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Abstract

Homophily and stochastic equivalence are two
primary features of interest in social networks.
Recently, the multiplicative latent factor model
(MLFM) is proposed to model social networks
with directed links. Although MLFM can capture
stochastic equivalence, it cannot model well ho-
mophily in networks. However, many real-world
networks exhibit homophily or both homophily
and stochastic equivalence, and hence the net-
work structure of these networks cannot be mod-
eled well by MLFM. In this paper, we propose
a novel model, called generalized latent factor
model (GLFM), for social network analysis by en-
hancing homophily modeling in MLFM. We de-
vise a minorization-maximization (MM) algorithm
with linear-time complexity and convergence guar-
antee to learn the model parameters. Extensive ex-
periments on some real-world networks show that
GLFM can effectively model homophily to dramat-
ically outperform state-of-the-art methods.

1 Introduction

A social network 1 [Wasserman and Faust, 1994] is often
represented as a graph in which the nodes represent the ob-
jects and the edges (or called links) represent the binary re-
lations between objects. The edges in a graph can be di-
rected or undirected. If the edges are directed, we call the
graph a directed graph. Otherwise, the graph is an undirected
graph. Unless otherwise stated, we focus on directed graphs
in this paper because an undirected edge can be represented
by two directed edges with opposite directions. Some typi-
cal networks include friendship networks among people, web
graphs, and paper citation networks.

As pointed out by [Hoff, 2008], homophily and stochas-
tic equivalence are two primary features of interest in social
networks. If an edge is more likely to exist between two
nodes with similar characteristics than between those nodes
having different characteristics, we say the graph exhibits ho-
mophily. For example, two individuals are more likely to be
friends if they share common interests. Hence, a friendship

1In this paper, we use the terms ‘network’, ‘social network’ and
‘graph’ interchangeably.

(a) homophily (b) stochastic equivalence
Figure 1: Homophily and stochastic equivalence in networks.

graph has the feature of homophily. On the other hand, if
the nodes of a graph can be divided into groups where mem-
bers within a group have similar patterns of links, we say this
graph exhibits stochastic equivalence. The web graph has
such a feature because some nodes can be described as hubs
which are connected to many other nodes called authorities
but the hubs or authorities are seldom connected among them-
selves. For stochastic equivalence, the property that members
within a group have similar patterns of links also implies that
if two nodes link to or are linked by one common node, the
two nodes most likely belong to the same group.

Examples of homophily and stochastic equivalence in di-
rected graphs are illustrated in Figure 1, where the locations
in the 2-dimensional space denote the characteristics of the
points (nodes). From Figure 1(a), we can see that a link is
more likely to exist between two points close to each other,
which is the property of homophily. In Figure 1(b), the points
form three groups associated with different colors, and the
nodes in each group share similar patterns of links to nodes
in other groups, but the nodes in the same group are not neces-
sarily connected to each other. This is the property of stochas-
tic equivalence. Note that in a graph exhibiting stochastic
equivalence, two points close to each other are not necessarily
connected to each other and connected points are not neces-
sarily close to each other, which is different from the property
of homophily.

As social network analysis (SNA) is becoming more and
more important in a wide range of applications, many SNA
models have been proposed [Goldenberg et al., 2009]. In this
paper, we focus on latent variable models [Bartholomew and
Knott, 1999] which have been successfully applied to model
social networks [Hoff, 2008; Nowicki and Snijders, 2001;
Hoff et al., 2002; Kemp et al., 2006; Airoldi et al., 2008;
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Hoff, 2009]. These models include: the latent class model
[Nowicki and Snijders, 2001] and its extensions [Kemp et
al., 2006; Airoldi et al., 2008], the latent distance model
[Hoff et al., 2002], the latent eigenmodel [Hoff, 2008], and
the multiplicative latent factor model (MLFM) [Hoff, 2009].
Among all these models, the recently proposed latent eigen-
model, which includes both the latent class model and the
latent distance model as special cases, can capture both ho-
mophily and stochastic equivalence in networks. However,
it can only model undirected graphs. MLFM [Hoff, 2009]
adapts the latent eigenmodel for directed graphs. However,
as to be shown in our experiments, in fact it cannot model
well homophily.

In this paper, we propose a novel model, called general-
ized latent factor model (GLFM), for social network analysis
by enhancing homophily modeling in MLFM. The learning
algorithm of GLFM is guaranteed to converge to a local op-
timum and has linear-time complexity. Hence, GLFM can be
used to model large-scale graphs. Extensive experiments on
community detection in some real-world networks show that
GLFM dramatically outperforms existing methods.

2 Notation and Definition

We use boldface uppercase letters, such as K, to denote ma-
trices, and boldface lowercase letters, such as x, to denote
vectors. The ith row and the jth column of a matrix K are
denoted as Ki∗ and K∗j , respectively. Kij denotes the el-
ement at the ith row and jth column in K. xi denotes the
ith element in x. We use tr(K) to denote its trace, KT for
its transpose and K−1 for its inverse. ‖ · ‖ is used to denote
the length of a vector. | · | denotes the cardinality of a set. I
denotes the identity matrix whose dimensionality depends on
the context. For a matrix K, K � 0 means that K is positive
semi-definite (psd) and K � 0 means that K is positive def-
inite (pd). K � M means K −M � 0. N (·) denotes the
normal distribution, either for scalars or vectors. ◦ denotes
the Hadamard product (element-wise product).

Let N denote the number of nodes in a graph. A is the
adjacency (link) matrix for the N nodes. Aij = 1 if there
exists a link from node i to node j. Otherwise, Aij = 0. D
denotes the number of latent factors. In real-world networks,
if Aij = 1, we can say that there is a relation from i to j.
However, Aij = 0 does not necessarily mean that there is no
relation from i to j. In most cases, Aij = 0 means that the
relationship from i to j is missing. Hence, we use an indicator
matrix Z to indicate whether or not an element is missing.
More specifically, Zij = 1 means that Aij is observed while
Zij = 0 means that Aij is missing.

3 Multiplicative Latent Factor Models

The latent eigenmodel is formulated as follows 2:

Θik = log odds(Aik = 1 |Xi∗,Xk∗, μ) = μ+Xi∗ΛXT
k∗,

where X is an N × D matrix with Xi∗ denoting the latent
representation of node i and μ is a parameter reflecting the

2Note that in this paper, we assume for simplicity that there is no
attribute information for the links. It is straightforward to integrate
attribute information into the existing latent variable models as well
as our proposed model.

overall density of the links in the network, Λ is a D × D
diagonal matrix with the diagonal entries being either positive
or negative. The latent eigenmodel generalizes both latent
class models and latent distance models. It can model both
homophily and stochastic equivalence in undirected graphs
[Hoff, 2008].

To adapt the latent eigenmodel for directed graphs, MLFM
defines

Θik = μ+Xi∗ΛWT
k∗, (1)

where X and W have orthonormal columns. Note that the
key difference between the latent eigenmodel and MLFM lies
in the fact that MLFM adopts a different receiver factor ma-
trix W which enables MLFM to model directed (asymmetric)
graphs. As we will show in our experiments, this modifica-
tion in MLFM makes it fail to model homophily in networks.

Letting Θ = [Θik]
N
i,k=1, we can rewrite MLFM as follows:

Θ = μE+XΛWT , (2)
where E is an N×N matrix with all entries being 1.

We can find that MLFM is a special case of the following
model:

Θ = μE+UVT . (3)
For example, we can get MLFM by setting U = X and V =
WΛ. Furthermore, it is easy to compute the X, W and Λ
in (2) based on the learned U and V in (3). Hence, in the
sequel, MLFM refers to the model in (3).

4 Generalized Latent Factor Models

As discussed above, MLFM can capture stochastic equiva-
lence but cannot model well homophily in directed graphs.
Here, we propose our GLFM to enhance homophily model-
ing in MLFM.

4.1 Model

In GLFM, Θik is defined as follows:

Θik = μ+
1

2
Ui∗UT

k∗ +
1

2
Ui∗VT

k∗. (4)

Comparing (4) to (3), we can find that GLFM generalizes
MLFM by adding an extra term Ui∗UT

k∗.
3 It is this extra term

that enables GLFM to model homophily in networks, which
will be detailed in Section 4.2 when we analyze the objective
function in (7). This will also be demonstrated empirically
later in our experiments.

Based on (4), the likelihood of the observations can be de-
fined as follows:

p(A |U,V, μ) =
∏
i�=k

[SAik

ik (1− Sik)
1−Aik ]Zik , (5)

where

Sik =
exp (Θik)

1 + exp(Θik)
. (6)

Note that as in the conventional SNA model, we ignore the
diagonal elements of A. That is, in this paper, we set Aii =
Zii = 0 by default.

Furthermore, we put normal priors on the parame-
ters μ, U and V: p(μ) = N (μ | 0, τ−1), p(U) =∏D

d=1N (U∗d |0, βI), p(V) =
∏D

d=1N (V∗d |0, γI).
3Note that the coefficient 1

2
in (4) makes no essential difference

between (4) and (3). It is only for convenience of computation.
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4.2 Learning

Although the Markov chain Monte Carlo (MCMC) algo-
rithms designed for other latent variable models can easily be
adapted for GLFM, we do not adopt MCMC here for GLFM
because MCMC methods typically incur very high computa-
tional cost. In this paper, we adopt the maximum a posteriori
(MAP) estimation strategy to learn the parameters. The log
posterior probability can be computed as follows:

L =
∑
i�=k

{1

2
AikUi∗UT

k∗ +
1

2
AikUi∗VT

k∗ +Aikμ

− Zik log
[
1 + exp(Θik)

]}

− 1

2β
tr(UUT )− 1

2γ
tr(VVT )− τ

2
μ2 + c, (7)

where c is a constant independent of the parameters. Note that
in (7) we assume that all existing links should be observed.
That is to say, if Aik = 1, then Zik = 1.

The term AikUi∗UT
k∗ in (7) results from the extra term

Ui∗UT
k∗ in (4). In (7), to maximize the objective function L,

we have to make Ui∗UT
k∗ as large as possible if there exists

a link between nodes i and k (i.e., Aik = 1). This conforms
to the property of homophily, i.e., a link is more likely to
exist between two nodes with similar characteristics than be-
tween those nodes having different characteristics. Note that
here the latent factor Ui∗ reflects the characteristics of node
i. Therefore, the extra term Ui∗UT

k∗ in (4) enables GLFM to
model homophily in networks.

If we directly optimize all the parameters U, V and μ
jointly, the computational cost will be very high. For exam-
ple, if we want to use the second-order information, generally
we need to invert the Hessian matrix where the time complex-
ity is cubic in the number of parameters.

Here, we adopt an alternating projection strategy to maxi-
mize L. More specifically, each time we optimize one param-
eter, such as U, with the other parameters fixed.

Learning U
To learn U, we optimize each row of it with all other rows
fixed. The gradient vector and Hessian matrix can be com-
puted as follows:

∂L

∂UT
i∗

=− 1

β
UT

i∗ +
1

2
VT

[
AT

i∗ − (Zi∗ ◦ Si∗)T
]

+
1

2
UT

[
AT

i∗ +A∗i − (Zi∗ ◦ Si∗)T − Z∗i ◦ S∗i
]
,

∂2L

∂UT
i∗∂Ui∗

= − 1

β
I− 1

4

∑
k,k �=i

{
ZkiSki(1− Ski)U

T
k∗Uk∗

}

− 1

4

∑
k,k �=i

{
ZikSik(1− Sik)[Uk∗ +Vk∗]T [Uk∗ +Vk∗]

}
.

Because both the gradient vector and Hessian matrix de-
pend on Si∗ which is a function of Ui∗, we have to resort
to iterative methods to find the optimal values. Here, we
devise a minorization-maximization (MM) algorithm [Lang

et al., 2000] to learn it. MM is a so-called expectation-
maximization (EM) algorithm [Dempster et al., 1977] with-
out missing data, alternating between constructing a concave
lower bound of the objective function and maximizing that
bound.

Because 0 < Sik < 1
2 , we can get Sik(1− Sik) <

1
4 .

Let us define:

Hi =− 1

β
I− 1

16

∑
k,k �=i

{
Zik[Uk∗ +Vk∗]T [Uk∗ +Vk∗]

}

− 1

16

∑
k,k �=i

{
ZkiU

T
k∗Uk∗

}
.

It is easy to prove that ∂2L
∂UT

i∗∂Ui∗
� Hi.

Let

f(Ui∗) =L(Ui∗(t)) + [Ui∗ −Ui∗(t)]× ∂L

∂UT
i∗
(t)

+
1

2
[Ui∗ −Ui∗(t)]Hi(t)[Ui∗ −Ui∗(t)]T ,

where Ui∗(t) denotes the value of the former iteration and
Hi(t) is computed with the updated U except for Ui∗.

Then we have the following theorem:
Theorem 1 L(Ui∗) ≥ f(Ui∗), which means that f(Ui∗) is
a lower bound of L(Ui∗).

The proof of Theorem 1 is simple and we omit it here.
We can see that f(Ui∗) has a quadratic form of Ui∗. By

setting the gradient of f(Ui∗) with respect to Ui∗ to 0, we
have the update rule for Ui∗:

Ui∗(t+ 1) = Ui∗(t)−
[ ∂L

∂UT
i∗
(t)

]T
×Hi(t)

−1.

Learning V
The gradient vector and Hessian matrix of Vi∗ can be com-
puted as follows:

∂L

∂VT
i∗

= − 1

γ
VT

i∗ +
1

2
UT

[
A∗i − (Z∗i ◦ S∗i)

]

∂2L

∂VT
i∗∂Vi∗

= − 1

γ
I− 1

4

∑
k,k �=i

{
ZkiSki(1− Ski)U

T
k∗Uk∗

}
.

Let Gi = − 1
γ I− 1

16

∑
k,k �=i

{
ZkiU

T
k∗Uk∗

}
, we can prove

that ∂2L
∂VT

i∗∂Vi∗
� Gi.

Similar to the update rule for Ui∗, we can obtain the update
rule for Vi∗ as follows:

Vi∗(t+ 1) = Vi∗(t)−
[ ∂L

∂VT
i∗
(t)

]T
×Gi(t)

−1,

where Vi∗(t) denotes the value of the former iteration and
Gi(t) is computed with the updated parameters except for
Vi∗.

Learning μ
Using similar learning techniques as those for U and V, we
can get the update rule for μ:

μ(t+ 1) = μ(t) +
4[
∑

k �=i(Aik − ZikSik)− τμ(t)]

4τ +
∑

k �=i Zik
.
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4.3 Convergence and Computational Complexity

With the MM algorithm, the learning procedure of GLFM is
guaranteed to converge to a local maximum.

The time complexity to compute the gradient and Hessian
for node i is linear to the total number of ones in both Z∗i and
Zi∗. In general, this number is O(1) because the observations
in real networks are always very sparse. Furthermore, since
Hi and Gi are D×D, the computational complexity to invert
the Hessian matrices is O(D3). Typically, D is a very small
number. Hence, to update the whole U and V, only O(N)
time is needed.

5 Experiment

There exist many different SNA tasks such as social posi-
tion and role estimation [Wasserman and Faust, 1994], link
prediction [Hoff, 2009], node classification [Li et al., 2009a;
Li and Yeung, 2009; Li et al., 2009b], community detection
[Yang et al., 2009a], and so on. In this paper, we adopt the
same evaluation strategy as that in [Yang et al., 2009a; 2009b]
for social community detection. The main reason for choos-
ing this task is that from our model formulation we can clearly
see the difference between GLFM and other latent factor
models. However, many other models from different research
communities have also been proposed for SNA. It is diffi-
cult to figure out the connection and difference between those
models and GLFM from the formulation perspective. Hence,
we use empirical evaluation to compare them. Most main-
stream models have been compared in [Yang et al., 2009a;
2009b] for community detection, which provides a good plat-
form for our empirical comparison.

For MLFM and GLFM, we adopt k-means to perform clus-
tering based on the normalized latent representation U. Here
normalization means that the latent representation of each
node is divided by its length. Because the magnitude of Ui∗
reflects the activity of i, we select the most active user as the
first seed of the k-means, and then choose a point as the seed
of the next community if summation of the distances between
this point and all the existing seeds is the largest one. Hence,
the initialization of k-means is fixed. We set Z = A. For fair
comparison, the hyper-parameters in GLFM and all the base-
lines to be compared, such as the τ in (7), are chosen from
a wide range and the best results are reported. More specif-
ically, for GLFM, the τ is fixed to 106, β and γ are set to 2,
and D = 20.

5.1 Data Sets and Evaluation Metric

As in [Yang et al., 2009a], we use two paper citation net-
works, Cora and Citeseer data sets 4, for evaluation. Both
data sets contain content information in addition to the di-
rected links.

The Cora data set contains 2708 research papers from the
7 subfields of machine learning: case-based reasoning, ge-
netic algorithms, neural networks, probabilistic methods, re-
inforcement learning, rule learning, and theory. Each paper
is described by a 0/1-valued word vector indicating the ab-
sence/presence of the corresponding word from a dictionary

4The two data sets can be downloaded from http:
//www.cs.umd.edu/projects/linqs/projects/
lbc/index.html.

of 1433 unique words. There are overall 5429 citations (links)
between the papers.

The Citeseer data set contains 3312 papers which can be
classified into 6 categories. Each paper is described by a
0/1-valued word vector indicating the absence/presence of the
corresponding word from a dictionary of 3703 unique words.
There are overall 4732 citations (links) between the papers.
After deleting the self-links, we obtain 4715 links for our
evaluation.

As in [Yang et al., 2009a], we use Normalized Mutual
Information (NMI), Pairwise F-Measure (PWF) and Modu-
larity (Modu) as metrics to measure the clustering accuracy
of our model. For all the algorithms, we set the number of
communities to the ground-truth number of class labels in the
data.

5.2 Baselines

We compare GLFM with the closely related method
MLFM [Hoff, 2009]. The U and V in both MLFM and
GLFM are initialized by principal component analysis (PCA)
on the content information. In addition, we also adopt the
methods introduced in [Yang et al., 2009a] and [Yang et al.,
2009b] for comparison. Those methods can be divided into
three groups: link-based methods, content-based methods,
link+content based methods.

The link-based methods include: PHITS [Cohn and
Chang, 2000], LDA-Link [Erosheva et al., 2004]–an exten-
sion of latent Dirichlet allocation (LDA) for link analysis, the
popularity-based conditional link model (PCL) [Yang et al.,
2009b], and the normalized cut (NCUT) for spectral cluster-
ing [Shi and Malik, 2000].

The content-based methods include: the probabilistic la-
tent semantic analysis (PLSA) [Hofmann, 1999], LDA-Word,
and NCUT respectively with the Gaussian RBF kernel and the
probabilistic product (PP) kernel [Jebara et al., 2004].

The link+content based methods include: PHITS-
PLSA [Cohn and Hofmann, 2000], LDA-Link-Word [Ero-
sheva et al., 2004], Link-Content-Factorization (LCF) [Zhu
et al., 2007], NCUT, PCL-PLSA, PHITS-DC, PCL-DC and
C-PLDC [Yang et al., 2009a]. Here PCL-PLSA represents
the combination of PCL and PLSA, PHITS-DC represents
the PHITS model combined with the discriminative content
(DC) model in [Yang et al., 2009a] , PCL-DC represents the
PCL model combined with DC, and C-PLDC refers to the
combined popularity-driven link model and DC model [Yang
et al., 2009a]. Moreover, the setting for t in C-PLDC fol-
lows that in [Yang et al., 2009a]. More specifically, C-
PLDC(t = 1) denotes a special case of C-PLDC without pop-
ularity modeling [Yang et al., 2009a].

5.3 Illustration

We sample a subset from Cora for illustration. The sampled
data set contains two classes. The learned latent represen-
tations U for the data instances are illustrated in Figure 2,
where the blue circle and red cross are used to denote the data
instances from two different classes respectively, and the (di-
rected) black edges are the citation relationships between the
data points. In Figure 2, (a) and (c) show the original learned
latent factors of MLFM and GLFM, respectively, (b) and (d)
show the corresponding normalized latent factors of MLFM

1708



−1.5 −1 −0.5 0 0.5 1

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(a) MLFM

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b) MLFM (normalized)

−1.5 −1 −0.5 0 0.5 1 1.5 2

−1

−0.5

0

0.5

1

1.5

(c) GLFM

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(d) GLFM (normalized)

Figure 2: Illustration of the homophily and stochastic equiv-
alence modeling in networks.

and GLFM, respectively. Here normalization means that we
divide the latent factor of each node by its length. Hence, it is
clear to see that all the points in (b) and (d) have unit length.
Note that for fair comparison all the different subfigures from
(a) to (d) are generated automatically by our program with the
same parameter settings and initial values.

In (a) and (b) of Figure 2, two instances are more likely
to be close if they are connected by or connect to the same
instance, which is just the feature of stochastic equivalence.
However, there exist many links across the inner part of the
circle in (b), which means that two instances linked with each
other are not necessarily close in the latent space. This just
violates the feature of homophily. Hence, we can conclude
that MLFM cannot effectively model homophily in networks.

In (c) and (d) of Figure 2, homophily is obvious since two
nodes are close to each other in general if there exists a link
between them.

5.4 Convergence Speed

When D = 20, the objective function values of GLFM
against the iteration number T are plotted in Figure 3, from
which we can see that our learning procedure with the MM
method for GLFM converges very fast. We set the maximum
number of iterations T as T = 5 in all our following experi-
ments.

5.5 Accuracy

We compare GLFM with all the baselines introduced in Sec-
tion 5.2 in terms of NMI , PWF and Modu [Yang et al.,
2009a; 2009b]. The results are reported in Table 1, from
which we can see that GLFM achieves the best performance
on all the data sets for the three criteria. Especially for the
Citeseer data set, GLFM dramatically outperforms the sec-
ond best model. According to the prior knowledge, the paper
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Figure 3: Convergence speed of GLFM.
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Figure 4: Sensitivity to the parameter D of GLFM.

citation networks are more likely to exhibit homophily be-
cause the citations often exist among papers from the same
community. This can explain why GLFM can achieve such
good performance on these data sets. Hence, GLFM provides
a way to model networks which cannot be modeled well by
MLFM.

Figure 4 shows the performance of GLFM when D takes
different values. We see that GLFM is not sensitive to D as
long as D is not too small.

6 Conclusion

In this paper, a generalized latent factor model is proposed to
model homophily in social networks. A linear-time learning
algorithm with convergence guarantee is proposed to learn
the parameters. Experimental results on community detection
in real-world networks show that our model can effectively
model homophily to outperform state-of-the-art methods.
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