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Abstract

We describe a generative Bayesian model for ac-
tion understanding in which inverse-forward in-
ternal model pairs are considered ‘hypotheses’ of
plausible action goals that are explored in parallel
via an approximate inference mechanism based on
sequential Monte Carlo methods. The reenactment
of internal model pairs can be considered a form
of motor simulation, which supports both percep-
tual prediction and action understanding at the goal
level. However, this procedure is generally consid-
ered to be computationally inefficient. We present
a model that dynamically reallocates computational
resources to more accurate internal models depend-
ing on both the available prior information and the
prediction error of the inverse-forward models, and
which leads to successful action recognition. We
present experimental results that test the robustness
and efficiency of our model in real-world scenarios.

1

An authoritative view in computational motor control is that
to act in goal-directed manner the brain employs internal
models [Wolpert et al., 1995; Miall and Wolpert, 1996] which
are fundamental for understanding a range of processes such
as state estimation, prediction and context recognition. In-
ternal models could explain the human’s ability to generate
appropriate movement patterns under uncertain environmen-
tal conditions. As an example, in order to pick up an ob-
ject without knowing its dynamics, it has been proposed that
the Central Nervous System (CNS) uses a modular approach
in which multiple internal models coexist and are selected
based on the movement context or state, so that each internal
model becomes an expert of a given motor action and context
[Wolpert and Kawato, 1998].

In computational motor control there are two types of in-
ternal models. Forward models model the causal (forward)
relation between actions and their consequences, and can be
used to predict how the motor system’s state changes in re-
sponse to a given motor command under different contexts.
Inverse models, known as controllers in engineering, perform
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the opposite transformation determining the motor command
required to achieve some desired goal state. When a motor
command is generated, an efference copy can be used to pre-
dict the sensory consequences under many possible contexts,
where contexts correspond to execution of different motor ac-
tions. Predictions can be compared with actual sensory feed-
back to assess what context is more plausible given evidence.
Each predictor can, therefore, be considered as a hypothesis
tester for the context it models: the smaller the error in pre-
diction, the more likely the context. Moreover, each predictor
is paired with a corresponding controller forming a predictor-
controller pair and the sensory prediction error is used to
weight the relative influence of the paired controllers. We
can therefore describe a goal-directed action as: (a) a con-
troller, or inverse model, which determines the appropriate
motor command to reach a certain goal state, coupled with
(b) a predictor, or forward model, which predicts the conse-
quences of the action in a given context.

In addition to motor control, many authors advocate that
coupled inverse and forward models can be reused for ex-
plaining a number of complex social phenomena, ranging
from action prediction and understanding [Wolpert, 2003],
imitation learning in robotics [Oztop et al., 2006; Demiris
and Khadhouri, 2006], language production and speech un-
derstanding [Perkell et al., 19971, just to name a few.

In this paper we present a computational model for action
understanding, or the process of how we understand actions
performed by others and their goals while observing them.
Our model is based on the idea that recognition and under-
standing automatically emerge as the process of reusing one’s
own internal models “in simulation”. This idea is consistent
with the simulation theory of mindreading that has been ad-
vanced in the cognitive neuroscience literature, according to
which, in order to understand another’s actions and their un-
derlying goals, humans encode observed actions in terms of
their own motor repertoire, or in other words they “put them-
selves into another’s shoes” [Gallese and Goldman, 1998].
The encoding of observed actions in terms of one’s own per-
mits to go beyond the observed movements and provides a di-
rect, motor understanding of the goals of the performer. The
link between two apparently unrelated processes of action un-
derstanding and motor simulation is suggested by recent neu-
roscientific studies related to the discovery of mirror neurons
in the F5 area of the macaque brain, which are active both dur-



ing (transitive) action and the perception of the same action
performed by others [Rizzolatti and Craighero, 2004]. Mirror
neurons have provided (prima facie) support to the simulative
view of action understanding, both for what concerns the un-
derstanding of the immediate goals of observed actions and
distal intentions confirmed by empirical findings [Fogassi et
al., 2005].

Here we offer a computational account of how a motor sim-
ulation account of action understanding might work mecha-
nistically (see also [Kilner et al., 2007; Wolpert, 2003]). By
embedding the ability to produce actions and predict their
outcome via inverse and forward models, action recognition
in our model can be described as an inverse inference process
in which the generative model is “inverted” so as to pass from
the observation of movements to the inference of which of the
observer’s inverse model(s) could have generated the obser-
vations. Since inverse models have associated goals, recogni-
tion of inverse models entails recognition of the (more plau-
sible) action goals. Put in simple terms, the same internal
models that an organism uses for performing goal-directed
action can be re-enacted in simulation and used for inferring
others’ actions, intention and goals (and possibly imitating
them). Forward models, or predictors, can be used as sim-
ulators of the consequences of an action, and when paired
with an inverse model, a controller, a degree of discrepancy
between what I observe and what I do (or just “imagine” of
doing) can be produced which helps finessing the initial hy-
potheses about the observed action goals (and which inverse
model could have produced it). Note that it is not a one-step
process, but can be as dynamic as the action performance it-
self.

1.1 Computational complexity of motor simulation

In principle, the modular approach based on internal models
gracefully solves the problem of action recognition and motor
control. However, from practical point of view, it is unlikely
and impractical that all models are maintained in parallel for
the entire period of recognition. For each application con-
text, there might be hundreds or thousands of internal models
(and their number could easily grow in ambiguous situations
where the environment does not provide sufficient informa-
tion for recognition) making the problem of action recogni-
tion intractable with scarce resources. We must also consider
the inherent diversity during the execution of the same ac-
tion among different individuals, and the diversity in action
execution when performed by the same individual during dif-
ferent trials. The complexity associated with tracking a huge
number of possible models for each scenario, and their inher-
ent stochastic nature, has so far hindered the development of
efficient analytical solutions for motor simulation and action
understanding in most but the simplest settings.

However, casting the problem of action understanding in a
Bayesian framework permits to adopt efficient techniques for
approximate probabilistic inference under the constraint of
limited resources. We will show how, by adopting a sequen-
tial Monte Carlo scheme for inference, the process of action
understanding can be efficiently and elegantly solved in a co-
herent computational framework. In addition, our model inte-
grates different sources of information (i.e. affordances, con-
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text and preferences) and treat them in a homogeneous way
as Bayesian priors that bias the initial allocation of resources
and modulate the dynamics of our system.

1.2 Aims and structure of the paper

In this paper we present a complete and quantitatively speci-
fied probabilistic model for understanding predictive and mo-
tor phenomena during action observation. Our model has
three key characteristics. First, internal models used in mo-
tor control are reused for motor simulation and action under-
standing at the goal level in a sound Bayesian framework.
Second, prior knowledge of possible goals, as well as other
contextual elements, are used to bias the initial action recog-
nition inference, which is successively finessed during obser-
vation. Third, we use approximate Bayesian inference (parti-
cle filtering) rather than exact inference to efficiently track
several competing action hypotheses. In other words, ap-
proximate Bayesian inference is offered as a plausible mech-
anistic implementation of the idea of motor simulation as
the reuse of multiple forward-inverse models, which makes
it feasible in real-time and with limited resources. Impor-
tantly, the second and third elements distinguish our model
from previous ones proposed in the literature that are based on
coupled forward-inverse models (e.g., [Cuijpers et al., 2006;
Dearden and Demiris, 2005; Haruno et al., 2001; Lopes and
Santos-Victor, 2005; Wolpert, 2003]), and pave the way to the
adoption of the idea of motor simulation via coupled internal
models in many real-world tasks such as surveillance, human-
robot cooperation, learning by imitation and computer games.

The paper is organized as follows. Sec. 2 describes the
model in computational terms and discusses how the model
deals with sudden changes during action performance and
how it recognizes sequences of actions. Sec. 3 explains the
computer simulations and human experiments that we have
performed to assess the model, and it briefly discusses how it
connects to the body of experimental literature in brain and
cognitive sciences. Sec. 4 illustrates the conclusions and our
ongoing work towards the modeling and recognition of distal
intentions.

2 Computational model

Action understanding, when described as a motor simulation
process, is influenced by three main factors: agent’s reper-
toire of actions (represented as coupled forward-inverse mod-
els), contextual information, and observations of the move-
ments of a demonstrator (i.e., agent performing the action).
In motor simulation, it is the reenactement of one’s own in-
ternal models, both inverse and forward, used for interaction
that provides an understanding of what others are doing.

The entire process of action understanding via motor sim-
ulation can be cast into a Dynamic Bayesian Network (DBN)
shown in Figure 1(a). DBNs are Bayesian networks repre-
senting temporal probability models where directed arrows
depict assumptions of conditional (in)dependence between
variables [Murphy, 2002]. As usual, shaded nodes represent
observed variables while others are hidden and need to be es-
timated through the process of probabilistic inference.

In our representation, the process of action understanding
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Figure 1: Graphical model (DBN) for action understanding
based on coupled forward-inverse models

is influenced by the following factors expressed as stochastic
variables in the model (fig. 1b):

1. c: discrete context variable;

2. 1: index of the agent’s own repertoire of goal-directed
actions: each action directly influences the activation of
related forward and inverse models;

3. w: continuous control variable (e.g. forces, velocities,

e

4. x: state (e.g. the position of the demonstrator’s end-
effector in an allocentric reference frame);

5. z: observation, a perceptual measurement related to the
state (e.g. the perceived position of the demonstrator’s
end-effector on the retina).

Suppose we can extract the noisy measurements of the true
state of the demonstrator, z;, through some predefined per-
ceptual process. The aim of the recognition process is to
determine the goal-directed action, i;, that the demonstra-
tor is doing based on the observed state z;. The action ¢ is
associated with a paired inverse-forward model, and it im-
plicitly encodes the demonstrator’s goal. The initial choice
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of which internal models to activate is biased by the a pri-
ori given contextual information, c;. The context suggests
actions (or sequences of actions) that may help explaining
the observed behavior of the demonstrator. Distribution over
possible contexts, p(c;), might be given through a predefined
set of perceptual programs. Each action i, is responsible of
both generating a motor control u;, given the (hidden) state
x¢—1 (inverse model), and predicting the next (hidden) state
x¢, given the motor control u; and the previous state x;_1
(forward model).

Figure 1c shows the conditional distributions which arise
in the model. However, the semantics of the stochastic vari-
ables, and the concrete instatiation of the conditional distri-
butions depends on the experimental setting, and we will pro-
vide an example in the section 3.

2.1 Probabilistic inference for action
understanding

Let us denote with X; the set of hidden variables at time ¢,
and with Z; the set of observed variables at the same time
step. In general, we want to recursively estimate the posterior
distribution p(X;|Z1.¢) from the corresponding posterior one
step earlier, p(X;—1|Z1.t—1). The usual Markovian assump-
tions lead to the following equation which, together with an a
priori distribution p(Xp), provides the recursive formulation
of the inference task [Murphy, 2002]:

p(Xt‘let) = np(ZtP(t)/p(Xt‘thl)p(thl|let71)dXt71

In our graphical model for action understanding (Fig. 1)
the task is to recursively compute the posterior distribution
over possible forward-inverse action pairs, p(i¢|z1.¢). This
distribution can be efficiently obtained by marginalizing the
posterior distribution over all hidden variables in the model
through Monte-Carlo integration method. The following
equations describe the observation and transition models, to-
gether with the a priori distribution over the set of hidden
variables:

(24| X)) = p(zt]2t) (D
P(Xe|Xi—1) = p(ae|ze—1, ue, ) - plug]ze—1,1)  (2)
p(Xo) = p(zo) - p(co) - plilco) 3)

It is worth stressing how the coupled forward-inverse models
naturally appear in the prediction model (equation 2 above).
However, in order to compute the most likely observed
action, the recursive propagation of the posterior density
p(X¢| Z1.¢) is only a theoretical possibility, and in general it
cannot be determined analytically. We adopt particle filters,
a Monte Carlo technique for sequential simulation, which al-
low to efficiently perform approximate computation of the
posterior density with limited resources [Doucet et al., 2000].

2.2 Particle filters

Functions that describe probability densities in real-world
problems are typically nonlinear, and analytical solutions of
the Bayesian inference problem are generally intractable. The
key idea of particle filters is to represent the required posterior



density function by a set of random samples with associated
weights and to compute estimates based on these samples and
weights. In our case, each particle represents a weighted hy-
pothesis of an internal model activation in the action recogni-
tion task, and the weight of each particle is computed accord-
ing to the divergence between the predicted state of the inter-
nal model the particle belongs to and the observed state; in-
tuitively, severe discrepancies between predictions produced
by coupled internal models and observed percepts will assign
low weights to internal models less involved in explaining the
current action observation.

Each random sample is therefore a distinct hypothesis that

the agent tracks during the action recognition process. Let
{af, ulf, ik cf wF}Y:, denote a random measure that char-
acterizes our target posterior. The evidence provided by
the perceptual process, z;, is responsible of “correcting” the
posterior distribution by integrating the observation model
p(2¢|z¢). Normalized importance weights wf, recursively
computed as the divergence between the predicted and ob-
served state, together with the particle set, represent an ap-
proximation of the desired posterior probability. Intuitively,
those parts of the hidden state in accordance with the cur-
rent observation will be given higher weights and will thus
exhibit peaks in the posterior distribution. Since those states
have been produced by a goal-directed action, by marginal-
izing the final posterior distribution we obtain the required
discrete distribution over motor primitives, p(i¢|z1.¢)-
The resampling step in the classical particle filter, used to
avoid the particle impoverishment problem in which the ma-
jority of particles’ importance weights are close to zero, al-
lows to focus computational effort on models providing plau-
sible hypotheses (i.e. hypotheses in accordance with the ob-
servations) by pruning out less probable models and focusing
computational resources to models that best explain the cur-
rent observation through the activation of one’s own internal
models.

2.3 Novelty detection

A limitation of the model that we have presented is its
poor performance when the demonstrator changes its action
abruptly (e.g., a “feint” in a soccer game). The reason is that,
in order to prevent the particle impoverishment problem, the
resampling step of the particle filter usually assigns a high
probability to a single model (or a small subset of models),
and thus a whole set of particles will follow a unique dy-
namics. Although theoretically admissible, in many practical
cases this behavior can induce misleading results. Consider
for example the case when several actions have distinguish-
able features in the final stage of observation only. In such an
ambiguous situation, the particle filter could start tracking a
wrong dynamics. Even if the observations will at some point
assign low weights to the predicted state, the system has no
means to recover the true belief. A similar problem arises
with switching dynamics (i.e. when the demonstrator rapidly
changes the goal of its action).

This problem is intimately related to the process of novelty
detection and it has a fundamental survival value since nov-
elty often indicates dangerous or unexpected situations (and
indeed the neural underpinnings of novelty detection have
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been widely investigated, see e.g. [Schultz et al., 1997]). In
principle, novelty can be detected when the observed world
dynamics strongly differs from its predicted counterpart pro-
duced via active internal models. A potential solution is to
explicitly model the transition between different models (i.e.
p(it|iz—1)). At every time step, several particles will jump
from one dynamics to another thus preventing the impover-
ishment by tracking a huge number of hypotheses. However,
this random walk in the action space forces the recognition
algorithm to process most of the actions at each time step,
even those that have a low probability of being observed in
a given context, thus making the algorithm computationally
prohibitive and unsuitable to operate in real time with limited
resources. A more sophisticated approach to the novelty de-
tection problem is to populate the space with particles having
different dynamics as soon as the particle impoverishment is
detected. In this way, the computational burden of the overall
algorithm is constrained and the particle filter can recover the
true belief.

In order to detect a novelty, we use the informational the-
oretic measure based on Kullback-Leibler (KL) divergence
[Bishop, 2006] between the current state belief, represented
by the set of weighted particles, and the probability distribu-
tion induced by the current observation z;. The algorithm will
inject random particles from the state space when the KL di-
vergence is larger than a given threshold.

We represent the current state belief distribution, N, as a
Gaussian with the first and the second moments (mean and
variance) computed as below:

) 1
e =S ubat  5F= 5 S ubeh - et - )"
k k

“4)

k
Wy

N =13 (wf)

k

where w; is the weight associated with each particle and
N is a normalization factor. This expression reduces to an
unweighted variance with the familiar 1/(N — 1) factor when
there are IV identical non-zero weights.

In the same way, we summarize the present observation

distribution (2; = ;) as a Gaussian having the following
statistics:
i =y SF = (af —pi)af — )" 5)

k

This distribution quantifies, through its covariance matrix,
how agent’s internal belief explains the current observation.
In cases where the observation z; directly provides a noisy
measurements of the state Z; (as in the experiments we per-
formed and described in the next section), this distribution
can be directly compared to the estimated state in order to
detect novelty by using KL divergence. In the general case,
where observations and states are related through a complex
non-linear transformation, the same technique can be easily
applied in the domain of the observed variable z;.



The degree of novelty is measured as KL divergence be-
tween these two distributions!:

1 det 3,
D (NlN2) = 5 (1o, (5
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When particle impoverishment is detected, the algorithm
will inject a preset percentage of random particles by sam-
pling 7 from p(i|c;) and z; from A,. The injected particles,
representing different system dynamics, will thus cover a sub-
set of entire action repertoire conditioned on the current con-
text c; and present belief AV

3 Experimental setup and results

To assess the real-time adequacy of our model, we compared
its performance with human subjects in an action observation
task, consisting in assessing what action the demonstrator is
currently doing (i.e., approaching and grasping one among
multiple target objects in the visual field, see fig. 2). The
state z; of the demonstrator is given by the 2D position of the
end-effector (hand) relative to a fixed reference frame, and
the observation z; is provided by the noisy measurement of
the 2D position by a low-cost motion capture device. Each
intentional action is represented as a coupled forward-inverse
model whose index is described through the stochastic dis-
crete variable i;. Inverse models, p(u¢|xi—1,1:), are imple-
mented as potential fields producing the control velocity vec-
tor, u¢, corrupted by a Gaussian noise with fixed variance,
o;. In this formulation, each target object acts essentially
as an attractor for the end-effector and the system automat-
ically instantiates inverse models for reaching them. Forward
models are based on a simple kinematics velocity model,
plazi—1, ue, MP;) = N'(z4—1 + At - uy, o), which, given
the current state and the velocity, predicts the next state (2D
position) of the demonstrator. Predicted positions are there-
fore corrupted by a Gaussian noise with the fixed variance,
oy. Without the loss of generality we assume that each in-
verse model is coupled with the identical forward model. Fi-
nally, the observation model is given by a simple model of the
motion capture device, p(z:|x¢) = N (z+, 0,), and it provides
the prediction error used to drive the recognition process.

Agent’s a priori knowledge is represented in the distribution
over the contextual variable, p(c;) which directly biases the
choice of internal models through the process of contextual
induction p(i:|c;) which implicitly encodes the prior knowl-
edge on which actions are most likely to be observed in a
given context?>. For each experiment we compute the poste-
rior distribution p(i¢|z1.;) through Monte Carlo integration.
The number of particles in all experiments was set to 500.

'The calculated distributions AV, and N, are both assumed to be
Gaussian distributions. In our experimental setting this assumption
proved to be sufficient having considered unimodal patterns only. In
general cases, however, this can lead to poor results and the Gaussian
assumption can be relaxed by defining the KL divergence directly
over availble particle sets.

*This distribution could be easily learned through a life-long su-
pervised inductive mechanism.

We recorded 30 video clips at 25 frame-per-second (fps),
showing the demonstrator approaching one of several possi-
ble objects on a table (average video length was 1,5s). We
have divided recordings into four (2x2) groups depending on
the number of possible target objects (‘simple’ group, con-
taining exactly two target objects, and ‘complex’ group con-
taining up to five target objects) and presence or absence of
switching actions indicating novelty (‘presence’ vs ‘absence’
groups). Each group contains the same number of recordings.
At every frame ( 40ms) the demonstration was interrupted
and we asked participants if they were able to recognize the
target of the action corresponding to the goal-directed action
(reaching-object#1, reaching-object#2, ...) by pressing a
key on a computer keyboard corresponding to the recognized
goal-directed action or an uncertain ’I-dont-know’ response.
In order to ease the recognition task we numbered each object
in the video. Individual participants (n = 5) were randomly
selected members of the student population unaware of the
purpose of the experiment.

The goal of the system, which plays the role of an “ob-
server”, is to infer which of its internal models (i;) provides
the best explanation of the perceived demonstration. The ‘re-
sponse’ of the system is measured as its current belief (poste-
rior probability of the winning action), and the model having
the probability above a fixed threshold (in the current experi-
ment we empirically set it to 0.7) for at least 200ms (5 frames)
is elected as the winning model. The contextual distribution
p(cy) is uniform in all experiments indicating that all objects
are equally probable action targets.

We were interested in comparing the instant in which our
computational system makes the correct prediction to the in-
stant in which the majority of users recognizes the same goal-
directed action. At each frame we measured the average
number of correct and wrong/uncertain responses provided
by participants. Figure 2 provides a plot of the results in the
’complex/presence’ condition; the blue curve depicts the av-
erage uncertain (or wrong) user response rate, the green one
depicts the positive (e.g. correct) user response rate, while the
red curve is the posterior probability of the winning action as
computed by our system. Results show that response time our
system is qualitatively comparable to that of human partici-
pants. In addition, by averaging across several experimental
conditions, we have observed that after approximately twenty
time steps the number of active models (i.e. those that have
associated at least one particle) is only 5% of the total num-
ber of models. Note that the recognition of the goal-directed
action (measured as the likelihood of the best model) is usu-
ally achieved long before the action is terminated, consistent
with previously mentioned empirical evidence indicating that
action recognition is highly predictive.

To assess the system performance compared to humans’,
we measured the differences in response times between our
system and human participants. For each recording we com-
puted the difference between the instant in which the ma-
jority of users recognized the correct action, and the in-
stant in which the posterior probability of the correct internal
model was above the recognition threshold for five consec-
utive frames (200ms). Figure 3 shows the average response
time difference with different recognition thresholds in four
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Figure 2: Experimental results: comparing human action
recognition with our system in the novelty condition; see text
for details.

experimental settings (corresponding to possible combina-
tions between simple/complex and novelty presence/absence
conditions). As shown in the figure, our system responds (on
average) faster than human participants, indicating that the
proposed method is well suited for real-world scenarios. In-
terestingly, human users outperform the system in the simple
tasks with novel actions. This is due to the fact that, given
only two possible target objects, as soon as the novelty is
detected humans are certain about the goal of the observed
motor act (rather, our system encodes possible goal-directed
action alternatives probabilistically).

4 Conclusions and future work

We have proposed that action understanding can be cast as
an approximate Bayesian inference, in which inverse-forward
models are hypotheses that are tested in parallel via a sam-
pling method, using bounded computational resources. The
result is a motor simulation process, which is initially biased
by prior knowledge of plausible goal-directed actions, and
successively refined when novel information is collected that
is in agreement or disagreement with the ongoing predictions.
In this framework, action goals are implicitly encoded in the
coupled inverse-forward models.

In computational motor control, the idea that the brain
adopts multiple forward-inverse models to control and rec-
ognize actions is quite popular. However, the huge compu-
tational complexity of this method prevents its use in most
real-world scenarios. Our model is able to efficiently handle
the problem of action recognition via a simulative approach
based on many internal models and using limited computa-
tional resources. This is achieved by adopting an approximate
inference procedure (sequential Monte Carlo simulation) for
tracking several competing hypotheses. The usage of parti-
cle filters in this context is the first attempt - to the best of our
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Figure 3: Comparison between user and system response
time: effects of the recognition threshold on the response time

knowledge - to provide a computationally efficient implemen-
tation of the motor simulation idea, which scales smoothly
with the number of available models being the algorithm lin-
ear in the (fixed) number of particles. Having more mod-
els would require more particles to assure the convergence to
the real posterior, but still the algorithm could operate with
scarce resources at the cost of reduced accuracy and increas-
ing recognition times.

In addition to its efficiency from an engineering viewpoint,
the choice of approximate Bayesian inference could have im-
plications for neuroscience and the problem of what neural
coding could support the form of inference that we have ar-
gued for. It has been proposed that the brain encodes per-
ceptual and action alternatives probabilistically into popula-
tions of neurons [Doya et al., 2007]. Our representational
scheme is equivalent to a sampling-based neural representa-
tion [Fiser et al., 2010], in which neurons encode variables
and their activity at any time representing samples from the
distribution of that variable. The hypotheses of reusing one’s
own motor repertoire during action perception has been tested
in several empirical studies which revealed motor involve-
ment during perception [Kilner et al., 2003]. In the cog-
nitive (neuro)science literature, an alternative to the simu-
lation theory is ‘theory theory’ according to which, to un-
derstand another’s action, humans rely on an explicit ‘the-
ory of mind’, or a set of logical hypotheses (possibly ex-
pressed in a propositional format) of what causes actions
combined with a rationality principle (i.e. what would be
rational in a given situation) [Csibra and Gergely, 2007].
In a series of computational studies, [Baker et al., 2006;
2009] describe action understanding as a rational Bayesian
process of inverse planning, which is close to the idea of
“theory theory”. A drawback of this method is its computa-
tional cost and its huge demands in terms of prior knowledge.
Authors use Value Iteration algorithm for estimating a pol-
icy in a MDP-equivalent setting which is, at best, quadratic
in the number of possible models. In a related approach,
[Ramirez and Geffner., 2010] use classical planners rather
than Bayesian inference.

Future work will include the extension of our computa-
tional model for the recognition of distal intentions through
a hierarchy of inverse and forward models in which higher-
level pairs encode increasingly abstract actions, in line with



the view that mirror neuron mechanism supports the recog-
nition of sequences of actions through dedicated “action
chains” and not only individual acts [Fogassi et al., 2005].
Within this architecture, knowledge about plausible distal in-
tentions can serve as priors to recognize proximal actions;
conversely, the recognition of proximal actions can serve as
prior for inferring the demonstrator’s distal intention.
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