
Abstract 
Prediction models for multivariate spatio-temporal 
functions in geosciences are typically developed 
using supervised learning from attributes collected 
by remote sensing instruments collocated with the 
outcome variable provided at sparsely located sites. 
In such collocated data there are often large tem-
poral gaps due to missing attribute values at sites 
where outcome labels are available. Our objective is 
to develop more accurate spatio-temporal predictors 
by using enlarged collocated data obtained by im-
puting missing attributes at time and locations 
where outcome labels are available. The proposed 
method for large gaps estimation in space and time 
(called LarGEST) exploits temporal correlation of 
attributes, correlations among multiple attributes 
collected at the same time and space, and spatial 
correlations among attributes from multiple sites. 
LarGEST outperformed alternative methods in 
imputing up to 80% of randomly missing observa-
tions at a synthetic spatio-temporal signal and at a 
model of fluoride content in a water distribution 
system. LarGEST was also applied for imputing 
80% of nonrandom missing values in data from one 
of the most challenging Earth science problems re-
lated to aerosol properties. Using such enlarged data 
a predictor of aerosol optical depth is developed that 
was much more accurate than predictors based on 
alternative imputation methods when tested rigor-
ously over entire continental US in year 2005. 

1 Introduction 
Applicability of many existing data analysis methods that 
assume fairly complete data is limited by the presence of a 
large fraction of missing values (gaps) in data. These gaps are 
often large among spatio-temporal observations by remote 
sensing instruments due to the presence of clouds, malfunc-
tions of remote sensing instruments and noise. Although 
many sound statistical methods exist for imputation of 
missing values (e.g. multiple imputation [Rubin et al, 1987]) 
most of existing methods are not applicable when gaps in 
data are very large. To address large gaps in surveys, data 

mining alternatives were proposed that exploit similarity 
information from shared neighbors [Ayuyev et al, 2009]. 
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In multivariate spatio-temporal data analysis problems of 
natural systems in the presence of large gaps three kinds of 
correlation could be potentially exploited. These opportuni-
ties consist of temporal correlation of attributes, correlations 
among multiple attributes collected at the same time and 
space, and spatial correlations among attributes collected at 
multiple sites. Although many methods were proposed that 
take advantage of one or two of these aspects, less work was 
devoted to taking into consideration all three kinds of corre-
lations simultaneously. Exploiting these correlations to im-
pute large gaps in multivariate spatio-temporal data to de-
velop more accurate supervised prediction models is the 
objective of our study. 

Our work is motivated by the multivariate spatio-temporal 
prediction task of large interest in geosciences called Aerosol 
Optical Depth (AOD) retrieval.  AOD retrieval data is ob-
tained by integrating remote sensing observations with large 
gaps from multiple sources and with multiple kinds of cor-
relation among attributes. In this application 19 real value 
satellite-based attributes were derived from multi-spectral 
images obtained once per day for the entire Earth by MODIS 
instrument on Terra satellite [Modis, 2011]. We use such 
satellite data provided at a 4km*4km grid covering the entire 
continental US in year 2005 (illustrated for two days at Fig-
ure 1 for a 36km*36km region). Although MODIS provides 
daily coverage of almost entire Earth, all 19 attributes are 
missing at nodes corresponding to locations where it was 
cloudy at time of the satellite overpass and such events are 
very common. Real valued AOD outcome variable is meas-
ured from ground at a small number of AERONET locations 
[Aeronet, 2011]. Due to high cost of such ground-based data 
collection, in year 2005 only 33 AERONET sites were 
available in the entire continental US. The objective of AOD 
retrieval is to use spatio-temporally collocated MODIS at-
tributes and AERONET outcomes to build an accurate AOD 
predictor that can estimate AOD value from satellite attrib-
utes.  In this application one of the main challenges is a small 
number of spatio-temporally collocated MODIS observa-
tions and AERONET AOD outcomes.  In particular, in year 
2005 for the entire Continental US there were only 805 spa-
tio-temporal events where both satellite and ground-based 
data were available. Using the method proposed in this article, 
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This set is enlarged about five times to 4112 cases by im-
puting missing MODIS attributes by exploiting correlations 
among 19 attributes collected at a single node of the grid, 
spatial correlations of attributes observed at the same day at 
neighboring 80 nodes in 4x4km grid, and temporal correla-
tions over multiple days. This allowed construction of much 
more accurate AOD retrievals as will be discussed in the 
results section.  

     36 km 

     36 km 

time axis 

1 day

AERONET SITE
MODIS Grid 

Figure 1. Integration of 19 MODIS attributes at 4km*4km daily   
grid with AOD outcome at a ground-based AERONET station.

The rest of the paper is organized as follows. The related 
work is briefly reviewed in Section 2. The proposed method 
for modeling multivariate spatio-temporal data is presented 
in Section 3 together with an algorithm for estimating miss-
ing observation. Evaluation results of the proposed method 
on both synthetic and real data sets are reported in Section 4. 
Section 5 provides the conclusion of our study. 

2 Related Work 
Many of the existing spatio-temporal data analysis methods 
assume that data is complete or almost complete. This as-
sumption is violated in many spatio-temporal applications.  

For estimation of missing values in multiple time series, a 
dynamic Bayesian model called DynaMMo was recently 
developed to simultaneously exploit temporal smoothness of 
each series and their correlations [Li et al, 2009]. Although 
very effective for estimating missing values in coevolving 
time series, DynaMMo is less applicable to remote sensing 
where data is collected at multiple spatially correlated loca-
tions where multiple correlated time series are observed at 
each location and individual series have temporal continuity. 

For imputing incomplete spatial data, one of the most 
successful practical methods is to use multivariate interpola-
tion by empirical orthogonal functions [Beckers et al, 2003]. 
In this singular value decomposition (SVD) based data im-
putation approach that we will simply call EOF, missing 
values are initially replaced by an unbiased guess and the 
missing values were interpolated incrementally by using 
truncated orthogonal functions of SVD decomposition for 
reconstruction and repeating the process while increasing the 
number of component functions. A limitation of EOF based 
data imputation is that it exploits only spatial correlations in 
data which is a problem when long continuous gaps are 
present in spatio-temporal data. An application of EOF to a 
transposed matrix that we will call T-EOF is proposed as a 

practical way to address such larger gaps in data [Kon-
drashov et al, 2006]. The same technique of using a trans-
posed data to catch a different aspect of correlations in data 
(spatial instead of temporal) can also be applied to linear 
interpolation and to DynaMMo imputations. Such versions 
we will call T-Linear and T-DynaMMo methods.  

Previous work [Radosavljevic et al 2010] in developing 
data-driven AOD retrieval methods using spatio-temporally 
collocated satellite and ground based observations (as shown 
at Figure 1) was simply removing the missing observations. 
The hypothesis explored in this study is that the accuracy of 
previously developed AOD predictors can be improved sig-
nificantly by estimating the missing attributes and then train 
predictors on the data set consisting of both observed and 
imputed attributes.  

3 Methodology 
Given a multivariate spatio-temporal data (a mul-
ti-dimensional sequence and bunch of neighboring mul-
ti-dimensional sequences), there are three types of correla-
tions: temporal correlation of each dimension, correlations 
among multiple dimensions collected at the same time and 
space, and spatial correlations from neighboring sites. Our 
goal is to build an accurate model on enlarged data with 
imputed values estimated by exploiting all three kinds of 
correlations.  

3.1 Modeling correlations in a single sequence 
In this section we describe how to model temporal correlation 
of each dimension and correlations among multiple dimen-
sions from a multivariate sequence. We build a probabilistic 
model to estimate the missing values conditioned on ob-
served values by exploiting these two types of correlation. 

Assume that an m-dimensional sequence X = {x1, x2,…,xN}
of length N is given, where vector xn observed at the nth time 
tick of sequence  (n = 1,…,N) is a m-dimensional multivari-
ate Gaussian. For each m-dimensional observation of vector 
xn we introduce a Gaussian latent variable zn such that there 
is a linear dependence with a Gaussian noise between each xn
and zn defined as n n nx C , where C is the parameter 
matrix and  is the Gaussian noise with mean 
of zero and variance of .

z v
~ ( | 0, )Nv v

We also define a linear dependence with Gaussian noise 
between two adjacent latent variables zn-1 and zn corre-
sponding to two successive observation xn-1 and xn

as n n-1z Az wn , where A is the parameter and 
 is the Gaussian noise with mean of zero and 

variance of .
~ ( | 0, )Nw w

Therefore, the emission and transition distribution can be 
written as 

( | ) ( | , )p Nn n n nx z x Cz                                      (1)  
( | ) ( | , )p Nn n-1 n n-1z z z Az                                  (2) 

The initial latent variable z1 also has a Gaussian distribu-
tion which can be written as

( ) ( | , )p N1 1 0z z V0                                              (3) 
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where 0 is the initial state of z1 and is the variance. 0V
Let be the parameters of the mod-

el. Therefore, the joint probability given  is
{ , , , , , }0 0A C V

2 1

( , | ) ( | , )

                ( | , , ) ( | , , )
N N

n n

p p

p p

1 0 0

n n-1 n n

X Z z V

z z A x z C
      (4) 

Our model is different to the traditional Kalman Filter 
-based model, since we allow missing values to exist in the 
observation X. We define a Missing Index Matrix I to indi-
cate the missing values. Each entry of is defined as I

0      when  is missing

1      otherwise
pq

pq

X
I                          (5) 

For learning the model, we define the expectation of the 
complete-data log likelihood as

| ,( , ) [ln ( , | , )]
oldoldQ E pZ I X Z I                       (6) 

First, we initialize each missing value Xpq in data sequence 
(where ) using simple linear interpolation from the 
values where  at the same time. Then, we apply the 
EM algorithm to maximize the equation (6). By extending 
the equation (6) by substituting  using the corre-
sponding part from equation (4) and (1)-(3), we get 

0pqI
0pqI

( , | )p X Z

1
|

1
|

2

1
|

1

1 1( , ) ln | [ ( ) ( )]
2 2

N 1 1ln | | [ ( ) ( )]
2 2

N 1ln | | [ ( ) ( )]
2 2

old

old

old

T
old

N
T

n
N

T

n

Q E

E

E const

0 Z 1 0 0 1 0

Z n n-1 n n-1

Z n n n n

V | z V z

z Az z Az

x Cx x Cx

(7) 

where const is the term which is not dependent on any part of 
parameter .We take the derivatives of equation (7) with 
respect to each part of parameter  and then set them to zero. 
We get the parameters updates as follows: 

[ ]new E0 z1

]1

                                                     (8) 
[ ] [ ] [new T TE E E0 1 1 1V z z z z                                   (9) 

1

2 2
( [ ]) ( [ ])

N N
new T T

n n
E En n-1 n n-1A z z z z                      (10) 

2

1 { [ ] [ ]
1

      [B ]B B [ ]( ) }

N
new T new T

n
T new new T new T

E E
N

E E

n n n-1 n

n-1 n-1

z z A z z

z z A

                   (11) 

1

1 1
( [ ]) ( [ ])

N N
new T T

n n
E En n n nC x z z z                          (12) 

1

1 { [ ]

       [ ] [ ]( ) }

N
new new T

n
T new new T new T

E
N

E E

n n n n

n n n n

x x C z x

x z C C z z C

                 (13) 

At the end of each M step, we update the missing value Xpq

(when ) using 0

)n I

j

pqI

{ , }[ | , , ] [ ] (  0new
pq p q pqE E wheX Z I C Z              (14) 

Calculating the updated parameters requires the inference 
in E step of the marginal distribution  for hidden 
latent variables given the data. The inference is similarly to 

the one in Kalman Filter-based model, since the missing 
values are updated at the end of each M step. We apply 
forward-backward message passing to calculate the expecta-
tion of posterior distribution of latent variables. The details of 
inference in the Kalman Filter-based model are omitted for 
lack of space (for more details see [Bishop et al, 2006]). 

( | , )p Z X

Then, we use the updated X to recalculate the new pa-
rameters in the next EM iteration. We repeat this procedure 
until convergence. The estimation for missing values can be 
automatically obtained once the model is learned. 

3.2 Modeling spatial correlations from neighbors 
In this section, we describe how to explore spatial correla-
tions among neighboring sites. We build a probabilistic 
model among multivariate sequence X and its neighboring 
observations to estimate the missing values in X conditioned 
on the observed values in neighboring sites. 

Given a multivariate sequence X, let Li = {li1, li2,…,liN} (i 
= 1,…m) be the ith dimension of X, where lin (n = 1,…,N) is a 
single value of the observation in the ith dimension at the nth

time-step. Assuming that X has observations at k neighboring 
locations, we define  as the i( ) ( ) ( ) ( )

1 2{ , ,..., }j j j
i i i iNl l lL th

dimension of X’s jth (j = 1,…,k) neighboring locations. Our 
objective is to impute the missing value in each Li by ex-
ploiting the spatial correlation among Li

and ( ){ | 1,..., }j
iL j k

}j

. In order to learn such spatial correla-
tion, for each dimension Li of X and corresponding 

from X’s neighbors, we define 
 as the union of L

( ) ( ) ( ) ( )
1 2{ , ,...,j j j

i i i iNL l l l
(i) (i) (i) (i)

1 2 N{ , ,..., }O o o o i and 
( ){ | 1,..., }j

i j kL , where (n = 
1,…,N) are the values of the i

i (1) (2){ , , ,... }k
n in in in inl l l lo ( )

th dimension of X and its 
neighboring locations at the nth time-step. For each observa-
tion , we define a Gaussian latent variable i

no ~ (0, )Nny w
(n = 1,…,N). Each pair of nodes {yn, } represents a 
linear-Gaussian latent variable model for the particular mul-
tivariate observation. However, the latent variables {y

( )i
no

n} are 
treated as independent to each other. Hence, the emission 
distribution is  

( ) ( )( | ) ( | ,i ip N )n n n no y o D y                             (15) 
Then, we can build a probabilistic graphical model for 

each dimension of X to exploit the spatial correlation be-
tween each Li and its corresponding ( ){ | 1,..., }j

i j kL from 
neighboring locations. Let { , , }w D be the parameters of 
the model. Then, the joint distribution can be written as: 

( ) ( )

1 1

( , | ) ( ) ( | ,
N N

i i

n n

p p pn n nO Y y o y )           (16) 

Therefore, maximizing the complete data log likelihood is 
equivalent to maximizing: 

( ) 1

11 1

( ) 1 ( )

1

1ln( ( ) ( | , )) ln | |
2 2

1   ln | | ( ) ( )
2 2

N N N
i T

nn n
N

i T i

n

Np p

N

n n n n

n n n n

y o y w ny w y

o D y o D y
         

(17) 
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We take the derivatives of equation (17) with respect to ,
D and

w
 respectively, and set them to zero. The updated 

parameters are computed as 
( ) ( )

1

1 E( | )E( | )
Nnew i T i

nN n n n nw y o y o                           (18) 

new ( ) ( ) ( ) ( ) 1

1 1
 = ( | ) ( ( | ) ( | ))

N N
i T i i T i

n n
E E En n n n n n nD o y o y o y o          (19) 

( ) ( ) ( )

1

1 ( ( | )) ( ( |
N

new i new i new i T

n
E E

N n n n n no D y o o D y o ))n
  (20)  

In order to get the optimal parameters maximizing equation 
(17) in the presence of missing observations, for each di-
mension of X we maintain another Missing Index Matrix 

where indicates a missing value of ( )iI ( ) 0i
pqI ( )i

pqO . We 
initialize the each missing value using linear interpolation 
from values where in the neighboring observations. 
Then, we calculate new parameters using equation (18)-(20) 
and use them to estimate the missing values as 

( ) 0i
pqI

( ) ( ) ( ) ( )
( ) { , }[ | , , ] [ | ] (  i i new i i

pq new p q pq pqE E whO Y I D Y O I 0)en  (21) 
After imputing the missing values using eq. (21), we use the 
new data to estimate new parameters in the next iteration. By 
repeating this process of estimating parameters and missing 
values until converging, we can get the optimal parameters of 
the model and the final estimation of missing values. After 
updating the missing values in ( )i

pqO  for each dimension of 
X, we can get the estimated X.

3.3 Learning algorithm 
In order to estimate the missing values by exploring all three 
types of correlation, we propose the LarGEST algorithm 
(shown in Algorithm 1) which simultaneously learns two 
models described in Sections 3.1 and 3.2. 

First, we initialize all model parameters and fill all the 
missing values by linear interpolation from the values of 
spatial neighbors. Then, we apply an Extended Expectation 
Maximization algorithm which works as follows. 

In the E-step, we estimate the posterior distribution 
( | , )p Z X of Model 1 which will be used when we maximize 

the expectation of log likelihood in M-step (using equations 
(8) -- (13)). After getting the updated parameters of Model 1, 
we can estimate the missing values using Model 1.  The data 
with updated missing values from Model 1 is used to estimate 
the parameters of Model 2. We can re-estimate the missing 
values after learning the parameters of Model 2. The updated 
data with updated missing values estimated by Model 2 will 
be the input data of E-step of next iteration to calculate the 
posterior distribution of Model 1. We repeat this procedure of 
training two models interactively until convergence. Our 
experiments show that different order of two models has no 
significant influence in learning results since it only results in 
the different initialization values of two models. 

After imputing the missing values in multivariate spa-
tio-temporal data, we then build a predictor on enlarged 
collocated spatio-temporal data. In the next section we 
compare results of predictors trained on enlarged dataset 
generated by LarGEST and by alternative methods. 

Inputs:         X – set of multivariate spatio-temporal sequences 
with missing values    

                     { } –  multivariate observations including ( )iO
neighbors for each dimension of X

                     – Missing value Index Matrix for XI
                     –Missing value Index Matrix for ( )iI ( )iO
Outputs: Xnew – sequences with estimated values 
                 , – model parameters 

Initialize Xnew with X
Estimate missing values in Xnew using linear interpolation 
Initialize model parameters  
Do 

E-step:  Estimate posterior distribution  of( | , )p Z X
Model 1 using forward-backward message passing. 

M-step:  Maximize  expectation of log likelihood (Model 1)
              arg max ( )new Q
Estimate missing values using Model 1: 
          for p, q DO 
                   update Xnew

pq when Ipq=0 using equation (14) 
 
Initialize { } with X( )i

newO new and { } ( )iO
Maximize log-likelihood (Model 2 for each dimension i): 

( )arg max ln ( , | )new i
newp O Y

     Estimate missing values using Model 2 
for p, q DO 

         update  when I( )
( )

i
pq newO pq=0 using eq. (21) 

Xnew = { }( )i
newO

Until converge 
Return Xnew, , and  

Algorithm 1.  LarGEST algorithm. 

4 Experimental Results 
The proposed LarGEST method for imputation of large gaps 
in data is compared experimentally with Linear, DynaMMO 
and EOF methods. In addition, LarGEST is also compared to 
the same three methods when used on transposed data and 
such results are annotated as T-Linear, T-DynaMMo and 
T-EOF.  Brief descriptions of six alternative methods are 
provided in Section 2.  

Our evaluation is performed on three datasets of increasing 
complexity. In the first task (Section 4.1) the objective was to 
compare LarGEST to alternatives for imputing 5% to 90% 
missing values in a fairly simple function. In Section 4.2 this 
is followed by imputing 80% of missing values in a more 
challenging problem of Floride estimation whereas a similar 
data was used as a testbed in an earlier study [Li et al, 2009]. 
Finally, in Section 4.3 effects of data imputation by LarGEST 
and alternatives were compared at a grant challenge problem 
of spatio-temporal regression for Aerosol AOD retrieval 
from data with about 80% of missing values in 19 attributes.  

4.1 Imputation of small versus large gaps  
The synthetic two dimensional temporal data (X, Y) for a 
certain location is generated as sin( )*5X t and

sin( / 2)*5Y t . At four neighboring locations two di-
mensional data is generated by shifting the first site data by 
0.5 0.3, -0.3and -0.5 respectively. 
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The mean square error (MSE) of imputation by LarGEST 
and six alternatives was compared when 5% to 90%   of data 
were missing randomly (see Figure 2). In data imputation 
experiments with small fraction (less than 25%) of missing 
values inserted completely at random, LarGEST and all 
alternative methods estimated missing values fairly well. 
However, LarGEST was clearly the best choice as Linear 
interpolation had problems when the missing values were 
located near the top or the bottom of the signal, while EOF 
had problems where four neighbors were missing and Dy-
naMMo had some errors at high curvature sections. 

When large fraction of data was missing LarGEST ex-
ploited well all three kinds of correlations in data simulta-
neously while alternative imputation methods resulted in 
much larger error. When extremely large fraction (85% and 
90%) of data was missing, all methods performed badly. For 
a large fraction of missing values accuracy was improved 
when the number of neighbors was increased. Results with a 
larger number of neighbors are omitted on synthetic data for 
lack of space, but will be shown on real remote sensing data. 

4.2 Imputation of 80% gaps in Fluoride data 
The Fluoride dataset is produced by EPANET 2 which 
models the water quality behavior in a distribution piping 
systems. In a given network of water distribution piping 
system, EPANET simulates the contents of Fluoride over a 
certain period [EPA, 2011]. Data used in our experiments are 
generated assuming a piping system of 36 nodes simulated 
over 10 days in 15 minutes increments.  For our experiments 
at a certain node and at its three neighboring nodes we ex-
tracted two attributes over 960 time steps. Then, 80% of this 
data was removed completely at random from each of two 
attributes at each of 4 nodes retaining 192 values per each 
attribute at each site. The objective was to estimate 1536 
missing values at two time series observed at one of these 
nodes. The mean square error (MSE) of this estimation by 
LarGEST and alternative methods are shown at Figure 3. 

4.3 Spatio-temporal regression of Aerosol data 
with 80% of imputed attributes 

Experiments were conducted on integrated satellite and 
ground based Aerosol data introduced in Section 1. AOD 
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Figure 3.  Mean square error of data imputation on Fluoride data 
with 80% of missing values.  

values observed from ground at 33 AERONET sites were 
also available at an additional 3,307 events, but in these cases 
all 19 sattelite-based attributes were missing. Missing at-
tributes at these 80% cases were imputed by LarGEST re-
laying on spatial correlations with satellite observations at up 
to 80 neighbors at 4kmx4km grid as well as on temporal 
correlations among 330 daily observations. Six alternative 
methods used in Section 4.1 were also applied for attributes 
imputation at 3,307 events. 

A feed-forward neural network model with a single hidden 
layer of 10 nodes was trained on enlarged data consisting of 
examples with actual and those with imputed attributes. This 
choice was based on the best predictors from previous studies 
[Radosavljevic. et al, 2010]. Experiments were performed by 
partitioning 805 examples from 33 sites where both attributes 
and AOD values are available in 33 disjoint subsets based on 
sites and using 32 subsets together with 3,307 additional 
examples whose attributes are imputed for training a neural 
network model which is tested on the remaining site’s data. 
This is repeated in 33-cross validation experiments always 
keeping a different site for testing. The quality of the ob-
tained predictors was compared using two measures fol-
lowing a protocol practiced by geoscience community [Ra-
dosavljevic et al, 2010]. To evaluate impact of spatial 
neighborhood size on imputation quality, in LarGEST im-
putation we considering nearest 8, 24, 48 and 80 neighboring 
observations in 4kmx4km grid shown at Figure 1. These 
methods we will call LarGEST8, LarGEST24, LarGEST48 
and LarGEST80, respectively. 

Learning time is not a concern in this application. In 10 
minutes our method imputes data streams used in our ex-
periments on a desktop computer with only 3 GB memory. 
This time is negligible as compared to months of simulations 
on a supercomputer required by traditional deterministic 
aerosol retrieval methods based on physical modeling. 

The first quality measure we used is R-square. The results 
obtained by a predictor trained on data imputed by LarG-
EST80, and by nine alternative methods are shown in Figure 
4. In addition, we also show the accuracy of a predictor ob-
tained on 805 examples without data imputation and we call 
this model Original.  The results obtained by LarGEST80 
were more accurate than alternatives and better than any 
previously reported accuracy of AOD retrieval.
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Another measure we used is introduced by aerosol scien-
tists who regard the retrieved AOD acceptable if the fol-
lowing boundary conditions on the retrieval are satisfied 

i  where y| | 0.05 0.15i iy t t i is retrieved AOD value and ti
is the corresponding true AOD value. We measured fraction 
of successful predictions defined as ,
where I is the number of predictions satisfying the stated 
boundary and N is the total number of predictions. Fraction 
of successful AOD retrievals of seven regression models 
based on data imputed by LarGEST and six alternatives as 
well as data that is not imputed at all (called Original) are 
shown at Figure 5. LarGEST80 clearly outperformed all 
alternative methods in both measures. 

( / )*100%FRAC I N

Both Figure 4 and Figure 5 show that LarGEST performed 
better when including attributes from larger number of 
neighboring grids. All 80 neighbors used in LarGEST80 
model were within the range of 36km (see Figure 1) which is 
considered to be a range of AOD spatial correlation. Indeed, 
including spatial information from even more distant nodes 
was not beneficial (results omitted for the lack of space). 

5 Conclusion  
In the proposed method, two probabilistic models were 
proposed, and learned interactively by an Extended Expec-

tation Maximization algorithm to exploit simultaneously all 
three types of correlation for multivariate spatio-temporal 
data imputation. The imputation results on challenging 
problems with 80% of missing values provide evidence that 
in the presence of long continuous gaps LarGEST method 
can estimate missing values more accurately than alternatives. 
The aerosol optical depth retrieval results obtained using 
training data enlarged by LarGEST-based imputations were 
not only better than the results obtained by training a pre-
dictor trained on data imputed using alternative methods, but 
were also more accurate than any previously developed 
method for AOD retrieval from satellite data. 
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