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Abstract

This paper presents a meta-heuristic algorithm for
solving the Flexible Job Shop Scheduling Problem
(FJSSP). This strategy, known as Iterative Flatten-
ing Search (IFS), iteratively applies a relaxation-
step, in which a subset of scheduling decisions are
randomly retracted from the current solution; and a
solving-step, in which a new solution is incremen-
tally recomputed from this partial schedule. This
work contributes two separate results: (1) it pro-
poses a constraint-based procedure extending an
existing approach previously used for classical Job
Shop Scheduling Problem; (2) it proposes an origi-
nal relaxation strategy on feasible FJSSP solutions
based on the idea of randomly breaking the exe-
cution orders of the activities on the machines and
opening the resource options for some activities se-
lected at random. The efficacy of the overall heuris-
tic optimization algorithm is demonstrated on a set
of well-known benchmarks.

1 Introduction

The paper focuses on a family of solving techniques referred
to as Iterative Flattening Search (IFS). IFS was first intro-
duced in [Cesta et al., 2000] as a scalable procedure for
solving multi-capacity scheduling problems. IFS is an iter-
ative improvement heuristic designed to minimize schedule
makespan. Given an initial solution, IFS iteratively applies
two-steps: (1) a subset of solving decisions are randomly
retracted from a current solution (relaxation-step); (2) a
new solution is then incrementally recomputed (flattening-
step). Extensions to the original IFS procedure were made
in two subsequent works [Michel and Van Hentenryck, 2004;
Godard et al., 2005] both of which substantially improved
its performance on reference benchmark problems and estab-
lished additional new best solutions. More recently [Oddi et
al., 2010] have performed a systematic study aimed at evalu-
ating the effectiveness of single component strategies within
the same uniform software framework.

In this paper we develop and evaluate an IFS procedure for
solving a scheduling problem with a different structure than
the multi-capacity job-shop problem. We focus specifically
on the Flexible Job Shop Scheduling Problem (FJSSP), a gen-
eralization of the classical JSSP where a given activity may

be processed on any one of a designated set of available ma-
chines. The FJSSP is more difficult than the classical Job
Shop Scheduling Problem (which is itself NP-hard), since it
is not just a sequencing problem. In addition to deciding how
to sequence activities that require the same machine, it is also
necessary to choose a routing policy, that is which machine
will process each activity. The objective remains that of min-
imizing makespan. The problem is motivated by interest in
developing Flexible Manufacturing Systems (FMS), as un-
derscored in [Rossi and Dini, 2007]; an effective synthesis of
the existing solving approaches is proposed in [Ben Hmida
et al., 2010]. The core set of procedures which generates the
best results include the genetic algorithm (GA) proposed in
[Gao et al., 2008], the tabu search (TS) approaches of [Mas-
trolilli and Gambardella, 2000; Bozejko et al., 2010] and the
discrepancy-based method, called climbing depth-bounded
discrepancy search (CDDS), defined in [Ben Hmida et al.,
2010]. We use the results produced by these procedures as
our evaluation reference point in this paper.

The IFS variant that we propose relies on a core constraint-
based search procedure as its solver. This procedure is an
extension of the SP-PCP procedure proposed in [Oddi and
Smith, 1997]. SP-PCP generates consistent orderings of ac-
tivities requiring the same resource by imposing precedence
constraints on a temporally feasible solution, using variable
and value ordering heuristics that discriminate on the basis of
temporal flexibility to guide the search. We extend both the
procedure and these heuristics to incorporate an additional
set of decision variables relating to resource choice. To pro-
vide a basis for embedding this core solver within an IFS op-
timization framework, we also specify a new metaheuristic
procedure for relaxing a feasible solution by randomly dis-
rupting the activity sequences on various machines and re-
introducing resource choice. Empirical analysis of our algo-
rithm shows that it is generally comparable in performance to
the best algorithms published over the last 10 years.

The paper is organized as follows. Section 2 defines the
FJSSP problem and Section 3 introduces a CSP represen-
tation. Section 4 describes the core constraint-based search
procedure while Section 5 introduces details of the IFS meta-
heuristics. An experimental section describes the perfor-
mance of our algorithm on a set of benchmark problems, and
explains the most interesting results. Some conclusions end
the paper.
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2 Flexible Job Shop Scheduling Problem

The FJSSP entails synchronizing the use of a set of machines
(or resources) R = {r1, . . . , rm} to perform a set of n ac-
tivities A = {a1, . . . , an} over time. The set of activities is
partitioned into a set of nj jobs J = {J1, . . . , Jnj}. The pro-
cessing of a job Jk requires the execution of a strict sequence
of nk activities ai ∈ Jk and cannot be modified. All jobs are
released at time 0. Each activity ai requires the exclusive use
of a single resource ri for its entire duration chosen among
a set of available resources Ri ⊆ R. No preemption is al-
lowed. Each machine is available at time 0 and can process
more than one operation of a given job Jk (recirculation is al-
lowed). The processing time pir of each activity ai depends
on the selected machine r ∈ Ri, such that ei − si = pir,
where the variables si and ei represent the start and end time
of ai. A solution S = {(s1, r1), (s2, r2), . . . , (sn, rn)} is a
set of pairs (si, ri), where si is the assigned start-time of ai,
ri is the selected resource for ai and all the above constraints
are satisfied. Let Ck be the completion time for the job Jk,
the makespan is the value Cmax = max1≤k≤nj{Ck}. An
optimal solution S∗ is a solution S with the minimum value
of Cmax. The FJSSP is NP-hard since it is an extension of
the JSSP problem [Garey and Johnson, 1979].

3 A CSP Representation

There are different ways to model the problem as a Constraint
Satisfaction Problem (CSP), we use an approach similar to
[Oddi and Smith, 1997]. In particular, we focus on assigning
resources to activities, a distinguishing aspect of FJSSP and
on establishing precedence constraints between pairs of ac-
tivities that require the same resource, so as to eliminate all
possible conflicts in the resource usage.

Let G(AG, J,X) be a graph where the set of vertices AG

contains all the activities of the problem together with two
dummy activities, a0 and an+1, respectively representing the
beginning (reference) and the end (horizon) of the schedule.
Each activity ai is labelled with the set of available resource
choices Ri. J is a set of directed edges (ai, aj) representing
the precedence constraints among the activities (job prece-
dences constraints) and are labelled with the set of processing
times pir (r ∈ Ri) of the edge’s source activity ai. The set
of undirected edges X represents the disjunctive constraints
among the activities requiring the same resource r; there is an
edge for each pair of activities ai and aj requiring the same
resource r and the related label represents the set of possible
ordering between ai and aj : ai � aj or aj � ai. Hence, in
CSP terms, there are two sets of decision variables: (1) a vari-
able xi is defined for each activity ai to select one resource for
its execution, the domain of xi is the set of available resource
Ri: (2) A variable oijr is defined for each pair of activities ai
and aj requiring the same resource r (xi = xj = r), which
can take one of two values ai � aj or aj � ai.

To support the search for a consistent assignment to the set
of decision variables xi and oijr, for any FJSSP we define
the directed graph Gd(V,E), called distance graph, which is
an extended version of the graph G(AG, J,X). The set of
nodes V represents time points, where tp0 is the origin time
point (the reference point of the problem), while for each ac-
tivity ai, si and ei represent its start and end time points re-
spectively. The set of edges E represents all the imposed

temporal constraints, i.e., precedences and durations. In par-
ticular, for each activity ai we impose the interval duration
constraint ei − si ∈ [pmin

i , pmax
i ], such that pmin

i (pmax
i ) is

the minimum (maximum) processing time according to the
set of available resources Ri. Given two time points tpi and
tpj , all the constraints have the form a ≤ tpj − tpi ≤ b,
and for each constraint specified in the FJSSP instance there
are two weighted edges in the graph Gd(V,E); the first one
is directed from tpi to tpj with weight b and the second
one is directed from tpj to tpi with weight −a. The graph
Gd(V,E) corresponds to a Simple Temporal Problem (STP)
and its consistency can be efficiently determined via shortest
path computations; the problem is consistent if and only if no
closed paths with negative length (or negative cycles) are con-
tained in the graph Gd [Dechter et al., 1991]. Thus, a search
for a solution to a FJSSP instance can proceed by repeat-
edly adding new precedence constraints into Gd(V,E) and
recomputing shortest path lengths to confirm that Gd(V,E)
remains consistent. A solution S is given as a affine graph
GS(AG, J,XS), such that each undirected edge (ai, aj) in
X is replaced with a directed edge representing one of the
possible orderings between ai and aj : ai � aj or aj � ai.
In general the directed graph GS represents a set of tempo-
ral solutions (S1, S2, . . . , Sn) that is, a set of assignments to
the activities’ start-times which are consistent with the set of
imposed constraints XS . Let d(tpi, tpj) (d(tpj , tpi)) desig-
nate the shortest path length in graph Gd(V,E) from node
tpi to node tpj (from node tpj to node tpi); then, the con-
straint −d(tpj , tpi) ≤ tpj − tpi ≤ d(tpi, tpj) is demon-
strated to hold [Dechter et al., 1991]. Hence, the interval
[lbi, ubi] of time values associated with a given time vari-
able tpi respect to the reference point tp0 is computed on the
graph Gd as the interval [−d(tpi, tp0), d(tp0, tpi)]. In par-
ticular, given a STP, the following two sets of value assign-
ments Slb = {−d(tp1, tp0),−d(tp2, tp0), . . . ,−d(tpn, tp0)}
and Sub = {d(tp0, tp1), d(tp0, tp2), . . . , d(tp0, tpn)} to the
STP variables tpi represent the so-called earliest-time solu-
tion and latest-time solution, respectively.

4 Basic Constraint-based Search

The proposed procedure for solving instances of FJSSP inte-
grates a Precedence Constraint Posting (PCP) one-shot search
for generating sample solutions and an Iterative Flattening
meta-heuristic that pursues optimization. The one-shot step,
similarly to the SP-PCP scheduling procedure (Shortest Path-
based Precedence Constraint Posting) proposed in [Oddi and
Smith, 1997], utilizes shortest path information in Gd(V,E)
to guide the search process. Shortest path information is used
in a twofold fashion to enhance the search process: to prop-
agate problem constraints and to define variable and value
ordering heuristics.

4.1 Propagation Rules

The first way to exploit shortest path information is by in-
troducing conditions to remove infeasible values from the
domains of the decision variables xi, representing the as-
signment of resources to activities, similarly to what pro-
posed in [Huguet and Lopez, 2000]. Namely, for each ac-
tivity ai we relax the disjunctive duration constraint into the
interval constraint ei − si ∈ [pmin

i , pmax
i ], such that pmin

i
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(pmax
i ) is the minimum (maximum) processing time accord-

ing to the set of available resources Ri (Ri is the domain of
the decision variable xi). As soon as the search progresses
and the interval of distance between the start-time and the
end-time of ai [−d(si, ei), d(ei, si)] is updated, the duration
pir �∈ [−d(si, ei), d(ei, si)] are removed from the domain
of xi and a new interval [pmin

i , pmax
i ] is recomputed accord-

ingly. In the case the domain of the decision variable xi be-
comes empty, then the search is reached a failure state.

The second way to exploit shortest path is by introducing
Dominance Conditions, through which problem constraints
are propagated and mandatory decisions for promoting early
pruning of alternatives are identified. Given two activities ai,
aj and the related interval of distances [−d(sj , ei), d(ei, sj)]
1 and [−d(si, ej), d(ej , si)]

2 on the graph Gd, they are de-
fined as follows (see Figure 1).
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Figure 1: Max distance d(ei, sj) vs. the min distance
−d(sj , ei)

We observe as d(ei, sj) is the maximal distance between
ai and aj , it provides a measure of the degree of sequenc-
ing flexibility between ai and aj

3. In addition, −d(sj , ei)
is the minimum possible distance between ai and aj (see Fi-
gure 1), then there is no need to separate ai and aj when
−d(sj , ei) ≥ 0. For any pair of activities ai and aj that can
compete for the same resource r (Ri ∩ Rj �= ∅), given the
corresponding durations pir and pjr, the Dominance Condi-
tions, describing the four main possible cases of conflict, are
defined as follows:

1. d(ei, sj) < 0 ∧ d(ej , si) < 0
2. d(ei, sj) < 0 ∧ d(ej , si) ≥ 0 ∧ −d(si, ej) < 0
3. d(ei, sj) ≥ 0 ∧ d(ej , si) < 0 ∧ −d(sj , ei) < 0
4. d(ei, sj) ≥ 0 ∧ d(ej , si) ≥ 0

Condition 1 represents an unresolvable resource conflict.
There is no way to order ai and aj when they require the same
resource r without inducing a negative cycle in the graph
Gd(V,E). When Condition 1 is verified there are four dif-
ferent interesting sub-cases generated on the basis of the car-
dinality of the domain sets Ri and Rj .
a. |Ri| = |Rj | = 1: the search has reached a failure state;
b. |Ri| = 1 ∧ |Rj | > 1: the resource requirement r can be

removed from Rj ;

1between the end-time ei of ai and the start-time sj of aj
2between the end-time ej of aj and the start-time si of ai
3Intuitively, the higher is the degree of sequencing flexibility, the

larger is the set of feasible assignments to the start-times of ai and
aj

c. |Ri| > 1 ∧ |Rj | = 1: the resource requirement r can be
removed from Ri;

d. |Ri| > 1 ∧ |Rj | > 1: the activities ai and aj cannot use
the same resource r.
Conditions 2, and 3, alternatively, distinguish uniquely re-

solvable conflicts, i.e., there is only one feasible ordering of
ai and aj when both the activities require r. In the parti-
cular case where |Ri| = |Rj | = 1 the decision aj � ai is
mandatory. In the case there is at least one activity with more
than one resource option (|Ri| > 1 ∨ |Rj | > 1), it is still
possible to choose different resource assignments for ai and
aj , and avoid posting a precedence constraint. Condition 3
works similarly, and entails that only the ai � aj ordering is
feasible when |Ri| = |Rj | = 1.

Condition 4 designates a class of resolvable conflicts with
more search options; in this case when |Ri| = |Rj | = 1
both orderings of ai and aj remain feasible, and it is there-
fore necessary to perform a search decision. When there is
at least one activity ai or aj with more than one resource op-
tion (|Ri| > 1 ∨ |Rj | > 1), then there is also the possibility
of choosing different resource assignments to ai and aj , and
avoid to post a precedence constraint.

4.2 Heuristic Analysis

Shortest path information in Gd can also be exploited to de-
fine variable and value ordering heuristics for the decision
variables xi and oijr in all cases where no mandatory deci-
sions are deduced from the propagation phase. The idea is to
evaluate both types of decision variables (xi and oijr) and se-
lect the one (independently of type) with the minimum heuris-
tic evaluation. The selection of the variables is based on the
most constrained first (MCF) principle and the selection of
values follows the least constraining value (LCV) heuristic.

Initially, all the pairs of activities (ai, aj), such that (|Ri| ≥
1 ∨ |Rj | ≥ 1 and Ri ∩ Rj �= ∅)) undergo a double-
key sorting, where the primary key is a heuristic evalua-
tion based on resource flexibility and computed as FRij =
2(|Ri| + |Rj |) − |Ri ∩ Rj |4, and the secondary key is a
heuristic evaluation based on temporal flexibility and com-
puted as FTij = minr∈Ri∩Rj{V arEvalr(ai, aj)}, where
the V arEvalr(ai, aj) heuristic is an extension to the FJSSP
of the heuristic proposed in [Oddi and Smith, 1997], and
it is computed as follows. As stated above, in this context
d(ei, sj) and d(ej , si) provide measures of the degree of se-
quencing flexibility between ai and aj . More precisely, given
an activity pair (ai, aj), both assigned to resource r, the re-
lated heuristic evaluation is V arEvalr(ai, aj) =⎧⎨
⎩

min{d(ei,sj)√
S

,
d(ej ,si)√

S
} if d(ei, sj) ≥ 0 ∧ d(ej , si) ≥ 0

d(ej , si) if d(ei, sj) < 0 ∧ d(ej , si) ≥ 0
d(ei, sj) if d(ei, sj) ≥ 0 ∧ d(ej , si) < 0.

where S =
min{d(ei,sj),d(ej ,si)}
max{d(ei,sj),d(ej ,si)}

5. The pair (a∗i , a
∗
j ) with the

lowest value 〈FRij , FTij〉 (double-key sorting) is firstly se-
lected and then it is associated to a resource decision variable

4The resource flexibility FRij increases with the size of the do-
mains Ri and Rj , and decreases with the size of the set Ri ∩ Rj ,
which is correlated to the possibility of creating resource conflicts.

5The
√
S bias is introduced to take into account cases where

a first conflict with the overall min{d(ei, sj), d(ej , si)} has a
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PCP(Problem, Cmax)
1. S ← InitSolution(Problem, Cmax)
2. loop
3. Propagate(S)
4. if UnresolvableConflict(S)
5. then return(nil)
6. else
7. if UniquelyResolvableDecisions(S)
8. then PostUnconditionalConstraints(S)
9. else begin
10. C ←ChooseDecisionVariable(S)
11. if (C = nil)
12. then return(S)
13. else begin
14. vc ← ChooseValueConstraint(S, C)
15. PostConstraint(S, vc)
16. end
17. end
18. end-loop
19. return(S)

Figure 2: The PCP one-shot algorithm

or to an ordering decision variable depending on the cardinal-
ities |Ri| and |Rj |.
Resource decision variables. In case the condition |Ri| >
1 ∨ |Rj | > 1 holds for the selected (a∗i , a

∗
j ) pair, the cho-

sen resource decision variable between x∗
i and x∗

j will be the
one whose domain of values has the lowest cardinality (i.e.,
the MCF choice). As opposed to variable ordering, the value
ordering heuristic is accomplished so as to retain the highest
temporal flexibility. If Ri is the domain of the selected deci-
sion variable xi, then for each resource r ∈ Ri we consider
the set of activities Ar already assigned to resource r and cal-
culate the value Fmin(r) = minak∈Ar{V arEvalr(ai, ak)}.
Hence, for each resource r we evaluate the flexibility associ-
ated with the most critical pair (ai, ak), under the hypothesis
that the resource r is assigned to ai. The resource r∗ ∈ Ri

which maximizes the value Fmin(r), and therefore allows ai
to retain maximal flexibility, is selected.

Ordering decision variables. In case the condition |Ri| =
1 ∧ |Rj | = 1 holds, the (a∗i , a

∗
j ) pair is directly selected to

be ordered, as it represents the conflict with the least amount
of sequencing flexibility (i.e., the conflict that is closest to
previous Condition 1 sub-case a). As in the previous case,
the value ordering heuristic attempts to resolve the selected
conflict (ai, aj) by simply choosing the precedence constraint
that retains the highest amount of sequencing flexibility (least
constrained value). Specifically, ai � aj is selected if
d(ei, sj) > d(ej , si) and aj � ai is selected otherwise.

4.3 The PCP Algorithm

Figure 2 gives the basic overall PCP solution procedure,
which starts from an empty solution (Step 1) where the graphs
Gd is initialized according to Section 3. Also, the procedure
accepts a never-exceed value (Cmax) of the objective func-
tion of interest, used to impose an initial global makespan to

very large max{d(ei, sj), d(ej , si)}, and a second conflict has two
shortest path values just slightly larger than this overall minimum. In
such situations, it is not clear which conflict has the least sequencing
flexibility.

IFS(S,MaxFail, γ)
1. Sbest ← S
2. counter ← 0
3. while (counter ≤ MaxFail) do
4. RELAX(S, γ)
5. S ←PCP(S,Cmax(Sbest))
6. if Cmax(S) < Cmax(Sbest) then
7. Sbest ← S
8. counter ← 0
9. else
10. counter ← counter + 1
11. return (Sbest)

Figure 3: The IFS schema

all the jobs. The PCP algorithm shown in Figure 2 analyses
the decision variables xi and oijr, and respectively decides
their values in terms of imposing a duration constraint on a
selected activity or a precedence constraint (i.e., ai � aj
or aj � ai, see Section 3). In broad terms, the procedure
in Figure 2 interleaves the application of Dominance Condi-
tions (Steps 4 and 7) with variable and value ordering (Steps
10 and 14 respectively) and updating of the solution graph
Gd (Steps 8 and 15) to conduct a single pass through the
search tree. At each cycle, a propagation step is performed
(Step 3) by the function Propagate(S), which propagates
the effects of posting a new solving decision (i.e., a con-
straint) in the graph Gd. In particular, Propagate(S) up-
dates the shortest path distances on the graph Gd. A solution
S is found when the PCP algorithm finds a feasible assign-
ment of resources ri ∈ Ri to activities ai (i = 1 . . . n})
and when none of the four dominance conditions is veri-
fied on S. In fact, when none of the four Dominance Con-
ditions is verified (and the PCP procedure exits with suc-
cess), for each resource r, the set of activities Ar assigned
to r represents a total execution order. In addition, as the
graph Gd represents a consistent Simple Temporal Problem
(see Section 3), one possible solution of the problem is the
earliest-time solution, such that S = {(−d(s1, tp0), r1), (-
d(s2, tp0), r2), . . . , (−d(sn, tp0), rn)}.

5 The Optimization Metaheuristic

Figure 3 introduces the generic IFS procedure. The algo-
rithm basically alternates relaxation and flattening steps un-
til a better solution is found or a maximal number of itera-
tions is executed. The procedure takes three parameters as in-
put: (1) an initial solution S; (2) a positive integer MaxFail,
which specifies the maximum number of non-makespan im-
proving moves that the algorithm will tolerate before termi-
nating; (3) a parameter γ explained in Section 5.1. After
the initialization (Steps 1-2), a solution is repeatedly modi-
fied within the while loop (Steps 3-10) by applying the RE-
LAX procedure (as explained in the following section), and
the PCP procedure shown in Figure 2 used as flattening step.
At each iteration, the RELAX step reintroduces the possibil-
ity of resource contention, and the PCP step is called again to
restore resource feasibility. In the case a better makespan so-
lution is found (Step 6), the new solution is saved in Sbest and
the counter is reset to 0. If no improvement is found within
MaxFail moves, the algorithm terminates and returns the
best solution found.
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5.1 Relaxation Procedure

The first part of the IFS cycle is the relaxation step, wherein
a feasible schedule is relaxed into a possibly resource infea-
sible, but precedence feasible, schedule by retracting some
number of scheduling decisions. Here we use a strategy simi-
lar to the one in [Godard et al., 2005] and called chain-based
relaxation. Given the graph representation described above,
each scheduling decision is either a precedence constraint be-
tween a pair of activities that are competing for the same re-
source capacity and/or a resource assignment to one activity.
The strategy starts from a solution S and randomly breaks
some total orders (or chains) imposed on the subset of activ-
ities requiring the same resource r. The relaxation strategy
requires an input solution as a graph GS(A, J,XS) which
(Section 3) is a modification of the original precedence graph
G that represents the input scheduling problem. GS contains
a set of additional precedence constraints XS which can be
seen as a set of chains. Each chain imposes a total order on a
subset of problem activities requiring the same resource.

The chain-based relaxation proceeds in two steps. First,
a subset of activities ai is randomly selected from the input
solution S, with each activity having an uniform probabil-
ity γ ∈ (0, 1) to be selected (γ is called the relaxing factor).
For each selected activity, the resource assignment is removed
and the original set of available options Ri is re-estabilished.
Second, a procedure similar to CHAINING – used in [Policella
et al., 2007] – is applied to the set of unselected activities.
This operation is accomplished in three steps: (1) all previ-
ously posted precedence constraints XS are removed from
the solution S; (2) the unselected activities are sorted by in-
creasing earliest start times of the input solution S; (3) for
each resource r and for each unselected activity ai assigned
to r (according to the increasing order of start times), ai’s
predecessor p = pred(ai, r) is considered and a precedence
constraint (p, ai) is posted (the dummy activity a0 is the first
activity of all the chains). This last step is iterated until all the
activities are linked by precedence constraints. Note that this
set of unselected activities still represents a feasible solution
to a scheduling sub-problem, which is represented as a graph
GS in which the randomly selected activities float outside the
solution and thus re-create conflict in resource usage.

6 Experimental Analysis

To empirically evaluate the IFS algorithm, we have consid-
ered a well known FJSSP benchmark set described in the
literature and available on the Internet at http://www.
idsia.ch/˜monaldo/fjsp.html. The set is com-
posed of 21 instances initially provided by Barnes and Cham-
bers (in the literature and in the rest of the paper this bench-
mark is referred to as BCdata), with the objective of minimiz-
ing the makespan. The benchmark is briefly described in the
appendix of the work [Mastrolilli and Gambardella, 2000].
The IFS algorithm used for these experiments has been im-
plemented in Java and run on a AMD Phenom II X4 Quad
3.5 Ghz under Linux Ubuntu 10.4.1. In our experiments the
MaxFail parameter (see algorithm in Figure 3) was set to
100000; however, a maximum CPU time limit of 3200 sec-
onds was set for each run.

Results. Table 1 shows the results obtained running our
IFS algorithm on the BCdata set. The table is composed

of eight columns and 24 rows, one row per instance plus 3
data wrap-up rows. The best column contains the best re-
sults known in current literature to the best of our knowledge;
our results will therefore be compared against such values.
In particular, each value in the best column represents the
best makespan obtained with at least one of the approaches
described in [Ben Hmida et al., 2010; Mastrolilli and Gam-
bardella, 2000; Gao et al., 2008; Bozejko et al., 2010]. The
columns labeled γ = 0.2 to γ = 0.7 (see Section 4) contain
the results obtained running the IFS procedure with a differ-
ent value for the relaxing factor γ. The bold values in Ta-
ble 1 represent the best results known in literature for each
instance; the underlined bold values indicate the most signif-
icant improvements obtained by our IFS procedure (the rel-
ative instances have also been underlined). For each γ run,
the last three rows of the table show respectively: (1) the
number B of best solutions found (and, between brackets, the
number N of most recent best solutions found in [Bozejko et
al., 2010]), (2) the average number of utilized solving cycles
(Av.C.), and (3) the average mean relative error (Av.MRE)6

respect to the lower bounds reported in [Mastrolilli and Gam-
bardella, 2000]. The imposed CPU limit of 3200 seconds may
appear very high, especially when compared with the limits
imposed on some of the competing procedures; yet, the at-
tention should be focused on the relatively low number of
solving cycles our procedure requires to converge to a good
solution. In fact, while the IFS metaheuristic generally re-
quires a number of relaxation/solving cycles on the order of
the tens of thousands, in our experimentation the best results
were obtained with a number of cycles ranging from 6000
to 15000 (approximately), indicating the effectiveness of the
inner PCP procedure.

Table 1: Results on the BCdata benchmark

inst. best γ
0.2 0.3 0.4 0.5 0.6 0.7

mt10x 918 980 936 936 934 918 918
mt10xx 918 936 929 936 933 918 926
mt10xxx 918 936 929 936 926 926 926
mt10xy 905 922 923 923 915 905 909
mt10xyz 847 878 858 851 862 847 851
mt10c1 927 943 937 986 934 934 927
mt10cc 908 926 923 919 919 910 911
setb4x 925 967 945 930 925 937 937
setb4xx 925 966 931 933 925 937 929
setb4xxx 925 941 930 950 950 942 935
setb4xy 910 910 941 936 936 916 914
setb4xyz 905 928 909 905 905 905 905
setb4c9 914 926 937 926 926 920 920
setb4cc 907 929 917 907 914 907 909
seti5x 1199 1210 1199 1199 1205 1207 1209
seti5xx 1198 1216 1199 1205 1211 1207 1206
seti5xxx 1197 1205 1206 1206 1199 1206 1206
seti5xy 1136 1175 1171 1175 1166 1156 1148
seti5xyz 1125 1165 1149 1130 1134 1144 1131
seti5c12 1174 1196 1209 1200 1198 1198 1175
seti5cc 1136 1177 1155 1162 1166 1138 1150
B (N) 1(1) 1(1) 3(2) 3(0) 6(1) 3(0)
Av.C. 15158 13521 10086 7994 7064 5956
Av.MRE 25.48 24.25 24.44 23.96 23.28 23.09

6the individual MRE of each solution is computed as follows:
MRE = 100 × (Cmax − LB)/LB, where Cmax is the solution
makespan and LB is the instance’s lower bound
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As Table 1 shows, our procedure is competitive with the
state of the art; more in detail, the three underlined instances
in the table show exactly the same results recently obtained
in [Bozejko et al., 2010] with a specialized tabu search al-
gorithm using a high performance GPU with 128 processors,
while 10 previously known bests on a total of 21 instances
are confirmed. Analyzing the Av.MRE results, the best per-
formances are obtained with γ values lying in the [0.5, 0.7]
range, which is confirmed by the higher concentration of con-
firmed best solutions. It is interesting to notice how the av-
erage number of solving cycles exhibits a steadily decreasing
trend as γ increases; the more the solution is disrupted at each
cycle, the greater the effort to find an alternative solution and
hence the smaller number of solving cycles within the same
CPU time limit. Nevertheless, the results show that increas-
ing the disruption level in the range [0.5, 0.7] helps in ob-
taining higher quality solutions, while increasing further trig-
gers the opposite effect. As part of our ongoing work, we are
testing our procedure on some of the biggest instances (i.e.,
la36-la40) of another well known FJSSP dataset, namely
the Hurink edata dataset. This preliminary test is yielding
promising results, as we improved two instances (namely,
la36, from 1162 to 1160 and la38, from 1144 to 1143) w.r.t.
the results published in [Mastrolilli and Gambardella, 2000].

7 Conclusions

In this paper we have proposed the use of Iterative Flattening
Search (IFS) as a means of effectively solving the FJSSP. The
proposed algorithm uses as its core solving procedure an ex-
tended version of the SP-PCP procedure originally proposed
by [Oddi and Smith, 1997] and a new relaxation strategy tar-
geted to the case of FJSSP. The effectiveness of the procedure
was demonstrated on the BCdata benchmark set of FJSSPs.
More specifically, the main contributions of this work are: (1)
an extension of the slack-based value and variable ordering
heuristics of [Oddi and Smith, 1997] for the FJSSP which,
together with the propagation rules, constitute the basic com-
ponents of the greedy PCP procedure; (2) a new relaxation
strategy for the FJSSP; and (3) an evaluation of the full IFS al-
gorithm against a challenging benchmark set for which many
optimal solutions are still unknown. On average, the perfor-
mance of IFS in this setting is found to be in line with the
best-known algorithms published over the last 10 years. The
fact that it was possible to adapt the original IFS procedure
to the FJSSP problem without altering its core strategy, once
again has proven the overall efficacy of the logic at the heart
of IFS, as well as its versatility.

Further improvement of the current algorithm may be pos-
sible by incorporating additional heuristic information and
search mechanisms. This will be the focus of future work.
One possible direction is analysis of the effects on perfor-
mance produced by a randomized version of the PCP algo-
rithm. Another is the study of landscape analysis methods to
balance exploration and exploitation search phases.
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