
Finding (α, ϑ)-Solutions via Sampled SCSPs

Roberto Rossi,1 Brahim Hnich,2 S. Armagan Tarim3 and Steven Prestwich4

1Logistics, Decision and Information Sciences, Wageningen University, the Netherlands, roberto.rossi@wur.nl
2Department of Computer Engineering, Izmir University of Economics, Turkey, brahim.hnich@ieu.edu.tr

3Department of Management, Hacettepe University, Ankara, Turkey, armagan.tarim@hacettepe.edu.tr
4Cork Constraint Computation Centre,University College Cork, Ireland, s.prestwich@4c.ucc.ie

Abstract

We discuss a novel approach for dealing with
single-stage stochastic constraint satisfaction prob-
lems (SCSPs) that include random variables over a
continuous or large discrete support. Our approach
is based on two novel tools: sampled SCSPs and
(α, ϑ)-solutions. Instead of explicitly enumerating
a very large or infinite set of future scenarios, we
employ statistical estimation to determine if a given
assignment is consistent for a SCSP. As in statisti-
cal estimation, the quality of our estimate is deter-
mined via confidence interval analysis. In contrast
to existing approaches based on sampling, we pro-
vide likelihood guarantees for the quality of the so-
lutions found. Our approach can be used in concert
with existing strategies for solving SCSPs.

1 Introduction

In a stochastic constraint satisfaction problem (SCSP) one
typically requires a number of constraints, involving decision
and random variables, to be satisfied at a prescribed probabil-
ity. These constraints, which we call chance-constraints, take
the form Pr{〈constraint〉} ≥ β and they enforce the prob-
ability 〈constraint〉 is satisfied by a given assignment to be
greater or equal to a given threshold β. Typically, these con-
straints do not admit a closed form solution and are complex
enough to rule out any chance of obtaining an exact solu-
tion via standard scenario-based approaches — for instance
because they constrain random variables defined over a con-
tinuous support. We argue that a decision maker, instead of
looking for an exact solution, may then aim to “estimate” for
the chance-constraints in the model, the satisfaction probabil-
ity guaranteed by a given assignment. In other words, having
introduced a confidence level α and a tolerance threshold ϑ,
the decision maker may look for a solution that, with confi-
dence level α, guarantees a satisfaction probability that is no
lower than β−ϑ. By choosing different values forα and ϑ the
set of solutions may vary. For this reason, we will introduce
a new notion of solution that is parameterized by these two
parameters and that we call an (α, ϑ)-solution. Intuitively, as
α tends to 1 and ϑ tends to 0 the set of (α, ϑ)-solutions will
converge to the actual set of solutions to the original SCSP,
which we therefore rename (1, 0)-solutions. In this work, we

formally introduce the concept of (α, ϑ)-solution and we ap-
ply it to SCSPs that include continuous random variables —
i.e. an infinite number of scenarios — and that cannot be
solved by exact approaches in the stochastic constraint pro-
gramming literature.

2 Formal Background

An m-stage SCSP [Walsh, 2002; Tarim et al., 2006; Hnich et
al., 2009] is defined as a 7-tuple 〈V, S,D, P, C, β, L〉, where
V is a set of decision variables and S is a set of random vari-
ables, D is a function mapping each element of V (respec-
tively, S) to a domain (respectively, support) of potential val-
ues. In classical SCSPs both decision variable domains and
random variable supports are assumed to be finite. P is a
function mapping each element of S to a probability distribu-
tion for its associated support. C is a set of chance-constraints
over a non-empty subset of decision variables and a subset
of random variables. β is a function mapping each chance-
constraint h ∈ C to βh which is a threshold value in the in-
terval (0, 1]. L = [〈V1, S1〉, . . . , 〈Vi, Si〉, . . . , 〈Vm, Sm〉] is a
list of decision stages such that each Vi ⊆ V , each Si ⊆ S,
the Vi form a partition of V , and the Si form a partition of S.

To solve an m-stage SCSP an assignment to the variables
in V1 must be found such that, given random values forS1, as-
signments can be found for V2 such that, given random values
for S2, . . ., assignments can be found for Vm so that, given
random values for Sm, the hard constraints are satisfied and
the chance constraints are satisfied in the specified fraction
of all possible scenarios. Under the assumption that random
variable supports are finite, the solution of an m-stage SCSP
is, in general, represented by means of a policy tree [Tarim
et al., 2006]. The arcs in such a policy tree represent values
observed for random variables whereas nodes at each level
represent the decisions associated with the different stages.
We call the policy tree of an m-stage SCSP that is a solution
a satisfying policy tree.

In order to simplify the presentation, we assume without
loss of generality, that each Vi = {xi} and each Si = {si}
are singleton sets. All the results can be easily extended in
order to consider |Vi| > 1 and |Si| > 1 (see [Hnich et al.,
2009]). Let S = {s1, s2, . . . , sm} be the set of all random
variables and V = {x1, x2, . . . , xm} be the set of all decision
variables. Let p be a path from the root node of the policy tree
to a leaf. Let Ψ denote the set of all distinct paths of a policy

2172

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence

������

������

������

������

������

������

������

	
��

	
��

	
��

	
��

������

������

�

�

�
�

�
�

�����	
�
�	�
�

�
�� ��

�
�

�
�

�

���������������	

�
�

���������

�
�

��������������	

�
�

���������

�
�

�����������<��	

�
�

���������

�
�

��������������	

�
�

���������

Figure 1: Policy tree for the SCSP in Example 1

tree. For each p ∈ Ψ, we denote by arcs(p) the sequence of
all the arcs in p whereas nodes(p) denotes the sequence of all
nodes in p. We denote by Ω = {arcs(p)|p ∈ Ψ} the set of
all scenarios of the policy tree. The probability of ω ∈ Ω is
given by Pr{ω} =

∏m

i=1
Pr{si = s̄i}, where Pr{si = s̄i} is

the probability that random variable si takes value s̄i.
Now consider a chance-constraint h ∈ C with a specified

threshold level βh. Consider a policy tree T for the SCSP
and a path p ∈ T . Let h↓p be the deterministic constraint
obtained by substituting the random variables in h with the
corresponding values (s̄i) assigned to these random variables
in arcs(p). Let h̄↓p be the resulting tuple obtained by substi-
tuting the decision variables in h↓p by the values (x̄i) assigned
to the corresponding decision variables in nodes(p). We say
that h is satisfied wrt to a given policy tree T iff∑

p∈Ψ:h̄↓p∈h↓p

Pr{arcs(p)} ≥ βh.

Definition 1 Given an m-stage SCSP P and a policy tree T ,
T is a satisfying policy tree to P iff every chance-constraint
of P is satisfied wrt T .

Example 1 Let us consider a two-stage SCSP in which
V1 = {x1} and S1 = {s1}, V2 = {x2} and S2 = {s2}.
Random variable s1 may take two possible values, 5 and 4,
each with probability 0.5; random variable s2 may also take
two possible values, 3 and 4, each with probability 0.5. The
domain of x1 is {1, . . . , 4}, the domain of x2 is {3, . . . , 6}.
There are two chance-constraints in C, c1 : Pr{s1x1 +
s2x2 ≥ 30} ≥ 0.75 and c2 : Pr{s2x1 = 12} ≥ 0.5. In this
case, the decision variable x1 must be set to a unique value
before random variables are observed, while decision variable
x2 takes a value that depends on the observed value of the ran-
dom variable s1. A possible solution to this SCSP is the sat-
isfying policy tree shown in Fig. 1 in which x1 = 3, x1

2
= 4

and x2
2
= 6, where x1

2
is the value assigned to decision vari-

able x2, if random variable s1 takes value 5, and x2
2 is the

value assigned to decision variable x2, if random variable s1
takes value 4. As the example shows, a solution to a SCSP
is not simply an assignment of the decision variables in V to
values, but it is instead a satisfying policy tree.

3 Existing Approaches for Modeling and

Solving SCSPs

In [Tarim et al., 2006], the authors discuss an equivalent
scenario-based reformulation for SCSPs. This reformulation
makes it possible to compile SCSPs down into conventional
(non-stochastic) CSPs. The scenario-based reformulation ap-
proach allows us to exploit the full power of existing con-
straint solvers. However, as pointed out in [Hnich et al.,
2009], it has a number of serious drawbacks that might pre-
vent it from being applied in practice: weakened constraint
propagation and significant space requirements. In [Hnich
et al., 2009] an alternative approach based on global chance-
constraints was proposed. Global chance-constraints were in-
troduced first in [Rossi et al., 2008] and bring together the
reasoning power of global constraints from constraint pro-
gramming and the expressive power of chance-constraints
from stochastic programming. The approach in [Hnich et al.,
2009] is able to reuse existing propagators available for the
respective deterministic global constraint obtained when all
the random variables are replaced by constant parameters.

Unfortunately, both the above approaches operate under
the assumption that the number of scenarios must be finite,
otherwise a policy tree would comprise an infinite number of
paths. This, in turn, means that complete approaches such
as the one in [Tarim et al., 2006] and in [Hnich et al., 2009]

can only deal with random variables having finite supports.
Furthermore, these approaches do not scale well, since even
problems having a limited number of random variables with
large support immediately produce policy trees whose size
makes impractical the use of a complete method.

In practice, it is often the case that random variables either
range over continuous supports or have a very large number
of possible values in their domain. In [Tarim et al., 2006],
the authors therefore proposed to employ a number of sam-
pling strategies in order to reduce a-priori the support of ran-
dom variables and therefore produce SCSPs that are manage-
able. Nevertheless, their approach is purely heuristic and does
not provide any likelihood guarantee on the quality of the as-
signments produced. The same holds for other heuristic ap-
proaches in the literature, such as the one in [Prestwich et al.,
2009], in which a neural network is employed in order to en-
code a policy function that takes the best possible decision
with respect to the past history of decisions taken and values
observed for the random variables.

In the rest of this work we will discuss an effective way
of dealing with single-stage SCSPs comprising random vari-
ables with continuous or very large support. This approach
exploits sampling in order to keep under control the amount
of scenarios that must be analyzed in order to find a solution.
Intuitively, our approach “estimates” if a given assignment
is consistent or not with respect to a given set of chance-
constraints. As in statistical estimation, the quality of this
estimate is determined by confidence interval analysis. In
contrast to [Tarim et al., 2006], we provide likelihood guar-
antees for the solutions found. In fact, we explicitly indicate
a confidence probability that bounds the actual probability of
making a wrong estimation. Before discussing our approach,
we now introduce the concept of “sampled SCSP”.

2173

4 Sampled SCSPs

Consider a SCSP P over a set S of random variables. Assume
that random variables are defined on continuous or large dis-
crete supports. Solving the original SCSP clearly poses a hard
combinatorial challenge, in fact the policy tree comprises a
number of scenarios that is exponential in the size of random
variable domains. Furthermore, if the random variable sup-
port is continuous, the policy tree comprises an infinite num-
ber of scenarios. In this section we discuss how to sample a
more compact SCSP, which comprises at most N scenarios,
out of the original problem. We shall call this new problem

P̂N or “sampled SCSP” over N scenarios. Intuitively, a sam-
pled SCSP is a reduced version of the original problem, the
solution of which is a policy tree that comprises a bounded
number of paths sampled out of the original policy tree. In
the following sections we will discuss under which conditions

the solution to P̂N is, with a prescribed confidence probabil-
ity, likely to be also a solution to the original SCSP P .

We now discuss how to employ Simple Random Sampling
to obtain a sampled SCSP out of the original problem. Of
course, more advanced stratified sampling techniques may be
used in order to reduce variance and improve the effectiveness
of the approach. Nevertheless, we leave this discussion as
future work.

Consider a complete realization, s̄1, . . . , s̄m, for the ran-
dom variables in S obtained by sampling a value from the
support D(si) of each of the random variables si ∈ S ac-
cording to its probability distribution P (si). From the defi-
nition of policy tree it is clear that there always exists a path
associated with this realization. In other words, this realiza-
tion corresponds to one of the scenarios comprised in the pol-
icy tree. Consider a policy tree T for P and N complete
sets of random variable realizations generated independently:
{s̄1

1
, . . . , s̄1m}, {s̄

2
1
, . . . , s̄2m}, . . . , {s̄

N
1
, . . . , s̄Nm}, where s̄ij is

the realized value for random variable j observed in the i-
th set of realizations. We remove from T every path which
corresponds to an arc labeling not observed in the former N

complete realizations. Let T̂ be the reduced policy tree. Ψ̂

denotes the reduced set of distinct paths in T̂ . The probabil-

ity of each of the remaining path p ∈ Ψ̂, i.e. Pr{arcs(p)}, is
simply set equal to the frequency of occurrence of such a path

in the above N realizations. Of course, T̂ represents a pol-
icy tree for a different SCSP than the one we started with. We

call this new problem the sampled SCSP P̂N . Now consider a
chance-constraint h ∈ C with a specified threshold level βh,

a policy tree T̂ for the sampled SCSP P̂N and a path p ∈ T .

We say that h is satisfied wrt to a given policy tree T̂ iff∑
p∈Ψ̂:h̄↓p∈h↓p

Pr{arcs(p)} ≥ βh.

Example 2 Let us consider the two-stage SCSPP discussed
in Example 1. We set N = 3 and we derive a sampled SCSP

P̂N . By using simple random sampling we draw the follow-
ing three complete realizations for random variables in P :
{s̄1

1
= 5, s̄1

2
= 4}, {s̄2

1
= 4, s̄2

2
= 4}, {s̄3

1
= 5, s̄3

2
= 4}. A

possible solution to the sampled SCSP P̂N is the satisfying

������

������

������

������

������

������

������

���

	

���

	

������

������

�

�

�
�

�
�

�����	
�
�	�
�

�
�� ��

�
�

�
�

�

���������������	

�
�

���������

�
�

��������������	

�
�

���������

Figure 2: Policy tree for the sampled SCSP in Example 2

policy tree shown in Fig. 2, in which x1 = 3, x1
2
= 4 and

x2
2
= 6, where x1

2
is the value assigned to decision variable

x2, if random variable s1 takes value 5, and x2
2 is the value

assigned to decision variable x2, if random variable s1 takes
value 4. The above policy tree has two paths sampled out
of the original tree: p1 has an associated probability of 2/3,
since we observed two occurrences of the scenario associated
with this path over the 3 complete realizations sampled for
the random variables; p2 has an associated probability of 1/3,
since we observed a single occurrence of the scenario associ-
ated with this path over the 3 complete realizations sampled
for the random variables. Paths that were not observed in the
sampled realizations have an associated probability equal to
0 and are not considered.

It should be noted that every policy tree T̂ for a sampled

SCSP P̂ can be employed as a (partial) policy tree for the
original SCSP P . Nevertheless, by sampling we lose com-
pleteness. If at stage i in P we observe, for a given random

variable, a realized value that is not comprised in T̂ , it will
be of course impossible to determine the correct decisions
for subsequent stages. This means that all paths in the corre-
sponding subtree will never be satisfied. In multi-stage SC-
SPs, and especially in those including random variables with
continuous support, this is a critical issue that prevents the
direct use of the approach discussed in this work. It is there-
fore essential to adopt a “rolling horizon” approach [Sethi and
Sorger, 1991] in order to reduce the multi-stage SCSPs to a
sequence of single-stage SCSPs. For space reasons, we leave
this discussion as future work. In general, however, it is pos-
sible that the remaining paths form a (partial) policy tree that
is a satisfying policy tree for P . In Example 2, incidentally,
the satisfying policy tree for the sampled SCSP is also a satis-
fying policy tree for the original SCSP. It is relatively intuitive
to see that if we repeatedly produce new sampled SCSPs with
N = 3, with a certain probability a satisfying policy tree for
the sampled SCSP will also be a satisfying policy tree for the
original SCSP. The rest of this work is mainly concerned with
the estimation of this probability for single-stage SCSPs. We
next introduce the relevant background in confidence interval
analysis, the key tool we employ to perform this estimation.

2174

5 Confidence Interval Analysis

Confidence interval analysis is a well established technique in
statistics. Informally, confidence intervals are a useful tool for
computing, from a given set of experimental results, a range
of values that, with a certain confidence level (or confidence
probability), will cover the actual value of a parameter that is
being estimated.

Consider a discrete random variable that follows a
Bernoulli distribution. Accordingly, such a variable may pro-
duce only two outcomes, i.e. “yes” and “no”, with probability
q and 1− q, respectively.

Let us assume that the value q — the “yes” probabil-
ity — is unknown. Obviously, if we observe the outcome
of a Bernoulli trial once, the data collected will not re-
veal much about the value of q. Nevertheless, in practice,
we may be interested in “estimating” q, by repeatedly ob-
serving the behavior of the random variable in a sequence
of Bernoulli trials. This problem is well-known in statis-
tics and both exact and approximate techniques are available
for performing this estimation [Clopper and Pearson, 1934;
Agresti and Coull, 1998]. The estimation produced by the
methods available in the literature typically does not come
as a point estimate, rather it consists of an interval of values
computed from a set of representative samples for the quan-
tity being estimated. This interval is known as “confidence
interval” and consists of a range of values that, with a cer-
tain confidence probability α, covers the actual value of the
parameter that is being estimated.

A method that is commonly classified as the “exact
confidence intervals” for the Binomial distribution has
been introduced by Clopper and Pearson in [Clopper and
Pearson, 1934]. This method uses the Binomial cumulative
distribution function (CDF) in order to build the interval
from the data observed. The Clopper-Pearson interval can be
written as (plb, pub), where

plb = min{q|Pr{Bin(N ; q) ≥ X} ≥ (1 − α)/2},
pub = max{q|Pr{Bin(N ; q) ≤ X} ≥ (1 − α)/2},

X is the number of successes (or “yes” events) observed in
the sample, Bin(N ; q) is a binomial random variable with N
trials and probability of success q and α is the confidence
probability. Note that we assume plb = 0 when X = 0 and
that pub = N when X = N .

Because of the close relationship between Binomial distri-
bution and the Beta distribution, the Clopper-Pearson interval
is sometimes presented in an alternative format that uses per-
centiles from the beta distribution [Evans et al., 2000]:

plb = 1− BetaInv(1− (1− α)/2, N −X + 1, X),
pub = 1− BetaInv((1− α)/2, N −X,X + 1),

where BetaInv denotes the inverse Beta distribution. This
form can be efficiently evaluated by existing algorithms.

An interesting property of confidence intervals related to
the estimation of the “success” probability associated with
a Bernoulli trial consists in the fact that, given a confidence
probability, it is possible to derive mathematically, by per-
forming a worst case analysis, the minimum number of sam-
ples that should be observed in order to produce a confidence
interval of a given size.

Therefore, for a given confidence probability α, it is possi-
ble to determine the minimum number of samples that should
be considered in order to achieve a margin of error of ±ϑ in
the estimation of the “success” probability of a Bernoulli trial.
This computation plays a central role in our novel approach.
In fact, intuitively estimating the satisfaction probability of
a chance-constraint is equivalent to estimating the “success”
probability of the associated Bernoulli trial.

6 Properties of Sampled SCSP Solutions

We will now characterize the probability that the solution of

a sampled SCSPs P̂N over N scenarios, which may be com-
puted by using any of the existing approaches discussed in
Section 3, is a solution to the original single-stage SCSP P .

We will firstly discuss what the minimum value for N is in
order to achieve a predefined probability α that a given pol-
icy tree T that satisfies a chance-constraint h in the sampled

SCSPs P̂N also satisfies the same chance-constraint in the

original SCSP P . Since a policy tree T in P̂N by definition

only comprises a subset Ψ̂ of all the paths that constitute a
policy tree for the original SCSP P , this policy tree, in order
to satisfy h in the original SCSP P , must clearly provide a
sufficient satisfaction probability regardless of the scenarios
that have been ignored by the sampling process.

Consider a confidence probability α and a margin of error
of ±ϑ; The number of scenarios N for the sampled SCSP
depends on ϑ, α and also β, which we recall is the satisfaction
probability we aim for our chance-constraint h.

Definition 2 N is computed as the minimum value for which

max(pβub − β, β − pβlb) ≤ ϑ,

where (pβlb, p
β
ub), is the Clopper-Pearson confidence interval

for a confidence probability α̂, where α̂ = 2α − 1,1 and
round(βN) “successes” in N trials; round() approximates
the value to the nearest integer.2

Definition 3 Any policy tree T , which can be proved to sat-
isfy h inP with probabilityα, satisfies h in P with probability

α if it satisfies h in P̂N . Conversely, any policy tree T , which
can be proved to not satisfy h in P with probability α, does
not satisfy h in P with probability α, if it does not satisfy h in

P̂N .

Proposition 1 A policy tree T can be proved to satisfy h inP
with probability α if the actual satisfaction probability δ > β

provided by T wrt h is such that δ ≥ pβub. Conversely, if the
actual satisfaction probability δ < β provided by T wrt h is

such that δ ≤ pβlb T can be proved to not satisfy h in P with
probability α.

1This transformation is required because Clopper-Pearson inter-
val is a symmetric two-sided confidence interval, while when we
determine if a policy tree satisfies or not a given chance-constraint
we do this on the basis of a single-sided interval.

2This is justified by the fact that the Clopper-Pearson interval is,
in fact, a step function — see [Clopper and Pearson, 1934], p. 405
— since the Binomial is a discrete probability distribution.

2175

Proof: Let δ ≥ pβub. By definition,

pβub = max{q|Pr{Bin(N ; q) ≤ round(βN)} ≥ (1− α̂)/2.

Therefore, it is clear that Pr{Bin(N ; δ) ≤ round(βN)} <
1− α. This means that

Pr

⎧⎨
⎩

∑
p∈Ψ̂:h̄↓p∈h↓p

Pr{arcs(p)} ≤ β

⎫⎬
⎭ < 1− α,

where we recall that Ψ̂ is the set of paths in the sampled SCSP

P̂N . This implies

Pr

⎧⎨
⎩

∑
p∈Ψ̂:h̄↓p∈h↓p

Pr{arcs(p)} ≥ β

⎫⎬
⎭ ≥ α.

Therefore, by using the test∑
p∈Ψ̂:h̄↓p∈h↓p

Pr{arcs(p)} ≥ β,

a policy tree T can be proved to satisfy h in P with probabil-

ity α. Conversely, let δ ≤ pβlb. By definition,

pβlb = min{q|Pr{Bin(N ; q) ≥ round(βN)} ≥ (1− α̂)/2.

Therefore, it is clear that

Pr{Bin(N ; δ) ≥ round(βN)} < 1− α.

This means that

Pr

⎧⎨
⎩

∑
p∈Ψ̂:h̄↓p∈h↓p

Pr{arcs(p)} ≥ β

⎫⎬
⎭ < 1− α,

which implies

Pr

⎧⎨
⎩

∑
p∈Ψ̂:h̄↓p∈h↓p

Pr{arcs(p)} ≤ β

⎫⎬
⎭ ≥ α.

Therefore, by using the test∑
p∈Ψ̂:h̄↓p∈h↓p

Pr{arcs(p)} ≤ β,

a policy tree T can be proved to not satisfy h in P with prob-
ability α. �

Proposition 2 Any policy tree T which provides a satisfac-
tion probability δ ≥ β+ϑ wrt h in P can be proved to satisfy
h in P with probability α. Any policy tree T which provides
a satisfaction probability δ ≤ β−ϑ wrt h in P can be proved
to not satisfy h in P with probability α.

Proof: this directly follows from Definition 2 and Proposi-
tion 1. �

Proposition 3 Any policy tree T which can not be proved
to satisfy or to not satisfy h in P with probability α, can be
either proved to satisfy h in P with probability γ, where γ is

a probability ranging in (0.5, α(, if it satisfies h in P̂N , or to
not satisfy h in P with probability γ, where γ is a probability

ranging in (0.5, α(, if it does not satisfies h in P̂N .

Proof: Consider the two limiting cases. (i) The actual sat-
isfaction probability δ provided by T wrt h in P is exactly
equal to β. Since the sample mean, used to estimate the sat-
isfaction probability out of the N samples considered, is an
unbiased estimator of δ, it will overestimate β with probabil-
ity 0.5 and, similarly, it will underestimate β with probability
0.5; this sets the lower bound for γ. (ii) The actual satisfac-
tion probability δ provided by T wrt h in P is exactly equal
to β + ϑ. From the proof of Proposition 1 it immediately fol-
lows that, in this case, γ = α, and also that, if δ < β+ϑ then
γ < α; this sets the upper bound for γ.�

Definition 4 An (α, ϑ)-solution to a SCSP P is a policy tree

T̂ that at least with probability α provides for every chance-
constraint hi inP with satisfaction threshold βi a satisfaction
probability greater or equal to βi − ϑ.

It is apparent that ϑ may be interpreted as a parameter that
the user can set in order to define a “region of indifference”,
i.e. β ± ϑ, for the satisfaction probability. In such a region,
we assume that assignments can be safely misclassified with
probability greater than α and that satisfaction probabilities
remain in an acceptable range.

6.1 Example

Consider the single-stage SCSP P = 〈V, S,D, P, C, β, L〉,
where V = {X1, X2}, S = {r1, r2}, D(X1) = D(X2) =
{0, 1}, D(r1) = (0, 100), P (r1) = Uniform(0, 100),
D(r2) = (0, 300), P (r2) = Uniform(0, 300), C = {c :
C1 ≥ X1r1 +X2r2}, βc = 0.5, and L = [〈V, S〉]. C1 = 185
is a constant. This problem comprises random variables de-
fined on a continuous support and it cannot be solved by ex-
isting complete approaches to SCSPs. If we set α = 0.95 and
ϑ = 0.05, from Definition 2 we compute the number of sam-
ples N = 250 required to guarantee that any solution to the

sampled SCSP P̂ over N samples is an (α, ϑ)-solution for P .
Furthermore, the simple structure of the constraint c con-

sidered in P allows us to perform some further analysis. Con-
sider the assignment X1 = 1 and X2 = 1. A simple reason-
ing on the convolution of two independently non-identically
distributed uniform random variables (see [Sadooghi-Alvandi
et al., 2009]) immediately suggests that this assignment is
indeed inconsistent. r1 and r2 are two independently non-

� ��� ��� ������

�	�
�

�
��

���

��� ���

���

�����

�
�
����

�

Figure 3: Probability density function of the convolution of
two independently non-identically distributed uniform ran-
dom variables r1 and r2.

identically distributed uniform random variables. The distri-
bution that results from their convolution is shown in Fig. 3.
This distribution is shaped like a trapezoid. Clearly, since the

2176

area for the whole figure must be equal to 1, the area of each
of the two rectangle triangles at the side of the trapezoid must
be equal to 1/6. Consequently, the area of the internal rect-
angle must be equal to 2/3. It is easy to see that the cumula-
tive distribution function for value 200 returns a probability of
0.5. Then, since 1/3*(15/100)=0.05, the 0.45 quantile of the
inverse cumulative distribution function which results from
convoluting r1 and r2 is exactly equal to C1 = 185. There-
fore, since the satisfaction probability provided by the assign-
ment X1 = 1 and X2 = 1 is equal to βc − ϑ = 0.45, this
assignment will be correctly classified as inconsistent with
probability α, when the sample size is set to N = 250.

6.2 Multiple Chance-constraints

Let h1, . . . , hk be k chance-constraints in a SCSP P . Let P̂
be a sampled SCSP over N samples, where N is the number
of samples required to guarantee a confidence level α and an
error tolerance threshold ϑ for each constraint hi considered
independently, according to Definition 2.

Proposition 4 Let T̂ be a policy tree that is a solution to P̂ .

Then T̂ is an (α, ϑ)-solution for P .

Proof: Consider a chance-constraint hi. Let βi be the re-
spective satisfaction threshold. By definition, the probability

that a solution T̂ to P̂ provides a service level less or equal to

βi − ϑ for hi in P is less or equal to 1 − α. Therefore T̂ is
an (α, ϑ)-solution. Now consider a pair of chance-constraints
〈hi, hj〉 with satisfaction thresholds βi, βj , respectively. The

probability that a solution T̂ to P̂ provides a service level
less or equal to βi − ϑ for hi and to βj − ϑ for hj in P is

less or equal to (1−α)2, in fact we must misclassify both the
constraints in order to accept such a solution. Even a single

constraint correctly classified will make T̂ inconsistent w.r.t.

P̂ . This reasoning can be easily generalized to k chance-
constraints, for which the probability becomes (1−α)k . Not-
ing that (1 − α)k < . . . < (1 − α)2 < (1 − α) and that
1 − (1 − α)k ≥ α the probability that a solution is misclas-
sified in a model comprising a single constraint, i.e. (1− α),
represents an upper bound for the probability that a solution

T̂ to P̂ does not provide a satisfaction probability within the
required tolerance threshold for one or more constraints in a
generic model P . By rephrasing, the probability that a solu-

tion T̂ provides a satisfaction probability greater or equal to
βi − ϑ for each constraint hi is greater or equal to α. There-

fore, by Definition 4, T̂ is an (α, ϑ)-solution for P . �

Our approach is quite conservative and it will often attain
a confidence probability greater than α for a generic model
with k chance-constraints, since several assignments will typ-
ically violate more chance-constraints. However, when the
number of chance-constraints increases, also the probabil-
ity of misclassifying solutions increases, and we may need
a higher confidence α to find one.

7 Conclusions

We proposed a framework for exploiting sampling in order
to solve single-stage SCSPs that include random variables

over a continuous or very large discrete support. Our frame-
work is based on two novel tools: sampled SCSPs and (α, ϑ)-
solutions. We employed statistical estimation to determine if
a given assignment is consistent with respect to a given set
of chance-constraints. As in statistical estimation, the quality
of our estimate is determined via confidence interval analy-
sis. In contrast to existing approaches based on sampling, we
provide likelihood guarantees for the quality of the solutions
found. In fact, we explicitly state a confidence probability α
that bounds the probability of exceeding a given error toler-
ance threshold ϑ in our estimation. By properly choosing the
estimation error ϑ and the confidence probability α it is pos-
sible to generate compact sampled SCSPs that can be effec-
tively solved by existing solution methods. We demonstrated
our approach on a single-stage SCSP that comprises random
variables defined on a continuous support and cannot be mod-
eled and solved by complete approaches in the literature.

References
[Agresti and Coull, 1998] A. Agresti and B. A. Coull. Ap-

proximate is better than “exact” for interval estimation
of binomial proportions. The American Statistician,
52(2):119–126, 1998.

[Clopper and Pearson, 1934] C. Clopper and E. Pearson.
The use of confidence or fiducial limits illustrated in the
case of the binomial. Biometrika, 26(4):404–413, 1934.

[Evans et al., 2000] M. Evans, N. Hastings, and B. Peacock.
Statistical Distributions. Wiley, New York, 2000.

[Hnich et al., 2009] B. Hnich, R. Rossi, S. A. Tarim, and
S. D. Prestwich. Synthesizing filtering algorithms for
global chance-constraints. In Ian P. Gent, editor, CP 2009,
Proceedings, volume 5732 of Lecture Notes in Computer
Science, pages 439–453. Springer, 2009.

[Prestwich et al., 2009] S. D. Prestwich, S. A. Tarim,
R. Rossi, and B. Hnich. Evolving parameterised policies
for stochastic constraint programming. In Ian P. Gent, edi-
tor, CP 2009, Proceedings, volume 5732 of Lecture Notes
in Computer Science, pages 684–691. Springer, 2009.

[Rossi et al., 2008] R. Rossi, S. A. Tarim, B. Hnich, and
S. D. Prestwich. A global chance-constraint for stochastic
inventory systems under service level constraints. Con-
straints, 13(4):490–517, 2008.

[Sadooghi-Alvandi et al., 2009] S. Sadooghi-Alvandi,
A. Nematollahi, and R. Habibi. On the distribution of the
sum of independent uniform random variables. Statistical
Papers, 50(1):171–175, January 2009.

[Sethi and Sorger, 1991] S. Sethi and G. Sorger. A theory of
rolling horizon decision making. Ann. Oper. Res., 29(1-
4):387–416, 1991.

[Tarim et al., 2006] S. A. Tarim, S. Manandhar, and
T. Walsh. Stochastic constraint programming: A scenario-
based approach. Constraints, 11(1):53–80, 2006.

[Walsh, 2002] T. Walsh. Stochastic constraint programming.
In Frank van Harmelen, editor, European Conference
on Artificial Intelligence, ECAI’2002, Proceedings, pages
111–115. IOS Press, 2002.

2177

