-
tion of these datasets is given in Table 1.

Datasets dim | ¢ || Datasets dim | c
Arts 462 | 26 || Business 438 | 30
Computers 681 | 33 || Education | 550 | 33
Entertainment | 640 | 21 || Health 612 | 32
Recreation 606 | 22 || Reference | 793 | 33
Science 743 | 40 || Social 1047 | 39
Society 636 | 27

Table 1: Eleven datasets of real Web pages linked from the
“yahoo.com” domain. Each dataset contains 5,000 docu-
ments. dim denotes the dimensionality of data feature vector,
and c denotes the number of classes.

Image Annotation. The experiments are conducted on
two image datasets: MSRC (MicroSoft Research Cambridge)
and Scene. 1) MSRC dataset contains 591 images (300 for
training and 291 for testing) with 23 concepts in total. There
are about 3 tags on average per image. We ignore the concepts
horse and mountatn since they have few positive samples.
Thus there are totally 21 concepts. For each MSRC image,
we first extract 44-dim features including RGB histogram,
HSV histogram, HUE histogram, SAT histogram, mean tex-
ture response, and texture response histogram. 2) The Scene
dataset [Boutell et al., 2004] contains 2407 images (1211 for
training and 1196 for testing) with totally 6 labels. In the
LUYV space, each image is divided into the 7 x 7 grids and the
mean and variance of each band are computed. Thus, each
Scene image is described by 294-dim feature vector.

Music Emotion Tagging. The dataset Emotion * used
for this task consists of 593 songs (391 for training and 202
for test). Each sample is represented by a 72-dimensional
feature vector. There are 6 types of emotions in total:
amazed-surprised, happy-pleased, relaxing-calm, quiet-still,
sad-lonely, and angry-fearful.

Gene Categorization. The final experiment is to predict
the gene functional classes, which is conducted on the micro-
array expression dataset called Yeast® with 2,417 samples (

"http://www.kecl.ntt.co.jp/as/members/ueda/yahoo.tar.gz

Zhttp://mulan.sourceforge.net/datasets.html
*http://mips.gsf.de/proj/yeast



yahoo.com Web Pages Datasets

Criteria ~ Methods Arts Busi. Comp. Educ. Ente. Health Recre. Refe. Scie. Social Society
Micro- Ours 0364 0.729 0.501 0.416 0.481 0.604 0.369 0.527 0363 0.602 0421
F1 RML 0365 0.703 0452 0252 0253 0563 0326 0457 0241 0.147 0.241

1 ML-KNN  0.132 0.704 0413 0.280 0.233 0.295 0.130 0.230 0.226 0.562  0.299
Tang’s 0231 0.706  0.393 0259 0368 0533 0226 0435 0.192 0544 0312

RankSVM 0.389 0.709 0475 0412 0468 0.563 0.396 0.517 0.369 0559 0.433

Macro- Ours 0.189 0.178 0.192 0.141 0.243 0.268 0.245 0.149 0.169 0.157 0.153
Fl1 RML 0.165 0.149 0.083 0.097 0.154 0.187 0.176 0.080 0.115 0.096 0.113

1 ML-KNN  0.077 0.117 0.102 0.089 0.118 0.146 0.074 0.051 0.090 0.137  0.080
Tang’s 0.095 0.106 0.104 0.080 0.158 0.211 0.124 0.087 0.068 0.085  0.089

RankSVM  0.144 0.083 0.054 0.092 0.187 0.152 0.218 0.119 0.102 0.062  0.094

Ham- Ours 0.057 0.026 0.036 0.038 0.055 0.037 0.057 0.025 0.031 0.021 0.052
ming RML 0.058 0.032 0.037 0.050 0.059 0.041 0.057 0.027 0.051 0.101 0.096
Loss ML-KNN  0.061 0.027 0.041 0.039 0.063 0.047 0.062 0.032 0.033 0.022 0.054
1 Tang’s 0.094 0.092 0.097 0.038 0.053 0222 0.057 0.087 0.057 0.072 0.056
RankSVM  0.063 0.027 0.042 0.048 0.062 0.042 0.064 0.034 0.038 0.027 0.060

Table 2: Experimental results on yahoo.com Web Pages Datasets. T indicates the larger, the better’; | indicates ’the smaller,
the better’. The best performances are bolded for each evaluation criterion.

Datasets
Criteria Methods  MSRC  Scene
Micro-F1 Ours 0.556 0.744
T RML 0.394  0.656
ML-KNN 0429  0.699
Tang’s 0.553  0.707
RankSVM  0.479 0.631
Macro-F1 Ours 0.442 0.751
T RML 0.256  0.660
ML-KNN  0.164  0.692
Tang’s 0.303  0.735
RankSVM  0.200  0.638
Hamming Ours 0.099 0.089
Loss RML 0.231 0.109
1 ML-KNN  0.094  0.099
Tang’s 0.090 0.130
RankSVM  0.099 0.127

Table 3: Experimental results on MSRC and Scene datasets.
T indicates ’the larger, the better’; | indicates "the smaller, the
better’. The best performances are bolded for each evaluation
criterion.

1,500 for training and 917 for testing). Each sample is rep-
resented by a 103-dimensional vector. The average number
of labels per gene in the training set is about 4, and the total
number of labels is 14.

Table 2 shows the experimental results of our method in
comparison with other related methods on yahoo.com Web
Pages Datasets. Table 3 and 4 give the results on MSRC,
Scene, Music-Emotion, and Yeast datasets. We use multi-
label classification criteria Micro-F1, Macro-F1, and Ham-
ming Loss to evaluate the performance: Micro-F1 computes
the F1 measure on the predictions of different labels as a
whole; Macro-F1 averages the F1 measure on the predictions
of different labels; Hamming Loss calculates how many times
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Datasets

Criteria Methods  Emotion  Yeast
Micro-F1 Ours 0.705 0.665
T RML 0.683 0.504
ML-KNN 0.670 0.644

Tang’s 0.651 0.658

RankSVM 0.619 0.651
Macro-F1 Ours 0.695 0.443
T RML 0.683 0.423
ML-KNN 0.645 0.370

Tang’s 0.581 0.385

RankSVM 0.609 0.359

Hamming Ours 0.195 0.196
Loss RML 0.241 0.204

1 ML-KNN 0.202 0.195
Tang’s 0.240 0.190

RankSVM 0.234 0.201

Table 4: Experimental results on Music-Emotion and Yeast
datasets. T indicates ’the larger, the better’; | indicates ’the
smaller, the better’. The best performances are bolded for
each evaluation criterion.

an instance-label pair is misclassified [Zhang and Zhou, 2010;
Sun et al., 2010]. On each evaluation criterion, the best re-
sult is highlighted in boldface. Best parameters are chosen
by tuning in experiments. In our method, the threshold g
is concerned with the concept network construction and the
parameter o in Eq. (1) controls the influence of label-label
correlation on multi-label learning. ~; in Eq. (11) and Yy in
Eq. (13) are the trade-off between the common kernel and the
multiple specific kernels. From the results, we find that our
method performs better than other methods in most cases.
Our method sufficiently leverages feature-label association,
inter-label dependency, and similarity diversity at the same
time, which inherits all merits of the state-of-the-art methods.



6 Conclusions

Inter-label dependency and similarity diversity are simulta-
neously leveraged in the proposed multi-kernel multi-label
learning method. A concept network is first constructed for
characterizing the inter-label correlations effectively, and the
maximal margin technique effectively captures the feature-
label associations and the label-label correlations. By decou-
pling the multi-label learning task into inter-dependant sub-
problems label by label, the proposed method learns multi-
ple interrelated classifiers jointly. Specific kernels not only
for each label but also for each pair of inter-related labels
are learned to embed the label information and the inter-label
(inter-concept) correlations. Similarity between a new data
point and the training samples can be computed easily via the
eigenfunctions of the kernels.
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