
New Complexity Results for MAP in Bayesian Networks

Cassio P. de Campos

Dalle Molle Institute for Artificial Intelligence

Galleria 2, Manno-Lugano, Switzerland

cassio@idsia.ch

Abstract

This paper presents new results for the (partial)
maximum a posteriori (MAP) problem in Bayesian
networks, which is the problem of querying the
most probable state configuration of some of the
network variables given evidence. It is demon-
strated that the problem remains hard even in net-
works with very simple topology, such as binary
polytrees and simple trees (including the Naive
Bayes structure), which extends previous complex-
ity results. Furthermore, a Fully Polynomial Time
Approximation Scheme for MAP in networks with
bounded treewidth and bounded number of states
per variable is developed. Approximation schemes
were thought to be impossible, but here it is shown
otherwise under the assumptions just mentioned,
which are adopted in most applications.

1 Introduction

A Bayesian network (BN) is a probabilistic graphical model
that relies on a structured dependency among random vari-
ables to represent a joint probability distribution in a com-
pact and efficient manner. One of the hardest inference prob-
lems in BNs is the maximum a posteriori (or MAP) prob-
lem, where one looks for states of some variables that max-
imize their joint probability, given some other variables as
evidence (there may exist variables that are neither queried
nor part of the evidence). This problem is known to be NPPP-
complete in the general case and NP-complete for polytrees
[Park and Darwiche, 2004]. Thus, algorithms usually take
large amount of time to solve MAP even in small networks.
Approximating MAP in polytrees is also NP-hard. However,
such hardness results are derived for networks with a large
number of states per variable, which is not the most common
situation in many practical problems. In this paper, a bounded
number of states per variable is considered. It is proven that
the problem remains hard even in binary polytrees and sim-
ple trees, using reductions from both the satisfiability and the
partition problems, but it is also shown that there is a Fully
Polynomial Time Approximation Scheme (FPTAS) whenever
treewidth and number of states are bounded, so one may ex-
pect fast algorithms for MAP with a small approximation er-
ror under such assumptions. Fast algorithms for MAP may

imply in fast algorithms for other related problems, for exam-
ple inferences in decision networks and influence diagrams,
besides the great interest in the MAP problem itself. Hence,
this paper makes important steps in these directions.

2 Background

The reader is assumed to be familiar with basic notions of
complexity theory and approximation algorithms (for exam-
ple, see [Garey and Johnson, 1979; Vazirani, 2001]) and basic
concepts of Bayesian networks [Pearl, 1988].

Definition 1 A Bayesian network (BN) N is a triple
(G,X ,P), where G = (VG ,EG) is a directed acyclic graph
with nodes VG associated (in a one-to-one mapping) to ran-
dom variables X = {X1, . . . , Xn} over discrete domains
{ΩX1 , . . . ,ΩXn

} and P is a collection of probability values
p(xi|πXi

) ∈ Q,1 with
∑

xi∈ΩXi
p(xi|πXi

) = 1, where xi ∈

ΩXi
is a category or state of Xi and πXi

∈ ×X∈PAXi
ΩX a

complete instantiation for the parents PAXi
of Xi in G. Fur-

thermore, every variable is conditionally independent of its
non-descendant non-parents given its parents.

The joint probability distribution represented by a BN
(G,X ,P) is obtained by p(x) =

∏
i p(xi|πXi

), where x ∈
ΩX and all states xi, πXi

(for every i) agree with x. Now
we introduce some notation. Singletons {Xi} and {xi} are
respectively denoted as Xi and xi. Nodes of the graph
and their associated random variables are used interchange-
ably. Uppercase letters are used for random variables and
lowercase letters for their corresponding states. Bold let-
ters are employed for vectors/sets. z(X) denotes the prod-
uct of the cardinality of the variables X ⊆ X , that is,
z(X) =

∏
Xi∈X |ΩXi

| (with z(∅) = 1). The input size

S(N ) of a BN is given by the length of the bit string to spec-
ify all the local conditional probability distributions and the
structure to describe the graph. Note that S(N ) ≥ n and
S(N ) ≥ zmax = maxXi∈X z(Xi).

The belief updating (BU) problem concerns the computa-
tion of p(x|e), for x ∈ ΩX and e ∈ ΩE, with X∪E ⊆ X and
X∩E = ∅. The complexity of solving BU is tightly related to
the minimum treewidth of the network, or maximum number

1
Q denotes the non-negative rational numbers defined by frac-

tions of integers.

2100

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence



of variables in a single node of the most compact tree decom-
position (for example, see [Darwiche, 2009]). In spite of that,
some particular BNs deserve attention: N = (G,X ,P) is
called a polytree if the subjacent graph (dropping the direc-
tion of the arcs) of G has no cycles. A polytree N is further
called a tree if each node of G has at most one parent. The
treewidth of a tree is one. For trees and polytrees, BU is solv-
able in polynomial time [Pearl, 1988]. This is also true for
any network of bounded treewidth. Finding a tree decompo-
sition of minimum treewidth is hard, but it is enough to know
a bound for the treewidth (which is not part of the input) to
obtain it in polynomial time [Bodlaender, 1993].

The MAP problem is to find an instantiation xopt ∈ ΩXmap ,
with Xmap ⊆ X \E, such that its probability is maximized:

xopt = argmax
x∈ΩX

p(x|e) = argmax
x∈ΩX

p(x, e), (1)

because p(e) (assumed to be non-zero2) is a constant with re-
spect to the maximization. It is known that MAP queries are
harder than BU queries (under the assumptions that P�=NP
and PP�=NPPP). It is proven that the general MAP problem is
NPPP-complete [Park and Darwiche, 2004]. However, such
proof assumes a general case of the problem, while many
practical BNs have some structural properties that might alle-
viate the complexity. Two of them are very important with re-
spect to the complexity of the problem: the cardinality of the
variables involved in the network and the minimum treewidth.
The latter is considered in [Park and Darwiche, 2004], and the
problem is shown to be NP-complete and not approximable
by a polynomial approximation scheme even if the treewidth
is bounded. In this paper both treewidth and cardinality of
the network are exploited, which allows us to go further in
the analysis.

Definition 2 Given a BN N = (G,X ,P) such that the max-
imum cardinality of any variable is at most z and the mini-
mum treewidth is at most w, X ⊆ X \E, a rational r and an
instantiation e ∈ ΩE, Decision-MAP-z-w is the problem of
deciding if there is x ∈ ΩX such that p(x, e) > r. MAP-z-w
is the respective optimization version.

3 Complexity results

Hardness of MAP is known for polytrees where the maxi-
mum cardinality of a variable is Θ(S(N )) [Park and Dar-
wiche, 2004]. More specifically, Decision-MAP-∞-w, where
∞ is used to indicate that there is no bound for z, is known to
be NP-hard for w = 2, because the cardinality of the network
used in the proof could be as large as the number of clauses in
the SAT problem used in the reduction, and this number can
be asymptotically as large as the SAT input size. It was also
shown that Decision-MAP-z-∞ is NP-hard for z = 2. The
next theorem strengthen those two results.

Theorem 3 Decision-MAP-z-w is NP-hard even if z = w =
2.

2If p(e) is zero, then so is p(x,e), and the problem vanishes, as
any x will be a maximizer for the problem.

Proof Hardness is shown using a reduction from partition
problem, which is NP-hard [Garey and Johnson, 1979] and
can be stated as follows: given a set of m positive integers
s1, . . . , sm, is there a set I ⊂ A = {1, . . . ,m} such that∑

i∈I si =
∑

i∈A\I si? All the input is encoded using b > 0

bits. Denote S = 1
2

∑
i∈A si and call even partition a subset

I ⊂ A that achieves
∑

i∈I si = S. To solve partition, one
may consider the rescaled problem (dividing every element
by S), so as vi =

si
S

≤ 2 are the elements and the goal is a
partition I with sum equals to 1.

A binary polytree (so zmax = 2) with 3m+1 nodes, max-
imum number of parents per node equals to 2, and treewidth
w = 2 is built in polynomial time. The binary nodes are
X = {X1, . . . , Xm}, Y = {Y0, Y1, . . . , Ym} and E =
{E1, . . . , Em}. We denote by {xT

i , x
F
i } the states of Xi

(similarly for Yi and Ei). The structure of the network is
presented in Figure 1. Each Xi ∈ X has no parents and uni-
form distribution, each Ei has Xi as sole parent, with prob-
ability values defined as p(eTi |x

F
i ) = 1 and p(eTi |x

T
i ) = ti

(the values for eFi complement those of eTi ), where ti is ob-
tained by evaluating 2−vi up to 4b + 3 bits of precision and
by rounding it up (if necessary), that is, ti = 2−vi + errori,

where 0 ≤ errori < 2−(4b+3). Clearly ti can be com-
puted in polynomial time and space in b (this ensures that
the specification of the Bayesian network, which requires ra-
tional numbers, is polynomial in b). Furthermore, note that

2−vi ≤ ti ≤ 2−vi + errori < 2−vi + 2−(4b+3) ≤ 2−vi+2−4b

(in short, this holds because 2−4b in the exponent makes the

value grow faster than the linear addition of 2−(4b+3). Further
details are omitted for simplicity).

m

YY0

X

E

1

1

1

Yi

Xi

iE

Ym

Em

X

Figure 1: Network structure for the proof of Theorem 3.

Y0 has no parents and p(yT0 ) = 1. For the nodes Yi ∈ Y,
1 ≤ i ≤ m, the parents are Xi and Yi−1, and the probability
values are p(yTi |y

T
i−1, x

T
i ) = ti, p(y

T
i |y

T
i−1, x

F
i ) = 1, and

p(yTi |y
F
i−1, xi) = 0 for both states xi ∈ ΩXi

.
Note that with this specification and given the Markov con-

dition of the network, we have (for any given x ∈ ΩX)
p(yTm|x) = p(eT|x) =

∏
i∈I ti, where I ⊆ A is the set

of indices of the elements such that Xi is at the state xT
i . De-

note t =
∏

i∈I ti. Then p(x, eT, yFm) = p(yFm|x)p(x, eT) =

p(x)p(eT|x)
(
1− p(yTm|x)

)
= 1

2m t(1 − t). This is a con-

cave quadratic function on 0 ≤ t ≤ 1 with maximum at 2−1

such that t(1−t) monotonically increases when t approaches
one half (from both sides). If ti was exactly 2−vi , then
1
2m t(1− t) = 1

2m 2−
∑

i∈I vi(1−2−
∑

i∈I vi), which achieves

the maximum of 1
2m 2−1(1−2−1) if and only if

∑
i∈I vi = 1,

that is, if there is an even partition. However 2−vi is used with

2101



4b+ 3 bits of precision to ensure the computation is done in
polynomial time, so the remainder of this proof addresses the
question of how the numerical errors introduced in the defini-
tion of values ti interfere in the main result. Hence, note that
if I is not an even partition, then we know that one of the two
conditions hold: (i)

∑
i∈I si ≤ S − 1 ⇒

∑
i∈I vi ≤ 1 − 1

S
,

or (ii)
∑

i∈I si ≥ S + 1 ⇒
∑

i∈I vi ≥ 1 + 1
S

, because the
original numbers si are integers. Consider these two cases.

If
∑

i∈I si ≥ S + 1, then t <
∏

i∈I 2
−vi+2−4b

equals to

2
∑

i∈I(−vi+2−4b) ≤ 2
m

24b
−(1+ 1

S
) ≤ 2−1−( 1

2b
− 1

23b
) = l,

by using S ≤ 2b and m ≤ b < 2b. On the other hand, if∑
i∈I si ≤ S − 1, then t ≥

∏
i∈I 2

−vi equals to

2−
∑

i∈I vi ≥ 2−(1− 1
S
) = 2−1+ 1

S ≥ 2−1+ 1

2b = u.

Now suppose I ′ is an even partition. Then we know that
the corresponding t′ satisfies 2−1 ≤ t′ and

t′ <
∏
i∈I′

2−vi+2−4b

= 2
∑

i∈I′ (−vi+2−4b) ≤ 2−1+ 1

23b = a.

To complete the proof, we show that the distance between
t′ and 2−1 is always less than the distance between t and 2−1

of a non-even partition plus a gap, that is,

|t′ − 2−1|+ 2−(3b+2) ≤ a− 2−1 + 2−(3b+2)

< min{u− 2−1, 2−1 − l} ≤ |t− 2−1|, (2)

which can be proved by analyzing the two elements of the
min. The first term holds because

a+2−(3b+2) − 2−1 < a · 2
1

22b − 2−1

= 2−1+ 2−b+2−2b

2b − 2−1 < 2−1+ 1

2b − 2−1 = u− 2−1.

The second comes from the fact that the function h(b) =

a + l + 2−(3b+2) = 2−1+ 1

23b + 2−1−( 1

2b
− 1

23b
) + 2−(3b+2)

is less than 1 for b = 1, 2 (by inspection), it is a monotonic
increasing function for b ≥ 2 (the derivative is always posi-
tive), and it has limb→∞ h(b) = 1. Hence, we conclude that
h(b) < 1, which implies

a+ l+ 2−(3b+2) < 1 ⇐⇒ a− 2−1 + 2−(3b+2) < 2−1 − l.

This concludes that there is a gap of at least 2−(3b+2) between
the worst value of t′ (relative to an even partition) and the best
value of t (relative to a non-even partition), which will be
used next to specify the threshold of the MAP problem. Now,
set up X to be the MAP variables and E = e, Ym = yFm to be
the evidence, so as the MAP decision becomes

max
x∈ΩX

p(x, eT, yFm) > r = c ·
1

2m
, (3)

where c is defined as a′ ·(1−a′), with a′ equals a evaluated up
to 3b+ 2 bits and rounded up, which implies that 2−1 < a ≤
a′ < a+2−(3b+2). By Eq. (2), a′ is closer to one half than any
t of a non-even partition, so the value c is certainly greater
than any value that would be obtained by a non-even partition.
On the other hand, a′ is farther from 2−1 than a, so we can
conclude that c separates even and non-even partitions, that is,

t·(1−t) < c ≤ a·(1−a) < t′·(1−t′) for any t corresponding
to a non-even partition and any t′ of an even partition. Thus,
a solution of the MAP problem obtains p(x, eT, yFm) > r if
and only there is an even partition.3 �

Corollary 4 Decision-MAP is NP-complete when restricted
to binary polytrees.

Proof It follows directly from Theorem 3 and the well-
known fact that Decision-MAP is in NP when w is fixed. �

The next theorem shows that the problem remains hard
even in trees. The tree used for the proof is probably the sim-
plest practical tree: a Naive Bayes structure, where there is a
node called class with direct children called features. These
features are independent of each other given the class. The
simplicity of this tree makes the result stronger. Moreover, by
reducing from the maximum-satisfiability problem, we show
later that the inapproximability results before known for poly-
trees [Park and Darwiche, 2004] (when the maximum cardi-
nality is not bounded) extend to the case of trees.

Theorem 5 Decision-MAP-∞-w is NP-hard if w = 1 and
the network topology follows the Naive Bayes structure.

Proof We use a reduction from MAX-2-SAT. Let
X1 . . . , Xm be variables of a SAT problem with clauses
C1, . . . , Cm′ written in 2CNF, that is, each clause is com-
posed of a disjunction of two literals. Each literal belongs to
ΩXj

= {xj ,¬xj} for a given j. Without loss of generality,
we assume that each clause involves exactly two distinct
variables of X1 . . . , Xm. Let b > 0 be the number of bits to
specify the MAX-2-SAT problem.

1Y0

C

mYYi... ...Y

Figure 2: Network structure for the proof of Theorem 5.

Take a Naive Bayes shaped network. The idea is to build
a network where the features represent the SAT variables and
the class represents ways to satisfy the clauses, such that sum-
ming over the class states will produce the number of sat-
isfying clauses. This is performed by considering the left
and right literals of each clause in three conditions: (i) the
clause is satisfied by its left literal (in this case, the value of
the right literal is ignored), (ii) the clause is not satisfied by
its left literal, but it is by its right literal, (iii) the clause is
not satisfied by either of them. Therefore, Let C be the root
of the Naive Bayes structure and Y1, . . . , Ym the binary fea-
tures (as shown in Figure 2) such that ΩYj

= {yTj , y
F
j } for

every j. Define the variable C to have 2m′ states and uni-
form prior, that is, p(c) = 1

2m′ for every c ∈ ΩC , where

3The conditional version of Decision-MAP could be used in the
reduction too by including the term 1

p(eT,yF
m)

in r, which can be

computed in polynomial time by a BN propagation in polytrees
[Pearl, 1988], and it does not depend on the choice x.

2102



ΩC equals to {c1L, c1R, c2L, c2R, . . . , cm′L, cm′R}. Denote
by Li the literal of clause Ci with the smallest index, and
by Ri the literal with the greatest index. Define the con-
ditional probability functions of each Yj given C as fol-

lows: p(yTj |ciL) = p(yTj |ciR) = 1
2 if Li, Ri /∈ ΩXj

,

that is, Xj does not appear in clause Ci, p(yTj |ciR) = 1

if (xj = Ri) ∨ (¬xj = Li), p(yTj |ciR) = 0 if (xj =

Li)∨ (¬xj = Ri), p(y
T
j |ciL) = 1 if (xj = Li), p(y

T
j |ciL) =

0 if (¬xj = Li), p(yTj |ciL) = 1
2 if Ri ∈ ΩXj

. De-

fine Y0 as an extra feature such that p(yT0 |ciL) = 1 and
p(yT0 |ciR) = 1/2 for every i. The probability values for yFj
complement these numbers, that is, p(yFj |c) = 1 − p(yTj |c)
for every c ∈ ΩC . Hence, maxy0...ym

p(y0, y1, . . . , ym) =
maxy1,...ym

p(yT0 , y1, . . . ym), because the vector p(yT0 |C)
has p(yT0 |c) ≥ p(yF0 |c) for every c ∈ ΩC (there is no rea-
son to choose yF0 in place of yT0 as the probability value of
the latter is always greater than that of the former for every
given c). It is clear that the transformation is polynomial in b,
as the network has m+1 nodes, with at most 2m′ states (both
m and m′ are O(b)), and the probability values are always 0,
1/2 or 1. By simple manipulations, we have

p(yT0 , y1, . . . ym) =
1

2m′

1

2m−2

∑
i

(p(yjiL |ciL)p(yjiR |ciL)·

·p(yT0 |ciL) + p(yjiL |ciR)p(yjiR |ciR)p(y
T
0 |ciR)

)
,

where jiL and jiR, with jiL < jiR, are the indices of the
two variables that happen in clause Ci (the probability of all
other variables Yj that appeared in the product have led to the

fraction 1
2 because they do not happen in Ci and hence dis-

appeared to form the constant 1
2m−2 that has been put outside

the summation). Yet by construction, p(yT0 , y1, . . . ym) =

1

2m′

1

2m−1

∑
i

(p(yjiL |ciL) + p(yjiL |ciR)p(yjiR |ciR)) .

Note that p(yjiL |ciL) = 1 if and only if p(yjiL |ciR) = 0
(and p(yjiL |ciL) = 0 if and only if p(yjiL |ciR) = 1), and
p(yjiL |ciL) = 1 if and only if the instantiation of the Boolean
variable in Li satisfies clause Ci. In this case, p(yjiL |ciR) =
0, and the sum p(yjiL |ciL) + p(yjiL |ciR)p(yjiR |ciR) equals
to 1. On the other hand, if the Boolean variable in Li

does not make clause Ci satisfiable, then p(yjiL |ciL) +
p(yjiL |ciR)p(yjiR |ciR) = p(yjiR |ciR), that is, it is one if and
only if the Boolean in Ri satisfies Ci. Because we sum over
all clauses, p(yT0 , y1, . . . ym) = k

2mm′
⇐⇒ k clauses are

satisfiable. Hence, solving maxy0...ym
p(y0, y1, . . . , ym) is

the same as solving MAX-2-SAT, and the reduction of the
decision version easily follows. �

We show next a stronger inapproximability result than pre-
viously stated in the literature, because we make use of trees
instead of polytrees. Recall that an approximation algorithm
for a maximization problem where the exact maximum value
is M > 0 is said to achieve a ratio α > 1 from the optimal
if the resulting value is guaranteed to be greater than or equal
to M

α
. We demonstrate that approximating MAP is NP-hard

even if the network topology is as simple as a tree. This leaves

no hope of approximating MAP in polynomial time when the
number of states per variable is not bounded.

Theorem 6 It is NP-hard to approximate MAP-∞-w, with
w = 1, to any ratio α = 2S(N )ε , for fixed 0 ≤ ε < 1.

Proof We show that it is possible to reduce MAX-2-SAT to
the approximate version of MAP-∞-1 in polynomial time
and space in the size of input. The idea is similar to the re-
peated construction used in [Park and Darwiche, 2004]. We
build q copies of the network of Theorem 5 (superscripts are
added to the variables to distinguish the copies as follows: the
nodes of the t-th copy are named Ct, Y t

0 , . . . , Y
t
m) and link

them by a common binary parent D of all the Ct nodes (as
shown in Fig.3), with states {dT , dF }. We define p(dT ) = 1
and p(ct|dT ) remains uniform as before, for every node Ct.

...

Y0

C

mYYi... ...Y1

Y0 mYYi... ...Y1

Y0

C

mYYi... ...Y1

1

11 1 1

q q q q

q

tC

tt t t D

...

Figure 3: Network structure for the proof of Theorem 6.

By construction, we have p(y10 , . . . y
1
m, . . . , yq0, . . . y

q
m) =

∑
d

q∏
t=1

p(yt0, y
t
1, . . . y

t
m|d)p(d) =

q∏
t=1

p(yt0, y
t
1, . . . y

t
m|dT ),

and hence each copy has independent computations given dT .
By the argument in the proof of Theorem 5 for each copy, we
obtain p(y10 , . . . y

1
m, . . . , yq0, . . . y

q
m) =

∏q
t=1 p(y

t
0, . . . y

t
m) =∏q

t=1
k

2mm′
=

(
k

2mm′

)q
if and only if k clauses are sat-

isfiable in the MAX-2-SAT problem. Suppose we want
to decide if at least 1 < k′ ≤ m′ clauses are satisfi-
able (the restriction of k′ > 1 does not lose generality).
Using the approximation over this new network with ra-
tio α, if at least k′ clauses are satisfiable, then we must

have p(y10 , . . . y
1
m, . . . , yq0 , . . . y

q
m) ≥ 1

α

(
k′

2mm′

)q

. On the

other hand, if it is not possible to satisfy k′ clauses, then

we know that p(y10 , . . . y
1
m, . . . , yq0, . . . y

q
m) ≤

(
k′−1
2mm′

)q

.

Now we need to show that it is possible to pick q such

that
(

k′−1
2mm′

)q

< 1
α

(
k′

2mm′

)q

and such that q is polynomi-

ally bounded. The proof concludes by choosing a q such

that q > (log(2)k′f ′(b)ε)
1

1−ε , which is polynomial in the

2103



input size (b is the input size of MAX-2-SAT and f ′ is
the size of one of the Naive Bayes structures) and implies

q > log(2)k′qε · f ′(b)ε =⇒ q > k′ log(2(q·f
′(b))ε) =⇒

q > k′ log(2S(N )ε) =⇒ q > k′ log(α). By Taylor ex-

pansion we have log
(

k′

k′−1

)
≥ 1

k′
(for any k′ > 1) and

thus q > k′ log(α) =⇒ q > log(α)

log
(

k′

k′−1

) =⇒ (k′ − 1)
q
<

1
α
(k′)q =⇒

(
k′−1
2mm′

)q

< 1
α

(
k′

2mm′

)q

. �

Theorem 7 shows that, even with bounded cardinality and
very simple trees, it is hard to solve MAP. The construction
that is used in the proof is trick, aiming at Eq. (4), which
has the product of values ti from the partition problem (as in
Theorem 3) appearing in a competing way in the equation.

Theorem 7 Decision-MAP-z-w is NP-hard even if z = 5
and w = 1 and the network topology follows a Hidden
Markov Model (HMM) structure.

Proof This proof uses the exact same rescaled partition prob-
lem of the proof of Theorem 3, as well as the idea of approx-
imating exponentials to guarantee that the reduction is poly-
nomial (refer there for the definition of the problem).

D

Y

X X2

Y2

1

1

1DD0 Xi

Yi

i
... Xm

Ym

mD...

Figure 4: Structure for the proof of Theorem 7. It is not ex-
actly an HMM structure, but it would be trivial to include
another child to every Di node without changing the results.

We construct (in polynomial time) a tree with 3m + 1
nodes: X = {X1, . . . , Xm}, Y = {Y1, . . . , Ym} and D =
{D0, D1, . . . , Dm}, such that ΩXi

= {xi1, xi2, xi3, xi4, xi5}
has 5 states, ΩYi

= {yTi , y
F
i } is binary, and ΩDi

=
{dTi , d

F
i , d

∗
i } is ternary. The structure of the network is pre-

sented in Figure 4. The probability functions are defined by
Table 1 (except for D0, which has uniform distribution).

First, we show that p(y) = p(y1, . . . , ym) = 1
2m for

any configuration y ∈ ΩY. By construction, we have
p(yi|di−1) =

∑
xi
p(yi|xi)p(xi|di−1) = 1

2 for any value of
yi, di−1. Now,

p(y1, . . . , ym) =
∑
dm−1

p(ym|dm−1)p(dm−1, y1, . . . , ym−1)

= 1/2 · p(y1, . . . , ym−1).

Applying the same idea successively, we obtain
p(y1, . . . , ym) = 1

2m . Using a similar procedure, we

can obtain the values for p(dTm,y) and p(dFm,y) as follows:

p(dTm,y) =

{
ti ·

1
2 · p(dTm−1, y1, . . . , ym−1) if ym = yTm,

1 · 1
2 · p(dTm−1, y1, . . . , ym−1) if ym = yFm,

and applying successively, we get p(dTm,y) = 2−m

3

∏
i∈I ti,

where I ⊂ A is the set of indices of elements such that Yi is

Table 1: Probability values used in the proof of Theorem 7.

p(Yi|Xi) xi1 xi2 xi3 xi4 xi5

yi 1 1 0 0 1/2
¬yi 0 0 1 1 1/2

p(Xi|Di−1) dTi−1 dFi−1 d∗i−1

xi1 1/2 0 0
xi2 0 1/2 0
xi3 0 1/2 0
xi4 1/2 0 0
xi5 0 0 1

p(Di|Xi) xi1 xi2 xi3 xi4 xi5

dTi ti 0 0 1 0
dFi 0 1 ti 0 0
d∗i 1− ti 0 1− ti 0 1

at the state yTi (the ratio 1
3 comes from the uniform p(D0)).

Likewise,

p(dFm,y) =

{
1 · 1

2 · p(dFm−1, y1, . . . , ym−1) if ym = yTm,
ti ·

1
2 · p(dFm−1, y1, . . . , ym−1) if ym = yFm,

and again p(dFm,y) = 2−m

3

∏
i∈A\I ti. Therefore,

max
y

p(d∗m,y) = max
y

(
p(y)− p(dTm,y) − p(dFm,y)

)
=

1

2m
−min

y

(
p(dTm,y) + p(dFm,y)

)

=
1

2m

⎛
⎝1−

1

3
min
y

⎛
⎝∏

i∈I

ti +
∏

i∈A\I

ti

⎞
⎠
⎞
⎠ .

(4)

Consider that ti = 2−vi . The function
∏

i∈I ti+
∏

i∈A\I ti =

2−
∑

i∈I vi + 2−
∑

i∈A\I vi is convex and achieves its mini-
mum when 2−

∑
i∈I vi = 2−

∑
i∈A\I vi ⇐⇒

∑
i∈I vi =∑

i∈A\I vi = 1. Thus, using Y as the MAP variables and d∗m
as the evidence, we obtain maxy p(d

∗
m,y) = 2

3
1
2m if and only

if there is an even partition. This is still flaw in one respect:
the specification of the network depends on computing ti, for
each i ∈ A, which can be done only to a certain precision (we
can only use a number of places that is polynomial in b). The
derivation follows in a similar way as done in Theorem 3, but
using 6b+ 3 bits of precision. �

Corollary 8 Decision-MAP is NP-complete when the graph
is restricted to a tree and variables have bounded cardinality.

Proof It follows directly from Theorem 7 and the fact that
Decision-MAP is in NP when w is fixed. �

Despite the hardness results, we obtain a fully polynomial-
time approximation scheme when cardinality and treewidth
are bounded. For this purpose, algorithms for BU can be seen
as a way to represent and compute a polynomial function on
the probability values that define the network. The idea to
approximate MAP is that we can iteratively use an inference
algorithm for BU, but computing the polynomial for every

2104



possible configuration of the query variables Xmap. As there
are too many instantiation of Xmap, we check at every inter-
mediate step of the algorithm for options xmap that are close
to each other, so that the error of using one or another is be-
low some threshold. In this case, we discard options as soon
as possible and keep only a polynomial number of them, that
are enough to approximate well the result.

Theorem 9 MAP-z-w has a FPTAS for any fixed z and w.

Proof We construct an approximation algorithm A that, for
a given ε > 0, is polynomial in S(N ) and in 1

ε
such that the

value pA(xmap, e) obtained by A is at least
p(xmap

opt ,e)

1+ε
, where

p(xmap
opt , e) stands for the optimal solution value of MAP-z-

w, that is, x
map
opt = argmaxxmap p(xmap, e). We know that

p(xmap
opt , e) > 0 because

∑
xmap p(xmap, e) = p(e) > 0

and thus the value achieving the maximum cannot be zero
(p(e) > 0 does not lose generality, as discussed before).

Take a binary tree decomposition ({C1, . . . ,Cn′}, T )with
treewidth (at most) w, such that n′ ≤ 2n and Cj indicates
both a node of the tree T and the set of network variables as-
sociated to that node, which can be obtained in polynomial
time [Bodlaender, 1993; Shenoy, 1996]. Let w′ = w+1 be a
bound for the maximum number of variables in a single node
of the decomposition. Elect a node and assume all edges of
T point towards the opposite direction of it. Without loss of
generality, let C1 be this node and C1, . . . ,Cn′ be a topolog-
ical order with respect to this tree. Let Cjp = PACj

be the
only parent of Cj in the tree and ΛCj

be the children of Cj .

Let Xlast
j = Cj \ Cjp be the set of nodes of G in Cj that

do not appear in the parent Cjp (they also do not appear in
any other node towards C1 because of the properties of a tree
decomposition). To solve BU, we can use the following recur-
sion, which is processed from j = n′ to 1: p(uCj

|vCj
) =∑

Ω
Xlast

j
\X′

∏
Xi∈X

proc

j

p(xi|πXi
)

∏
Cj′∈ΛCj

p(uCj′
|vCj′

), (5)

and X
proc
j = {Xi ∈ (Cj \

⋃
Cj′∈ΛCj

UCj′
) : (Xi ∪ PAXi

)∩

Xlast
j �= ∅} is the set of variables whose local probability

functions were not processed yet (but need to be) in order
to sum out over Xlast

j \X′ (X′ are the variables whose states
are fixed). Furthermore, UCj

is composed of elements of
Cj and descendants that are also present in the parent Cjp

and whose local probability distributions were already taken
into account (they do appear in the left side of the condi-
tioning bar in a potential in Cj or in its descendants), and
finally VCj

are the variables that already appeared in the
right side of the conditioning bar (but not in the left side
nor they were summed out). Note that Eq. (5) is com-
puted for every uCj

and every vCj
. Each step j can be

seen as one bucket in the bucket elimination algorithm (apart
from the fact that we might sum out more than one vari-
able at once – this can also be implemented in the bucket
elimination), or the processing of a node in a join tree algo-
rithm. In fact, the values p(uCj′

|vCj′
) that come from pre-

vious computations represent the information from the chil-

dren of Cj , with domains ΩUC
j′
∪VC

j′
that come from inde-

pendent subtrees, and are used to construct p(uCj
|vCj

) over
ΩUCj

∪VCj
. The recursion is evaluated for each j, and finally

p(uC1) = p(x′), where x′ are the fixed states of X′. The
running time, in number of additions and multiplications, is
at most

∑
j(1 + |ΛCj

|) · z(Cj) ∈ O(n · zwmax) ∈ O(n), as

both zmax and w = maxj |Cj | are bounded.

To solve the MAP problem, the evidence e is considered
part of x′, and Eq. (5) is computed for every distinct instan-
tiation of the MAP variables that have already appeared in
a given subtree. The tree is iteratively processed until the
root is reached. We use the notation pxmap

C
(u|v) = p(u|v)

such that u and v agree with x
map

C , where x
map

C ∈ ΩX
map

C

(and X
map

C ⊆ Xmap), to indicate that the MAP variables that

appear in a subtree rooted at C are fixed to the value x
map

C

and hence this can be interpreted as having distinct poten-
tials pxmap

C
for distinct instantiations x

map

C . Note that pxmap

C
has

d = z((U ∪V) \ (E ∪ X
map

C )) elements as arguments (the

part of u,v corresponding to e and x
map

C are fixed). With this
approach, we can rewrite Eq. (5) to introduce the MAP vari-
ables just by replacing p with pxmap

Cj

, where x
map

Cj
is restricted

to the variables that already appeared in the computation (and
further supposing that X

map

Cj
is never summed out). This algo-

rithm is correct, but it eventually has to process an exponen-
tial number of potentials pxmap

Cj

(one for each x
map
Cj

), because as

the algorithm goes on, as the set of already processed MAP
variables increases, until the MAP variables are again alto-
gether in the root.

To overcome this situation, we devise a criterion to keep
only potentials that are reasonably apart. Notice now that

1 ≥ p(e) ≥ p(x
map
opt , e) > 2−g(S(N )), where g is a poly-

nomial function, because p(xmap
opt , e) is obtained from a se-

quence of additions and multiplications through Eq. (5) over
numbers of the input. The same argument holds for every
intermediate probability value that is computed through Eq.
(5): we have that pxmap

Cj

(uCj
|vCj

) > 0 ⇒ pxmap

Cj

(uCj
|vCj

) >

2−g(S(N )), for a given polynomial function g. Hence, let
g be a polynomial function that satisfies such condition for
every number involved in the calculations. Because each
pxmap

Cj

(UCj
|VCj

) can be represented by a vector in the di-

mension d = z((UCj
∪VCj

) \ (E ∪X
map

Cj
)), the idea is to

show that we can fix an upper bound to the number of can-
didates pxmap

Cj

(UCj
|VCj

) that are propagated from one step

to the next. Following the ideas of [Papadimitriou and Yan-

nakakis, 2000], we divide the hypercube [2−g(S(N )), 1]d into
a lattice of hypercubes such that, in each coordinate, the ra-
tio of the largest to the smallest value is 1 + ε

2w′n′ , which
produces a number of hypercubes bounded by

O

((
log 2g(S(N ))

ε
2w′n′

)d
)

∈ O

⎛
⎝(

2w′n′ · g(S(N ))

ε

)zw′
⎞
⎠ ,

(6)
where the log appears because the lattice is created from 1 to

2105



2−g(S(N )), successively dividing the coordinate by 1 + ε
2w′n′

(a bin for the exact zero probability is also allocated). In each
of these smaller hypercubes, we keep at most one vector, so
Eq. (6) bounds the number of potentials pxmap

Cj

that are pro-

cessed in each step j. This procedure is carried out through
the steps, so we have a polynomial time procedure both in
S(N ) and in 1

ε
, because the running time is less than O(n)

times Eq. (6) to the power of 2 (from the decomposition).

It remains to show that the resulting pA(xmap, e) is at least
p(xmap

opt ,e)

1+ε
. Each value pxmap

Cj

(uCj
|vCj

) is obtained from a sum

of multiplications, with at most |ΛCj
|+1 terms each. Hence,

the approximation at any step satisfies pA
x

map

Cj

(uCj
|vCj

) >

∑
Ω

Xlast
j
\(E∪X

map
Cj

)

∏
Xi∈X

proc

j

p(xi|πXi
) ·

∏
Cj′∈ΛCj

pxmap

Cj

(uCj′
|vCj′

)

(1 + ε
2w′n′ )

lC
j′

>
p
x

map
Cj

(uCj
|vCj

)

(1+ ε
2w′n′

)
lCj

, as lCj
, the the number of variables that ap-

pear in nodes of the subtree of T rooted at Cj , is equal to
lCj

= |Cj |+
∑

Cj′∈ΛCj
lCj′

. In the root of T , we have that

pA
x

map

C1

(uC1) >
p
x

map
C1

(uC1 )

(1+ ε
2w′n′

)w′n′
=

p(xmap
opt ,e)

(1+ ε
2w′n′

)w′n′
, as w′n′ ≥

lC1 (there are less than w′ elements per node Cj). Two
points are worth mentioning: (i) the bin created for the value
zero in the lattice guarantees that if some intermediate value
pA
x

map

Cj

(uCj
|vCj

) is zero, then it matches the exact value and

the approximation does not degenerate; (ii) the fact that the
tree decomposition is binary ensures that the computations in

each step are polynomial. Finally, pA(xmap, e) >
p(xmap

opt ,e)

1+ε
,

because of the inequality (1 + ε
r
)r ≤ 1 + 2ε, which is valid

for any 0 ≤ ε ≤ 1 and integer r > 0 (it is convex in ε). �

It follows from Theorem 9 that MAP-z-w has a FPTAS in
any network with bounded treewidth and cardinality, includ-
ing polytrees. At first, this result seems to contradict past
results, where it is stated that approximating MAP is hard
even in polytrees [Park and Darwiche, 2004]. But we as-
sume a bound for the cardinality of the variables, which is
the most common situation in practical BNs, while previous
results work with a more general class of networks and do
not assume the bound. Currently, the FPTAS is theoretical,
because the number of hypercubes that are used to divide the
vector space (given by Eq. (6)) is huge, that is, the division
is so granulated that the number of discarded potentials (be-
longing to the same hypercube) is very small and might not be
computationally attractive. However, it brings the possibility
of developing other techniques that might efficiently solve the
MAP in practical applications.

4 Conclusion

This paper closes a few theoretical questions for the MAP
problem in Bayesian networks. We address the following
complexity results:

• MAP remains hard in simple binary polytrees with at
most two parents per node, strengthening previous re-
sults by using a binary version of a polytree.

• MAP remains hard in trees with no bound on maximum
cardinality but network topology as simple as a Naive
Bayes structure.

• MAP in trees without a bound in the maximum cardinal-
ity does not admit a polynomial approximation scheme,
again strengthening previous results.

• MAP remains hard in trees with bounded maximum car-
dinality and network topology as simple as a Hidden
Markov Model structure, which implies hardness for
trees with bounded cardinality per variable.

Altogether these new complexity proofs strongly indicate that
MAP problems are hard even when the underlying structure
of the BN is very simple. It is also shown that an approxima-
tion method with theoretical guarantees is possible, but it is
necessary to work on reducing the hidden constants and ex-
ponents of it. This is a point to be addressed in future work, as
well as trying to devise an efficient pseudo-polynomial time
algorithm (in fact, both ideas are correlated). Another possi-
bility is to study (theoretically and empirically) how to select
potentials from the sets in order to further reduce their sizes,
which may produce very good approximation results in.

Acknowledgments

This work has been partially supported by the Swiss NSF
grant n. 200020 134759 / 1 and the Computational Life Sci-
ences – Ticino in Rete project. I thank Denis Mauá and the
anonymous reviewers for their suggestions.

References

[Bodlaender, 1993] H. L. Bodlaender. A linear time algo-
rithm for finding tree-decompositions of small treewidth.
In Proc. of STOC, pages 226–234, 1993. ACM.

[Darwiche, 2009] A. Darwiche. Modeling and Reasoning
with Bayesian Networks. Cambridge Univ. Press, 2009.

[Garey and Johnson, 1979] M. R. Garey and D. S. Johnson.
Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

[Papadimitriou and Yannakakis, 2000] C. H. Papadimitriou
and M. Yannakakis. On the approximability of trade-offs
and optimal access of web sources. In Proc. of FOCS,
page 86–92, 2000. IEEE Computer Society.

[Park and Darwiche, 2004] J. D. Park and A. Darwiche.
Complexity results and approximation strategies for MAP
explanations. J. Artif. Intell. Res., 21:101–133, 2004.

[Pearl, 1988] J. Pearl. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. Morgan Kauf-
mann, 1988.

[Shenoy, 1996] Prakash P. Shenoy. Binary join trees. In
Proc. of UAI, pages 492–499, 1996.

[Vazirani, 2001] V. V. Vazirani. Approximation Algorithms.
Springer, 2001.

2106




