
Learning Optimal Bayesian Networks Using A* Search

Changhe Yuan†, Brandon Malone†, and Xiaojian Wu‡

†Department of Computer Science and Engineering, Mississippi State University
‡Department of Computer Science, University of Massachusetts, Amherst

cyuan@cse.msstate.edu, bm542@msstate.edu, xiaojian@cs.umass.edu

Abstract

This paper formulates learning optimal Bayesian
network as a shortest path finding problem. An A*
search algorithm is introduced to solve the prob-
lem. With the guidance of a consistent heuristic,
the algorithm learns an optimal Bayesian network
by only searching the most promising parts of the
solution space. Empirical results show that the A*
search algorithm significantly improves the time
and space efficiency of existing methods on a set
of benchmark datasets.

1 Introduction

Applying Bayesian networks to real-world problems typi-
cally requires building graphical representations of the prob-
lems. One popular approach is to use score-based methods to
find high-scoring structures for given data [Cooper and Her-
skovits, 1992; Heckerman, 1998]. Since finding an optimal
solution is rather difficult, early approaches are mostly ap-
proximation methods [Cooper and Herskovits, 1992; Fried-
man et al., 1999; Heckerman, 1998]. Unfortunately, the mod-
els found by these methods are not guaranteed to be optimal
and, even worse, may be of unknown quality.

Several exact algorithms based on dynamic programming
have recently been developed to learn optimal Bayesian net-
works [Koivisto and Sood, 2004; Silander and Myllymaki,
2006; Singh and Moore, 2005]. The main idea is to solve
small subproblems first and use the results to find solutions
to larger problems until a global learning problem is solved.
However, these algorithms may be inefficient due to their
need to fully evaluate an exponential solution space.

A recent exhaustive search algorithm [de Campos et al.,
2009] first finds optimal parent sets for the individual vari-
ables by ignoring the acyclic constraint and then detects and
breaks all the cycles to find a valid Bayesian network. This
algorithm was shown to be often less efficient than dynamic
programming. We believe a major reason for its inefficiency
is the search space of this algorithm consists of directed cyclic
graphs except the final solution; such a formulation makes the
size of the search space unnecessarily large.

This paper presents a new approach that formulates learn-
ing optimal Bayesian networks as a shortest path finding
problem. An A* search algorithm is introduced to solve the

problem. With the guidance of a consistent heuristic, the al-
gorithm is able to focus on searching the most promising parts
of a solution space in finding its solution. Other parts of the
solution space are safely pruned. The algorithm is shown to
be able to find optimal Bayesian networks not only more ef-
ficiently but also in less space.

2 Learning Optimal Bayesian Networks

A Bayesian network is a directed acyclic graph (DAG) G that
represents a joint probability distribution over a set of ran-
dom variables V = {X1, X2, ..., Xn}. A directed arc from
Xi to Xj represents the dependence between the two vari-
ables; we say Xi is a parent of Xj . We use PAj to stand
for the parent set of Xj . The dependence relation between
Xj and PAj are quantified using a conditional probability
distribution, P (Xj |PAj).

Given a data set D = {D1, ..., DN}, where each Di is
a vector of values over variables V, learning an optimal
Bayesian network is the task of finding an optimal network
structure that best fits D. We use “an optimal” instead of
“the optimal” because there may be multiple structures that
have the same optimal score and belong to one equivalence
class [Chickering, 2002]. The degree of the fitness of a net-
work can be measured using scoring functions such as Min-
imum Description Length (MDL) [Rissanen, 1978]. Let ri
be the number of states of Xi, Npai

be the number of data
points consistent with PAi = pai, and Nxi,pai

be the num-
ber of data points further constrained with Xi = xi. MDL is
defined as follows [Tian, 2000].

MDL(G) =
∑

i

MDL(Xi|PAi), (1)

where

MDL(Xi|PAi) = H(Xi|PAi) +
logN

2
K(Xi|PAi),

H(Xi|PAi) = −
∑

xi,pai

Nxi,pai
log

Nxi,pai

Npai

,

K(Xi|PAi) = (ri − 1)
∏

Xl∈PAi

rl.

The goal is then to find a Bayesian network that has the
minimum MDL score. Although we only use MDL in our

2186

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence



�

� ���

��� ������ ������� ���

��������������������

�������

Figure 1: An order graph of four variables

algorithm, other scoring functions can potentially be used as
well, including BIC, K2, BDeu, and BDe [Heckerman, 1998].
A common characteristic of all these scores is they are mod-
ular or decomposable, i.e., the score of a structure can be
decomposed into a sum of node scores.

3 Dynamic Programming

There are many existing methods for learning optimal
Bayesian networks, including both approximate and exact al-
gorithms. This paper focuses on exact algorithms. In this
section, we review in more detail the dynamic programming
algorithm presented in [Singh and Moore, 2005].

The dynamic programming algorithm is based on the ob-
servation that a Bayesian network has at least one leaf [Singh
and Moore, 2005]. In order to find an optimal Bayesian net-
work for a set of variables V, we can find the best leaf choice.
For any leaf choice X , the best possible Bayesian network
is constructed by letting X to choose an optimal parent set
PAX from V\{X} and letting V\{X} to form an optimal
subnetwork. The best leaf choice X is then the one that
maximize the sum of MDL(X |PAX) and MDL(V\{X}).
More formally, we have:

MDL(V) = min
X∈V

{MDL(V \ {X}) +BestMDL(X,V \ {X})},

(2)

where

BestMDL(X,V \ {X}) = min
PAX⊆V\{X}

MDL(X |PAX).

Given the recurrence relation, the dynamic programming
algorithm works as follows. It first finds optimal structures
for single variables, which is trivial. Starting with these base
cases, the algorithm builds optimal subnetworks for increas-
ingly larger variable sets until an optimal network is found for
V. The dynamic programming algorithm can find an optimal
Bayesian network in O(n2n) time [Silander and Myllymaki,
2006; Singh and Moore, 2005].

Figure 1 shows an order graph that visualizes how the dy-
namic programming algorithm solves a learning problem. It
is called an order graph because any path from top to bot-
tom in the graph is an ordering of the variables. For example,

�

���

��� ��� ���

�����

Figure 2: Parent graph for variable 1 with candidate parents
{2, 3, 4}

the path traversing nodes ∅, {1}, {1, 2}, {1, 2, 3}, {1, 2, 3, 4}
stands for the variable ordering 1, 2, 3, 4. Evaluating a vari-
able ordering amounts to finding an optimal network that is
consistent with the ordering. We can find a globally optimal
Bayesian network by evaluating all the possible orderings.
Dynamic programming evaluates all the orderings using a top
down sweep of the order graph. Layer by layer, dynamic pro-
gramming finds an optimal subnetwork for the variable set
contained in each node of the order graph based on results
from the previous layers. For example, there are three ways to
construct a Bayesian network for node {1, 2, 3}: using {2, 3}
as subnetwork and 1 as leaf, using {1, 3} as subnetwork and
2 as leaf, or using {1, 2} as subnetwork and 3 as leaf. The
top-down sweep makes sure that optimal substructures are
already found for {2, 3}, {1, 3}, and {1, 2}. We only need
to find optimal parents for the leafs in the three cases, from
which we can find an optimal network for {1, 2, 3}. Once
the evaluation reaches the node in the last layer, an optimal
Bayesian network is found for the global variable set.

We use parent graph to find optimal parents for a variable
X out of a candidate set. A parent graph for a variable X is
similar to an order graph except that it only contains variables
V\{X}. For example, the parent graph of variable 1 with
potential parents {2, 3, 4} is shown in Figure 2. If we need to
find optimal parents for 1 out of {2, 3}, we find a subset of
{2, 3} that has the best parent score. There is a parent graph
for each variable.

4 An A* Search Algorithm

A critical drawback of the dynamic programming approach is
its need to find optimal subnetworks for all subsets of the vari-
ables, which in turn requires computing all the parent scores
for each variable. For n variables, there are 2n nodes in the or-
der graph, and n parent graphs with 2n−1 parent nodes each.
Totally, n2n−1 parent scores need to be computed. As the
number of variables increases, computing and storing the or-
der and parent graphs quickly becomes infeasible.

We present an A* search algorithm for learning optimal
Bayesian networks. We first introduce the formulation of the
algorithm. We then discuss the pruning techniques we used
to improve the search efficiency. We end this section with a
brief summary of the advantages of our algorithm.

2187



4.1 The formulation

The basic idea of our algorithm is to formulate learning op-
timal Bayesian networks as a shortest path finding problem.
We use the order graph in Figure 1 as the search graph. We
let the top-most node that contains no variables be the start
state and the bottom-most node with all variables be the goal
state. For any two neighboring nodes S1 and S2 with S1

being parent of S2, we define the edge cost c(S1,S2) to be
BestMDL(X,S1), where X is the only variable in S2\S1.
The goal is then to find a shortest path from the start state
to the goal state that has the lowest cost. By definition, the
shortest path corresponds to an optimal Bayesian network.

Once we have the formulation, we can apply any graph
search technique to solve the shortest-path finding problem.
In this paper, we introduce an A* search algorithm. The al-
gorithm uses a priority queue, called OPEN list, to organize
the search frontier and initialize it with the start state. At
each search step, the search node with the smallest cost from
the OPEN list is selected to expand its successor nodes. For
each successor node, we compute its estimated total cost (f
cost) as the sum of the exact cost so far (g cost) and the es-
timated future cost to the goal state (h cost). Once a node is
expanded, it is placed in a CLOSED list. Duplicate detection
is performed for each newly generated node on both OPEN
and CLOSED lists. If a duplicate is detected in the CLOSED
list, we discard the new node immediately due to a consis-
tent heuristic we used, as we will discuss later. If a duplicate
is detected in the OPEN list, and the new node has a lower
g-cost, we update the existing node with the new g-cost and
parent pointer. Once the goal state is selected for expansion,
we find a complete path from the start state to the goal state,
from which we can extract a Bayesian network as each edge
on the path records an optimal parent set for a variable.

The g cost of a node is computed as the sum of edge costs
on the best path from the start state to the current node. Each
edge cost is computed when a successor is generated during
the search by retrieving information from a corresponding
node in a parent graph. Since the A* search explores just
part of the order graph, we only need to compute some of the
edge costs. This pruning is inherent in the search algorithm
and is not reliant on any property of the scoring function.

The h cost is computed using a heuristic function. If the
heuristic function is consistent (a consistent heuristic is guar-
anteed to be admissible), the A* search algorithm guarantees
to find a shortest path to any node once that node is selected
for expansion. A shortest path that corresponds to an optimal
Bayesian network is found once the goal state is selected for
expansion. Let U be a node in the order graph. We consider
the following heuristic function h.

Definition 1

h(U) =
∑

X∈V\U

BestMDL(X,V\{X}). (3)

Heuristic function h is clearly admissible, because it al-
lows each remaining variable to choose parents from all the
other variables in V, which effectively relaxes the acyclic
constraint and results in a lower bound cost. The following
theorem proves that the heuristic is also consistent.

Theorem 1 h is consistent.

Proof: For any successor node R of U, let Y ∈ R \U. We
have

h(U) =
∑

X∈V\U

BestMDL(X,V\{X})

≤
∑

X∈V\U,X �=Y

BestMDL(X,V\{X})

+BestMDL(Y,U)

= h(R) + c(U,R).

The inequality holds because fewer variables are used to se-
lect optimal parents for Y . Hence, h is consistent. �

The consistent heuristic allows us to discard any duplicate
found in the CLOSED list. The heuristic may seem expensive
to compute as it requires computingBestMDL(X,V\{X})
for each variable X . As we discuss in the next section, we use
hash tables to organize the parent graphs. It only takes linear
time to find the best score in each parent graph and sum them
together. Any subsequent computation of h, however, only
takes constant time by subtracting the best score of a newly
added variable from the heuristic of a parent node.

4.2 Optimizing parent graphs

The parent graphs are created for looking up the edge costs
for the order graph during the search. A typical look-up takes
a variable and a candidate parent set as inputs and returns the
best parent set out of the candidate set plus its score. The size
of a full parent graph is exponential in the number of variables
of a domain. It is desirable if we can not only make querying
the parent graphs efficient but also minimize the size of the
graphs by pruning.

We use hash tables to organize the parent graphs to make
them efficient to access. A hash function that maps a can-
didate parent set to an integer index is designed to locate a
hash-table entry in constant time. Each entry in a hash table
corresponds to a node in a parent graph and points to a data
structure that contains information of an optimal parent set.
The hash tables are created by a top-down search of the par-
ent graphs, during which we do two things: propagate infor-
mation of optimal parent sets, and prune parent nodes that are
not optimal parent set out of any candidate set of variables.

To propagate optimal parent sets, we use the following the-
orem presented in [de Campos et al., 2009].

Theorem 2 Let U ⊂ V and X /∈ U. If
BestMDL(X,U) < BestMDL(X,V), V cannot be the
optimal parent set for X .

Therefore, when we generate a successor node V

of U, we check whether MDL(X |V) is greater than
BestMDL(X,U). If so, we let V point to a data structure
that records V as the optimal parent set. Otherwise, we prop-
agate the optimal parent set in U to V. Better yet, we only
need to create one data structure containing information about
the optimal parent set; both U and V point to the same data
structure to save space. The propagation makes sure that an
optimal parent set can be immediately returned once a hash-
table entry is located for a candidate parent set.

2188



Furthermore, we can avoid computing some parent scores
using the following theorem presented in [Tian, 2000].

Theorem 3 In an optimal Bayesian network based on the
MDL scoring function, each variable has at most log( 2N

logN
)

parents, where N is the number of data points.

Therefore, there is no need to compute scores for any par-
ent set with a size larger than log( 2N

logN
), because these parent

sets are guaranteed to be suboptimal. We still need to create
hash-table entries for these parent sets for efficient look-up,
although it is only necessary to propagate optimal parent sets
to them from their ancestor nodes.

Another technique prunes all the supersets of a parent node
if all these supersets are guaranteed to be worse than the par-
ent node based on the following theorem presented in [Singh
and Moore, 2005].

Theorem 4 Let U ⊂ V and X /∈ U. Let hMDL(X,U,V)
be a lower bound that bounds BestMDL(X,R) for any
R such that U ⊂ R ⊆ V. If hMDL(X,U,V) <
BestMDL(X,U), no proper superset of U can be the opti-
mal parent set for X .

This theorem presents a nice pruning technique because
we do not even need to compute the exact scores of these
supersets. However, we need to have the lower bound
hMDL(X,U,V) in order to use the theorem. One such
lower bound is defined in [Suzuki, 1996].

Theorem 5 Let U ⊂ V and X /∈ U. For any R such that
U ⊂ R ⊆ V, we have

MDL(X |R) ≥
logN

2
K(X |U). (4)

Another one is defined in [Tian, 2000].

Theorem 6 Let U ⊂ V and X /∈ U. For any R such that
U ⊂ R ⊆ V, we have

MDL(X |R) ≥ H(X |V) +
logN

2
K(X |U). (5)

Theorem 6 defines a tighter lower bound than Theorem 5,
but H(X |V) requires that we collect count statistics for full
instantiations of variables V. As we discuss next, Theorem 3
is also used to prune the counts for large variable configura-
tions. We therefore only apply the lower bound in Theorem 5
to the pruning method presented in Theorem 4.

We use the AD-tree method [Moore and Lee, 1998] to col-
lect all the counts from a dataset. An AD-tree is an unbal-
anced tree structure that contains two types of nodes, AD-tree
nodes and varying nodes. An AD-tree node stores the num-
ber of data points consistent with the variable instantiation of
this node; a varying node is used to instantiate the state of a
variable. A full AD-tree stores counts of data points that are
consistent with all partial instantiations of the variables.

For n variables with d states each, the number of ADtree
nodes in an AD-tree is (d+1)n. It grows even faster than the
size of an order or parent graph. It is impractical to compute
and store all the count statistics for a large dataset. There-
fore, we use a depth-first search to traverse the AD-tree and

use the counts to update the parent graphs. The counts can be
discarded once they are used. This not only saves space but
also improves efficiency. Furthermore, Theorem 3 requires
that we only compute scores for small parent sets. Therefore,
we only need to collect count statistics for small variable in-
stantiations as well.

The above pruning techniques make it only necessary for
the A* search algorithm to collect some of the count statistics
and compute parts of the parent and order graphs. They make
the search algorithm much more efficient in both computation
and space. These pruning techniques are not applicable to the
dynamic programming algorithm by Silander and Myllymaki
because they compute the counts and parent scores by starting
with complete variable instantiations.

4.3 Advantages of A* search

The major advantage of our A* search algorithm over dy-
namic programming is that A* only explores part of the order
graph and computes some of the parent scores; dynamic pro-
gramming has to fully evaluate these graphs. The sizes of the
order and parent graphs are all exponential in the number of
variables. The pruning by the A* search algorithm has the
potential to significantly improve the scalability of learning
optimal Bayesian networks.

However, each step of the A* search algorithm has some
overhead cost for computing the heuristic function, maintain-
ing a priority queue, etc. So an A* step is slightly more
expensive than a similar dynamic programming step. If the
pruning of A* does not outweigh its overhead, A* can be
slower than dynamic programming. Since the number of data
records is typically small relative to the number of variables
in large real datasets, the gain brought by the pruning is likely
to outweigh the overhead.

A major difference between A* and the exhaustive search
method [de Campos et al., 2009] is that our algorithm always
maintains an directed acyclic graph during the search. There
is no need to detect and break cycles. This difference turns
out to be a huge advantage of our algorithm.

5 Experiments

We evaluated our A* search algorithm on a set of benchmark
datasets from the UCI repository listed in Table 1 [Asuncion
and Newman, 2007]. The datasets have up to 24 variables
and 30, 162 data points. We discretized all continuous vari-
ables into two states using the mean values, and all discrete
variables with five states or more into two states as well (The
discrete variables with four states or fewer were left intact).
We deleted all the data points with missing values.

Our A* search algorithm is implemented in Java. We com-
pared our algorithm against the exhaustive search (ES) [de
Campos et al., 2009] and dynamic programming (DP) algo-
rithms [Silander and Myllymaki, 2006]. The binary code of
the ES algorithm was provided by de Campos et al. on their
website1. The C source code of the DP algorithm was pro-
vided by Silander and Myllymaki on their website as well2;

1http://www.ecse.rpi.edu/∼cvrl/structlear-

ning.html
2
http://b-course.hiit.fi/bene

2189



Dataset Timing results (s) Space results
dataset n N ES DP A* A-parent f-parent A-order f-order

wine 14 178 95 1 1 2,427 114,674 5,662 16,384
adult 14 30,162 - 4 11 24,515 114,674 15,103 16,384

zoo 17 101 4,584 4 1 3,831 1.11E+06 28,405 131,072

house 17 435 5,792 16 2 1,418 1.11E+06 30,741 131,072
letter 17 20,000 - 66 112 396,199 1.11E+06 121,673 131,072

statlog 19 752 - 73 12 19,997 4.98E+06 325,403 524,288

hepatitis 20 126 276 63 11 2,105 1.05E+07 321,369 1.05E+06
segment 20 2310 - 70 41 70,304 1.05E+07 866,938 1.05E+06

meta 22 528 - 227 65 182,184 4.61E+07 713,783 4.19E+06

imports 22 205 - 315 100 16,283 4.61E+07 2.76E+06 4.19E+06
hosre 23 300 - 1,043 228 9,736 9.65E+07 5.21E+06 8.39E+06

heart 23 267 - 1,024 262 19,614 9.65E+07 7.20E+06 8.39E+06

mushroom 23 8,124 - 846 503 85,597 9.65E+07 7.33E+06 8.39E+06
parkinsons 24 195 - 714 239 25,743 9.65E+07 5.75E+06 8.39E+06

Table 1: A comparison on the running time (in seconds) for the following algorithms: exhaustive search (ES), Dynamic
programming (DP), and the A* search algorithm, and the sizes of AD-tree, parent, and order graphs. The column headings
have the following meanings: ‘n’ is the total number of variables; ‘N’ is the number of data points; ‘A-parent’ and ‘A-order’
are the sizes of the parent and order graphs by A* respectively; ‘f-parent’ and ‘f-order’ are the same statistics when no pruning
is done. ‘-’ shows failure to find optimal solutions due to out of memory or out of time (time limit is 30 minutes).

their DP algorithm was shown to be much more efficient than
the implementation in [Singh and Moore, 2005]. ES and DP
do not calculate MDL, but they use the BIC score, which uses
an equivalent calculation as MDL. Our results confirmed that
the algorithms found Bayesian networks that either are the
same or belong to the same equivalence class. The experi-
ments were performed on a 2.66 GHz Intel Xeon with 16GB
of RAM and running SUSE Linux Enterprise Server version
10.

Table 1 reports the running time of the three algorithms in
solving the benchmark datasets. We terminate an algorithm
early if it runs for more than 30 minutes on a dataset. We
also report the sizes of parent graphs and order graphs created
with or without the pruning by A* to compare the amount of
memory consumption by DP and A*. The memory needed
by DP is equivalent to the complete parent graphs and order
graphs. We did not track the size of the search space by ES
because only binary code is provided.

The timing results show that our A* algorithm is typically
several times faster than DP and orders of magnitude faster
than ES on most of the datasets we tested. A* is only slower
than DP on adult and letter. The reason is both these datasets
have a large number of data points, which makes the prun-
ing technique in Theorem 3 less effective. Although the DP
algorithm does not perform any pruning, due to its simplic-
ity, the algorithm can be highly streamlined and optimized in
performing all its calculations. That is why the DP algorithm
was faster than A* search on adult and letter. However, our
A* algorithm was much more efficient when the number of
data points is relatively small in comparison to the number
of variables, which is often the case for real-world machine
learning datasets.

The sizes of full and pruned parent and order graphs show
that the size of the parent graphs is always significantly re-
duced by the pruning of A* search. Many parent nodes are

pruned because they are not optimal parent sets of any can-
didate set, which also means many candidate sets share the
same optimal parent sets. The amount of pruning done in
the order graphs, however, varies a lot across the datasets.
For example on adult, the size reduction is about 80% for the
parent graphs, but only 10% for the order graph. On hep-
atitis, however, the size of the order graph is reduced 70%
after pruning. The total size of the parent graphs also reduced
from being in the order of 107 to merely 2, 105. A* kept all
its parent and order graphs in RAM. It would not have been
possible to store the full order and parent graphs of some of
the largest datasets in RAM though. The DP algorithm was
able to solve all these datasets because it stores intermediate
results as computer files on hard disks.

To gain more insight on the pruning of order graph, we
plot in Figure 3 the detailed number of nodes expanded by
A* versus the full size at each layer for adult and hepatitis.
In the beginning layers of the search, the heuristic function
used by A* provides lower bounds that are still loose for the
actual scores, so A* may have to expand most nodes in the
beginning layers. As the depth increases, the heuristic func-
tion becomes much tighter, which enables A* to prune many
more orders. For the adult dataset, A* expanded almost all
the order nodes in the beginning 7 layers of the order graph
before it started to prune order nodes in the final layers. In
contrast, only a small percentage of the nodes was expanded
in the order graph of hepatitis. The pruning became quite ef-
fective as early as at layer 4 and 5. Only a few nodes were
expanded in the last 10 layers.

Finally, the exhaustive search algorithm [de Campos et al.,
2009] is much slower than the A* search algorithm. The ma-
jor difference between these two search algorithms is the for-
mulation of the search space. The results indicate that it is
better to search in the space of directed acyclic graphs di-
rectly in finding an optimal Bayesian network.

2190



��

���

����

�����

�
��

��
��	


��
	�

��

	
��
�
���
��
�
���

�

��

���

����

�����

� � � � � � � � � �� �� �� �� �� ��

�
��

��
��	


��
	�

��


�����	
������������

	
��
�
���
��
�
���

��

���

����

�����

������

�������

�
��

��
��	


��
	�

��

	
��
�
���
��
�
���

�

��

���

����

�����

������

�������

� � � � � � � � � �� �� �� �� �� �� �� �� �� �� �� ��

�
��

��
��	


��
	�

��


�����	
������������

	
��
�
���
��
�
���

(a) Adult (b) Hepatitis

Figure 3: The number of nodes expanded by A* at each layer of the order graph versus that in the full order graph.

6 Concluding Remarks

We have presented an A* search algorithm for learning opti-
mal Bayesian networks. It uses a consistent heuristic to guide
the search so that only the most promising parts of the solu-
tion space are explored. The pruning by A* allows an optimal
solution to be found not only much more efficiently, but also
in less space. The A* search algorithm is especially effective
in domains where there is a large number of variables rela-
tive to the number of data instances. Such datasets are rather
common in real-world machine learning problems.

We currently use MDL in the A* search algorithm. How-
ever, any decomposable scoring function can be used in the
A* search algorithm, as the same heuristic function defined in
Equation 3 can be used. However, the amount of pruning may
potentially be affected. For example, Theorem 3 is a property
of the MDL score. Theorem 4 requires a lower/upper bound
for the scoring function. We may only be able to use some of
these pruning techniques depending on the scoring function
being used.

Finally, exact algorithms for learning optimal Bayesian
networks are still limited to relatively small problems. This
makes approximation methods still useful in domains with a
large number of variables. Our algorithm, however, can serve
as the basis to evaluate different approximation methods on
larger datasets than existing exact methods.

Acknowledgement: This research was supported by the
NSF grants IIS-0953723 and EPS-0903787.

References

[Asuncion and Newman, 2007] A. Asuncion and D.J. New-
man. UCI machine learning repository. 2007.

[Chickering, 2002] David Maxwell Chickering. Learning
equivalence classes of Bayesian-network structures. Jour-
nal of Machine Learning Research, 2:445–498, February
2002.

[Cooper and Herskovits, 1992] G. F. Cooper and E. Her-
skovits. A Bayesian method for the induction of proba-
bilistic networks from data. Machine Learning, 9:309–
347, 1992.

[de Campos et al., 2009] Cassio de Campos, Zhi Zeng, and
Qiang Ji. Structure learning of Bayesian networks using
constraints. In Proceedings of the International Confer-
ence on Machine Learning, Montreal, Canada, 2009.

[Friedman et al., 1999] N. Friedman, I. Nachman, and
D. Peer. Learning Bayesian network structure from mas-
sive datasets: The sparse candidate algorithm. In Proceed-
ings of UAI-13, pages 206–215, 1999.

[Heckerman, 1998] David Heckerman. A tutorial on learn-
ing with Bayesian networks. In Dawn Holmes and Lakhmi
Jain, editors, Innovations in Bayesian Networks, volume
156 of Studies in Computational Intelligence, pages 33–
82. Springer Berlin / Heidelberg, 1998.

[Koivisto and Sood, 2004] M. Koivisto and K. Sood. Ex-
act Bayesian structure discovery in Bayesian networks. J.
Mach. Learn. Res., 5:549–573, 2004.

[Moore and Lee, 1998] Andrew Moore and Mary Soon Lee.
Cached sufficient statistics for efficient machine learning
with large datasets. Journal of Artificial Intelligence Re-
search, 8:67–91, March 1998.

[Rissanen, 1978] J. Rissanen. Modeling by shortest data de-
scription. Automatica, 14:465–471, 1978.

[Silander and Myllymaki, 2006] T. Silander and P. Mylly-
maki. A simple approach for finding the globally optimal
Bayesian network structure. In Proceedings of UAI-06,
2006.

[Singh and Moore, 2005] Ajit Singh and Andrew W. Moore.
Finding optimal Bayesian networks by dynamic program-
ming. Technical Report CMU-CALD-05-106, Carnegie
Mellon University, 2005.

[Suzuki, 1996] Joe Suzuki. Learning bayesian belief net-
works based on the minimum description length principle:
An efficient algorithm using the B&B technique. In In-
ternational Conference on Machine Learning, pages 462–
470, 1996.

[Tian, 2000] Jin Tian. A branch-and-bound algorithm for
MDL learning Bayesian networks. In UAI ’00: Proceed-
ings of the 16th Conference on Uncertainty in Artificial
Intelligence, pages 580–588, San Francisco, CA, USA,
2000. Morgan Kaufmann Publishers Inc.

2191




