
Multi-Select Faceted Navigation Based
on Minimum Description Length Principle

Chao He †‡, Xueqi Cheng †, Jiafeng Guo †, Huawei Shen †

† Institute of Computing Technology, Chinese Academy of Sciences, Beijing, P.R.China
‡ Graduate University of the Chinese Academy of Sciences, Beijing, P.R.China

{hechao,guojiafeng,shenhuawei}@software.ict.ac.cn cxq@ict.ac.cn

Abstract

Faceted navigation can effectively reduce user ef-
forts of reaching targeted resources in databases, by
suggesting dynamic facet values for iterative query
refinement. A key issue is minimizing the navi-
gation cost in a user query session. Conventional
navigation scheme assumes that at each step, users
select only one suggested value to figure out re-
sources containing it. To make faceted navigation
more flexible and effective, this paper introduces a
multi-select scheme where multiple suggested val-
ues can be selected at one step, and a selected value
can be used to either retain or exclude the resources
containing it. Previous algorithms for cost-driven
value suggestion can hardly work well under our
navigation scheme. Therefore, we propose to op-
timize the navigation cost using the Minimum De-
scription Length principle, which can well balance
the number of navigation steps and the number of
suggested values per step under our new scheme.
An emperical study demonstrates that our approach
is more cost-saving and efficient than state-of-the-
art approaches.

1 Introduction

A tremendous number of databases have been published on-
line, like e-Commerce websites (e.g. Amazon and eBay) and
digital libraries (e.g. ACM digital libraries). These databases,
referred to as Deep Web [Bergman, 2001], are estimated to be
orders of magnitude larger than traditional Web [He et al.,
2007]. Users often access them by filling a form to specify
the attribute values of targeted resources. When a daunting
list of resources is returned, however, it is hard for users to
specify appropriate values to zoom in.

Recently, faceted navigation [Hearst, 2006; Sinha and
Karger, 2005; Tunkelang, 2006; Dakka and Ipeirotis, 2008;
Koren et al., 2008; Lee et al., 2009; van Zwol and Sigurb-
jornsson, 2010; Li et al., 2010] has become an alternative of
the form-filling approach. A facet represents a dimension for
classifying resources. For example, {science, horror} and {<
$50, $50 ˜ $100,> $100} represent a theme and price facet of
books, respectively. Users reach targeted resources by a se-
ries of navigation steps, named a session. At each step, a set

of facet values are suggested for query refinement. User stud-
ies show that faceted navigation is effective in reducing user
efforts of exploring and searching databases [Yee et al., 2003;
Marchionini, 2006].

Unfortunately, the navigation scheme of current faceted
navigation systems is rather simple, which limits a further
cost reduction. It assumes that only one suggested value can
be selected for refinement at each step, even if multiple ones
are qualified. This would lead to superfluous steps. Mean-
while, suggested values can only be used to retain resources
containing them, while sometimes it is also important to ex-
clude resources with certain values for fast navigation.

This paper thus proposes a new navigation scheme. It sup-
ports multiple selection on suggested values, and a selected
value can be used to either retain or exclude the resources
containing it. Hence a query result can be refined much
smaller at a single step, and we can significantly save the nav-
igation cost of browsing the same value at different steps in a
session.

Then, the challenge is to suggest the set of facet values
which minimize the expected navigation cost in a session.
Suggestion algorithms in previous work [Basu Roy et al.,
2008; Kashyap et al., 2010] are under the presumption of con-
ventional navigation scheme, i.e. one click per step. In our
navigation scheme, the presumption changes so that existing
suggestion algorithms are no longer optimal and hence they
can hardly keep good performance.

In this paper, we propose to adopt the Minimum Descrip-
tion Length (MDL) principle to reduce navigation cost un-
der our navigation scheme. As we can see, a tradeoff is re-
quired between the number of suggested values at one step
and the number of navigation steps in a session. MDL-based
approaches have been found effective in balancing concise-
ness and preciseness for data summarization [Lee et al., 2007;
Navlakha et al., 2008]. In our setting, the conciseness prop-
erty of suggested values means to minimize user efforts at
one step, while the preciseness property means to minimize
the number of session steps. Hence our MDL-based algo-
rithm can suggest the values which minimize the navigation
cost of a session under our navigation scheme.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses the navigation model and cost model of our
navigation scheme. In Section 3, we propose to suggest val-
ues based on the MDL principle. Section 4 presents a greedy

1690

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence

algorithm for optimizing the MDL-based cost function. An
empirical study is demonstrated in Section 5. Section 6 con-
cludes our work.

2 Multi-Select Faceted Navigation

Figure 1 depicts the user interface of our multi-select
faceted navigation system for searching used cars. It supports
multiple selection on suggested values, and a selected value
can be used to either retain or exclude the resources contain-
ing it. It has three major components, a top input box for
query, a left-side panel for suggested values, and a right-side
table for presenting a part of query result. Each suggested
facet value is associated with two buttons, the left one for re-
taining the resources containing the value, i.e. true, while the
right one for excluding them, i.e. false.

Here, users have already selected Dalls, Ford and Silver all
in one step, which are set true, false and true, successively. In
conventional navigation scheme, at least one additional step is
required after the selection of Dalls, and hence users have to
browse another set of suggested values. Besides, Ford cannot
be used to filter out the resources containing it although Ford
is the brand of many cars except for the targeted car.

To reduce user efforts and prevent dead ends, our naviga-
tion system automatically decide what values can be fixed
during users’ selection process. If a value is contained by
each remaining resource, its left button becomes unselectable
(turns to gray). If a value is not contained by any remain-
ing resource, its right button becomes unselectable. When
all suggested values are decided (either by user or system), a
finest descriptor is formed, and users move on to the next step
with a new set of suggested values. For example, TX is auto-
matically set true since each remaining car contains it, while
MD, VA,Black and White are automatically set false since no
remaining car contains them.

2.1 The Navigation Model

Let F be the set of all the facet values and R be the set of
all the resources in database.

Definition 1 A descriptor is a conjunctive clause of facet val-
ues, where the only propositional operators are AND (∧) and
NOT (¬). Given T ⊆ F and a descriptor D, D is called a
finest descriptor of T if D is a conjunctive clause of all the
values in T .

The descriptor in Figure 1 is Dallas ∧ ¬Ford ∧ Silver,
which refines the whole database of size 15096 into a result
of size 441. It is appended into the input box automatically.

Users arrive at targeted resources by a series of navigation
steps, named a session. Each step is represented as a triple
< R, T,D >, where R is current query result, T is the set
of suggested values, and D is a finest descriptor of T which
refines R into the query result at the next step. By default, the
query result at the initial step is the whole database.

Denotation 1 Given R ⊆ R and a descriptor D, RD = {r :
r ∈ R ∧ r satisfies D}. Given a set T of suggested values,
des(R, T) = {D : (D is a finest descriptor of T) ∧ RD �= ∅}
and par(R, T) = {RD : D ∈ des(R, T)}.

Figure 1: The user interface for multi-select faceted naviga-
tion.

Figure 2: Two decision trees, (b) and (c), for exploring the
database (a).

Each resource in query result corresponds to a unique finest
descriptor of suggested values. Hence des(R, T) partitions
R into the classes par(R, T). Consider Figure 2(a). Sup-
pose X = {b, c} is suggested initially. There are four com-
binations of the suggested values, b ∧ c, b ∧ ¬c, ¬b ∧ c and
¬b ∧ ¬c. No resource satisfies ¬b ∧ ¬c. Hence des(X) =
{b∧c, b∧¬c,¬b∧c}, and par(X) = {{r4}, {r3}, {r1, r2}}.

Suppose f(�) is the function for suggesting values upon a
given resource set. Our navigation model can be described
by the following decision tree. Its root corresponds to the
whole database, labeled with f(R). Let n be a node corre-
sponding to resource set R. Then n is labeled with f(R).
For each finest descriptor D ∈ des(R, f(R)), there is a child
n′ of n which corresponds to RD. The edge between n and
n′ is labeled with D. Each leaf corresponds to a unique re-
source. Accordingly, the path from the root to a leaf repre-
sents the session of reaching the resource in the leaf. Fig-
ure 2(b) and (c) depict two different decision trees for explor-
ing the database in Figure 2(a), which have different naviga-
tion cost.

2.2 The Cost Model

The navigation cost at one step consists of the effort of brows-
ing suggested values and the effort of deciding a finest de-
scriptor. The browsing effort is in proportion to the number
of suggested values, while the decision effort is in proportion

1691

to the number of partitioned classes by the suggested values.
Let T be the set of suggested values upon query result R.
The navigation cost at this step is (1−α)|T |+α|par(R, T)|,
where α is the weight for decision effort and 0 < α < 1.

The decision tree helps calculate the expected cost of
reaching a targeted resource in database. Let tree(f) be the
decision tree created from the decision function f . For any
node n, let Tn, Rn and on be its label, its corresponding re-
source set and the number of its children, respectively. Equa-
tion 1 depicts the expected navigation cost of reaching a re-
source in database, where p(r) is the probability of visiting
resource r. Note that no value is suggested in leaf.

nav cost(f) =
∑

node n∈tree(f)

((1−α)|Tn|+α oi)
∑

r∈Rn

p(r) (1)

Let f1 and f2 be the decision functions leading to the deci-
sion trees depicted in Figure 2(b) and (c), respectively. Then
nav cost(f1) = 2.2+ 1.2α and nav cost(f2) = 1.9+ 1.9α.
f1 is better than f2 in case that α > 3

7 .

Definition 2 For R ⊆ R and u ∈ F, u is a refining value
of R if and only if ∅ ⊂ Ru ⊂ R. The set of all the refining
values of R is denoted by ref(R).

Obviously, only the refining values of query result should
be suggested. Hence the problem is finding out the decision
function f� minimizing Equation 1, with the constraint that
for any R ⊆ R, there is f(R) ⊆ ref(R).

It is prohibitive to calculate f� since we need to consider
every subset of refining values at each step. We observe that
both the number of the nodes in the decision tree and the
length of node labels are contradictory to each other. For ex-
ample, the decision tree depicted in Figure 2(c) has shorter
node label but more nodes than that in Figure 2(b). To min-
imize the expected navigation cost, a tradeoff is required be-
tween these two factors. In the next section, we will use the
MDL principle to achieve the tradeoff.

3 The MDL Principle for Suggesting Facet

Values

Given a query result R, the set T of suggested values
should possess two desirable properties, preciseness and con-
ciseness. In our navigation scheme, the preciseness property
means to minimize the number of session steps, while the
conciseness property means to minimize user efforts at one
step. Preciseness can be achieved by suggesting all the refin-
ing values of R, which maximizes par(R, T). Conciseness
can be achieved by suggesting a single value, which min-
imizes par(R, T). Hence preciseness and conciseness are
contradictory to each other.

The Minimum Description Length (MDL) principle is
widely used for finding an optimal tradeoff between precise-
ness and conciseness in information theory. It roughly states
that the best hypothesis H to explain a dataset D is the one
which minimizes mdl cost(H) = L(H) + L(D|H), where
L(H) is the size of the hypothesis and L(D|H) is the size of
the dataset when encoded with the help of the hypothesis.

Figure 3: The MDL cost at the root in Figure 2(b).

In our setting, the dataset is R and the hypothesis is
des(R, T). This is quite natural because our goal is finding
the optimal partitioning of R, which translates to finding the
best hypothesis using the MDL principle.

Figure 3 depicts our representation of L(H) and L(D|H).
We encode facet values by a Huffman code [Huffman, 1952]

of their user preferences, so that high-preference values are
prior to be suggested to reduce users’ decision effort. Fig-
ure 3(a) depicts the Huffman tree organizing a, b, c, d, e with
preference 0.1, 0.3, 0.3, 0.2, 0.1, respectively. Figure 3(b)
shows the partitioned classes of the whole database by {b, c}.
The descriptors of the partitioned classes C1, C2 and C3 are
b ∧ ¬c, b ∧ c and ¬b ∧ c, respectively.

L(H) = (1− α)
∑
u∈T

hcl(u) + α
∑

d∈des(R,T)

∑
u∈d

(1 + hcl(u))

(2)

L(D|H) =
∑

C∈par(R,T)

∑
r∈C

p�(r)(|T |+
∑

u∈r∩ref(C)

hcl(u))

where p�(r) =
p(r)

maxt∈R{p(t)}
(3)

We formulate L(H) by Equation 2, where hcl(�) denotes
the code length of a given value. L(H) consists of two parts,
the code length of all the suggested values and the code length
of all the classes’ descriptors, which represent the browsing
effort and decision effort, respectively. For each value in a
descriptor, an additional bit is used to indicate its being true
or false. In Figure 3, each descriptor has the same code length
1 + hcl(b) + 1 + hcl(c) = 6, and L(H) = 4 + 14α.

We formulate L(D|H) by Equation 3. The code of a re-
source consists of two parts. The first part is the identifier of
the class it belongs to, whose length is equal to the number
of suggested values. The second part is a set of its values u
such that u is not in the descriptor of C and that u is a refining
value of C, where C is the class the resource belongs to. In
Figure 3, r3 belongs to class C1 which has no refining value.
Hence r3 is just encoded as the identifier of C1, the length
of which is 2. So does r4. Since a is not a refining value of
class C3, the code length of r1 is 2 + hcl(d), while that of
r2 is 2 + hcl(e). Note that the visiting probability of each

1692

resource is taken into account, so that popular resources can
be reached soon.

We note that L(H) measures the degree of conciseness,
while L(D|H) that of preciseness. The optimal set of
suggested values that minimizes mdl cost(H) achieves the
tradeoff between preciseness and conciseness. It is pro-
hibitive to find out the optimal solution since we need to con-
sider every subset of refining values of a given resource set.

4 A Greedy Algorithm for Value Suggestion

In this section, we present our approach for computing
the suggested values, called GREEDY. Suppose R be current

query result. There are 2|ref(R)| kinds of value suggestion.
GREEDY approximates the global optimum by a local op-
tima, as depicted in Figure 4. First, initialize the set T of
suggested values as empty. Then iteratively select the value
from ref(R) which can reduce the MDL cost to a largest ex-
tent, and add the value into T . T is decided when no value
can reduce the MDL cost any further.

Given u ∈ ref(R), its reduced MDL cost ∇(u), i.e.,
mdl cost(T) − mdl cost(T ∪ {u}), is described in Equa-
tion 4, where U = {C : C ∈ par(R, T) ∧ u ∈ ref(C)}.

∇T (u) = −(1− α)hcl(u)

− α(|par(R, T)|(1 + hcl(u)) + |U |
∑

v∈T∪{u}

(1 + hcl(v)))

+
1

maxt∈R{p(t)}
(
∑
C∈U

∑
v∈ref(C)

redu(C, v)hcl(v) − 1),

(4)

where redu(C, v) =

{ ∑
r∈Cu p(r) Cv ⊇ Cu

∑
r∈Cv−Cu p(r) Cv ∪ Cu = C

0 otherwise

After adding u, the bit length of the hypothesis increases.
The bit length of the dataset, however, may either increase
or decrease. Given a resource, the length of its class iden-
tifier increases by one. If the resource belongs to any class
in par(R, T) − U , it has no other change. Otherwise, it can
be compressed further when more of its values become non-
refining with respect to a new class the resource belongs to.

Let v be a refining value of the class C ∈ U . In case that
Cv ⊇ Cu, v is not a refining value of Cu. Hence the code
length of each resource in Cu is reduced by hcl(v). In case
that Cv∪Cu = C, v is not a refining value of C¬u. Hence the
code length of each resource in Cv−Cu is reduced by hcl(v).
Both cases cannot hold simultaneously since Cv ⊂ C.

4.1 Fast Computation of Cost Reduction

Real-time response is important for a faceted navigation sys-
tem. It is time-consuming to calculate redu(C, v) in ∇(u),
which requires a linear scanning of all the resources in C.

We adapt FP-Tree [Han et al., 2000] to index a resource set.
Figure 5 depicts the FP-Tree indexing R = R

a in Figure 2. It
is constructed as follows. First, a header table keeps ref(R),

Figure 4: The GREEDY algorithm.

ranked in decreasing order of |Rv| for v ∈ ref(R). Then,
for r ∈ R, the values in r ∩ ref(R) are rearranged in the
same order as in the header table, and the resulting sequence
is inserted into a prefix tree. Each node i in the prefix tree also
preserves the number of the resources passing it, denoted by
supp(i), as well as the sum of their probability, denoted by
prob(i). Each entry v in the header table also keeps the list of
all the tree nodes with the label v, denoted by N(v).

We index each C ∈ par(R, T) by a different FP-Tree to
help calculate redu(C, v) fast. Based on set theory, Cv ⊇ Cu

if and only if |Cu∧v| = |Cu|, while Cv ∪ Cu = C if and
only if |Cu| + |Cv| − |Cu∧v| = |C|. Without loss of gen-
erality, suppose v is before u in the header table. Denote
Nv(u) = {i : i ∈ N(u) ∧ ∃j ∈ N(v) (j is an ancestor of
i)}. We have |Cu∧v| =

∑
i∈Nv(u)

supp(i). Hence the con-

ditions in redu(C, v) can be decided fast. redu(C, v) is also
calculated quickly since

∑
r∈Cu p(r) =

∑
i∈N(u) prob(i) and∑

r∈Cv−Cu p(r) =
∑

i∈N(v) prob(i)−
∑

i∈Nv(u)
prob(i).

5 Empirical Evalluation

We now present the empirical evaluation of our approach.
The primary goal is to evaluate its effectiveness in decreasing
navigation cost as well as its efficiency for value suggestion.

1693

Figure 5: The FP-Tree indexing R
a in Figure 2.

Table 1: Dataset Characteristics

UsedCars (size=15, 096, ave len=7, max len=7)

facet model year location price mileage color

#value 37 15 164 15 15 450

IMDB (size=23, 919, ave len=14.9, max len=315)

facet year genre rating director actor actress

#value 40 26 10 16, 387 161, 233 92, 821

5.1 Experimental Setup

We evaluate our approach, referred to as MULTI, on two
datasets, UsedCars 1 and IMDB 2. Table 1 describes their size,
average resource length ave len, maximal resource length
max len, facets and the number of different values in each
facet. We assume that numeric facets have been appropriately
discretized.

We compare MULTI with the state-of-the-art approach
FACETOR [Kashyap et al., 2010]. Both the human-computer
interaction style and the suggestion algorithm in MULTI con-
tribute to the reduction of navigation cost. The former can be
easily implemented in current faceted navigation systems to
reduce their navigation cost as well. Someone may wonder
how much effectiveness is achieved by our suggestion algo-
rithm. Hence we also compare MULTI with FACETOR-E, a
naive extension of FACETOR by allowing multiple selection
and exclusion option.

For each dataset, we randomly select 100 resources as tar-
get, and the navigation of each targeted resource is simulated
1000 times 3. At each navigation step in FACETOR, we as-
sume a user randomly selects a suggested value contained in
the targeted resource. At each navigation step in FACETOR-
E, we assume a user selects all the suggested values contained

1http://autos.yahoo.com/used_cars.html
2
http://www.imdb.com/interfaces

3We also test other groups of resources by the same experimental
methodology, whose results are quite similar.

(a) UsedCars (b) IMDB

Figure 6: The navigation cost of a session.

(a) UsedCars (b) IMDB

Figure 7: The number of steps in a session.

(a) UsedCars (b) IMDB

Figure 8: The number of suggested values per step.

in the targeted resource, and one more value for excluding
resources. At each navigation step in MULTI, we assume a
user iteratively and randomly selects an undecided value until
a finest descriptor is formed. Note that quite a few suggested
values can be decided automatically by the system.

The cost model in FACETOR is slightly different from
ours. To make a fair comparison, the navigation cost at one
step in all the three approaches is set to be the sum of the
number of suggested values and the number of mouse click.

The visiting probability of each resource was assumed the
same. So was the user preference of each facet value. The
coefficient for decision effort α is set 0.8 empirically. All the
experiments were conducted on a Lenovo M7000 PC with
2.93GHZ dual-core CPU and 2G RAM.

5.2 Experiments with Navigation Cost

Figure 6 depicts the average navigation cost of reaching a tar-
geted resource. In UsedCars, the session cost of FACETOR,
FACETOR-E and MULTI is 103.5, 58.8 and 37.4 in average,
respectively. In IMDB, the average session cost of FACE-
TOR, FACETOR-E and MULTI is 123.3, 85.9 and 50.6 in
average, respectively. It can be seen that MULTI leads to a
significant saving and that our suggestion algorithm is criti-
cal in reducing navigation cost.

The above results can be explained from two aspects, the
average number of the steps in reaching a targeted resource
and the average number of suggested values per step.

Figure 7 depicts the average number of the steps in reach-
ing a targeted resource. In UsedCars, the step number is
5.0, 2.5 and 4.5 in average for FACETOR, FACETOR-E and
MULTI, respectively. In IMDB, the step number is 4.4, 2.7
and 8.7 in average for FACETOR, FACETOR-E and MULTI,

1694

respectively. Consider UsedCars. At each step in FACETOR,
one suggested value contained by targeted resource must be
selected. Hence its step number cannot exceed the maximal
length of targeted resource, i.e. 7. This explains why its
step number is quite stable around 5.0. Since FACETOR-E
extends FACETOR by allowing multiple selection and ex-
clusion option, it requires much fewer steps than FACE-
TOR. Both FACETOR and FACETOR-E demand that each
resource in current query result contains at least one sug-
gested value. In MULTI, all the selected values at a step may
be used to filter out the resources containing them. Hence
its step number can exceed 7. A single value may be sug-
gested, if it is an optimal tradeoff between conciseness and
preciseness. This explains the fluctuation of the step number
in MULTI.

Figure 8 depicts the average number of suggested values
at a step. In UsedCars, it is 20.0, 23.2 and 4.0 in average
for FACETOR, FACETOR-E and MULTI, respectively. In
IMDB, it is 30.3, 29.3 and 4.9 in average for FACETOR,
FACETOR-E and MULTI, respectively. The closeness be-
tween FACETOR and FACETOR-E is due to their sharing
the same suggestion algorithm. MULTI suggests much fewer
values. The first reason is that FACETOR(-E) prefers to sug-
gesting the values which correspond to a medium portion
of current query result and have small overlapping, while
MULTI prefers to suggesting the values which correspond to
a large portion of current query result and have medium over-
lapping. The second reason is that FACETOR(-E) has the
coverage requirement while MULTI not, which demands that
each resource in current query result contains at least one sug-
gested value. Take the initial step in UsedCars as an example.
MULTI suggests 11 values, only a quarter of 40 suggested
values in FACETOR(-E).

5.3 Experiments with Execution Time

Figure 9 depicts the total running time of computing sug-
gested values in a session. In UsedCars, it is 1518.3,
1377.9 and 794.6 milliseconds in average for FACETOR,
FACETOR-E and MULTI, respectively. In IMDB, it is
2303.0, 1454.9 and 246.0 milliseconds in average for FACE-
TOR, FACETOR-E and MULTI, respectively. Compared
with FACETOR, MULTI runs two times faster in UsedCars
while nearly an order of magnitude in IMDB, although our
computation task is much more complex than FACETOR’s.
The first reason is that MULTI suggests fewer values and
requires fewer steps. The second reason is that FACETOR
adopts a brute-force scanning of current query result while
MULTI creates an FP-tree indexing for acceleration.

6 Conclusion and Future Work

Faceted navigation is effective in reducing information
overload in the process of reaching targeted resources. The
effectiveness of conventional faceted navigation systems is
limited by their navigation scheme. We propose a new
navigation scheme to allow multiple selection and a retain-
ing/exclusion option. Furthermore, we employ the Minimum
Description Length principle to minimize the navigation cost

(a) UsedCars (b) IMDB

Figure 9: The runtime for suggesting values in a session.

of a session, which fits our navigation scheme. An empirical
study demonstrates that our approach is more cost-saving and
efficient than state-of-the-art approaches.

For simplifying our navigation model, we assume users re-
fine query result by a finest descriptor at each step. In prac-
tice, however, users may not be able to decide some suggested
values. In our future work, we will explore a more general
navigation model in which users can decide any number of
suggested values at each step.

Acknowledgments

This research work was funded by the National High-tech
R&D Program of China under grant No. 2010AA012500,
and the National Natural Science Foundation of China under
grant No. 61003166 and grant No. 60933005.

References

[Basu Roy et al., 2008] Senjuti Basu Roy, Haidong Wang, Gautam
Das, Ullas Nambiar, and Mukesh Mohania. Minimum-effort
driven dynamic faceted search in structured databases. In CIKM
’08, pages 13–22, 2008.

[Bergman, 2001] M.K. Bergman. The deep web: Surfacing hidden
value. Journal of Electronic Publishing, 7(1), 2001.

[Dakka and Ipeirotis, 2008] Wisam Dakka and Panagiotis G.
Ipeirotis. Automatic extraction of useful facet hierarchies from
text databases. In ICDE ’08, pages 466–475, 2008.

[Han et al., 2000] Jiawei Han, Jian Pei, and Yiwen Yin. Mining
frequent patterns without candidate generation. In SIGMOD ’00,
pages 1–12, 2000.

[He et al., 2007] Bin He, Mitesh Patel, Zhen Zhang, and Kevin
Chen-Chuan Chang. Accessing the deep web. Commun. ACM,
50:94–101, May 2007.

[Hearst, 2006] Marti A. Hearst. Clustering versus faceted cate-
gories for information exploration. Commun. ACM, 49:59–61,
April 2006.

[Huffman, 1952] D.A. Huffman. A method for the construc-
tion of minimum-redundancy codes. Proceedings of the IRE,
40(9):1098–1101, 1952.

[Kashyap et al., 2010] Abhijith Kashyap, Vagelis Hristidis, and
Michalis Petropoulos. Facetor: Cost-driven exploration of
faceted query results. In CIKM ’10, pages 719–728, 2010.

[Koren et al., 2008] J. Koren, Y. Zhang, and X. Liu. Personalized
interactive faceted search. In WWW ’08, pages 477–486, 2008.

1695

[Lee et al., 2007] Jae-Gil Lee, Jiawei Han, and Kyu-Young Whang.
Trajectory clustering: a partition-and-group framework. In SIG-
MOD ’07, pages 593–604, 2007.

[Lee et al., 2009] Bongshin Lee, Greg Smith, George G. Robertson,
Mary Czerwinski, and Desney S. Tan. Facetlens: exposing trends
and relationships to support sensemaking within faceted datasets.
In SIGCHI ’09, pages 1293–1302, 2009.

[Li et al., 2010] C. Li, N. Yan, S.B. Roy, L. Lisham, and G. Das.
Facetedpedia: dynamic generation of query-dependent faceted
interfaces for wikipedia. In WWW ’10, pages 651–660, 2010.

[Marchionini, 2006] Gary Marchionini. Exploratory search: from
finding to understanding. Commun. ACM, 49:41–46, April 2006.

[Navlakha et al., 2008] S. Navlakha, R. Rastogi, and N. Shrivas-
tava. Graph summarization with bounded error. In SIGMOD

’08, pages 419–432, 2008.

[Sinha and Karger, 2005] V. Sinha and D.R. Karger. Magnet: Sup-
porting navigation in semistructured data environments. In SIG-
MOD ’05, pages 97–106, 2005.

[Tunkelang, 2006] D. Tunkelang. Dynamic category sets: An ap-
proach for faceted search. In SIGIR ’06 Workshop on Faceted
Search, 2006.

[van Zwol and Sigurbjornsson, 2010] R. van Zwol and B. Sigurb-
jornsson. Faceted exploration of image search results. In WWW
’10, pages 961–970, 2010.

[Yee et al., 2003] Ka-Ping Yee, Kirsten Swearingen, Kevin Li, and
Marti Hearst. Faceted metadata for image search and browsing.
In SIGCHI ’03, pages 401–408, 2003.

1696

