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Abstract
Extracting the relations that exist between two en-
tities is an important step in numerous Web-related
tasks such as information extraction. A supervised
relation extraction system that is trained to extract
a particular relation type might not accurately ex-
tract a new type of a relation for which it has not
been trained. However, it is costly to create train-
ing data manually for every new relation type that
one might want to extract. We propose a method
to adapt an existing relation extraction system to
extract new relation types with minimum supervi-
sion. Our proposed method comprises two stages:
learning a lower-dimensional projection between
different relations, and learning a relational clas-
sifier for the target relation type with instance sam-
pling. We evaluate the proposed method using a
dataset that contains 2000 instances for 20 different
relation types. Our experimental results show that
the proposed method achieves a statistically signif-
icant macro-average F -score of 62.77. Moreover,
the proposed method outperforms numerous base-
lines and a previously proposed weakly-supervised
relation extraction method.

1 Introduction
The World Wide Web contains information related to numer-
ous real-world entities (e.g. persons, locations, organizations,
etc.) interconnected by various semantic relations. Accu-
rately detecting the semantic relations that exist between two
entities is of paramount importance for numerous tasks on
the Web such as information extraction (IE) [Banko et al.,
2007]. Recent work on relation extraction has demonstrated
that supervised machine learning algorithms coupled with in-
telligent feature engineering provide state-of-the-art solutions
to this problem [GuoDong et al., 2005]. However, supervised
learning algorithms depend heavily on the availability of ad-
equate labeled data for the target relation types that must be
extracted. Considering the potentially numerous semantic re-
lations that exist among entities on the Web, it is costly to
create labeled data manually for each new relation type that
we want to extract. Instead of annotating a large set of train-
ing data manually for each new relation type, it would be cost

effective if we could somehow adapt an existing relation ex-
traction system to those new relation types using a small set
of training instances. As described in this paper, we examine
relation adaptation – how to adapt an existing relation extrac-
tion system that is trained to extract some specific relation
types, to extract new relation types in a weakly-supervised
setting. We designate the existing relation types on which
a relation extraction system has been trained as source rela-
tions, whereas the novel relation type to which we must adapt
is called the target relation.

We must overcome three fundamental challenges when
adapting a relation extraction system to new relation types.
First, a semantic relation that exists between two entities can
be expressed using more than one lexical or syntactic pattern.
For example, the acquiredBy relation that exist between two
companies X and Y can be expressed using lexical patterns
such as X acquires Y, X buys Y, and X purchases Y. To
classify a relation accurately, we must recognize the differ-
ent ways in which it can be expressed on the Web. Second,
the types of relations are strongly dependent on the applica-
tion domain. For example, in the financial domain, we might
be interested in extracting relations such as acquiredBy (be-
tween two companies) and ceoOf (between a company and
a person), whereas, in the movie domain we might be in-
terested in extracting relations such as actedIn (between an
actor and a movie) and directed (between a director and a
movie). Therefore, a classifier trained on the financial do-
main might not be applied directly to classify relations in the
movie domain because the two domains have different sets
of relations. Third, the labeled instances for the target rela-
tion are markedly fewer than those for the source relations. It
is challenging to learn a classifier for the target relation type
using such an unbalanced dataset.

We propose a two-stage approach to adapt an existing re-
lation extraction system to new relation types. First, to rep-
resent a semantic relation R that exists between two entities
A and B, we extract lexical and syntactic patterns from con-
texts in which those two entities co-occur. Our method is
inspired by the observation that different semantic relations
share some lexical and syntactic patterns. For example, the
lexical pattern X directs Y holds between a company Y and
its CEO X, as well as a movie Y and its director X. We desig-
nate patterns that appear in different relation types as relation-
independent patterns, whereas patterns that appear only in a
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particular relation type are called relation-specific patterns.
If we can find the correspondence between relation-specific
and relation independent patterns, then we can use that to
transfer the knowledge learnt for a particular relation to rec-
ognize a different relation. To identify relation-specific and
relation-independent patterns, we propose the use of the en-
tropy of a pattern over the distribution of entity pairs. We
then create a bipartite graph between relation-specific and
relation-independent patterns and perform spectral cluster-
ing on this graph to compute a lower-dimensional mapping
between relation-specific and relation-independent patterns.
This mapping is used to project feature vectors to train a re-
lational classifier.

In the second stage, we train a classifier for the target re-
lation type using training instances for both source and tar-
get relation types. A fundamental problem in training a re-
lational classifier for a target relation type for which only a
few labeled instances are available is that, because of the nu-
merous source relation instances, the finally trained classifier
becomes biased towards the source relation types. To solve
this problem, we propose a method that first samples a subset
of source relation instances. Then we use that subset to train
a classifier for the target relation type. This method reduces
the imbalance between source and target relation datasets,
thereby improving the classification accuracy for the target
relation type.

2 Relation Adaptation
2.1 Problem Definition
Given two entities A and B, we define relation extraction as
the task of selecting the relation R, that exists between A and
B, from a given set of relation types. Moreover, entity pair
(A,B) is regarded as an instance of the relation R. Accord-
ing to our definition, relation extraction can be modeled as a
multi-class classification problem.

Definition: We define Relation Adaptation as the prob-
lem of learning a classifier for a target relation type T , for
which we have a few entity pairs as training instances, given
numerous entity pairs for some N source relation types,
S1, . . . ,SN . We use the notation Ω = {S1, . . . ,SN , T } to
denote the set of all relations. A particular relation type from
this set is denoted by R (i.e R ∈ Ω). An entity pair that con-
sists of two entities A and B is denoted as (A,B). Moreover,
we use the notation (A,B) ∈ R to indicate that the relation
R exists between two entities A and B.

2.2 A Motivating Example
To illustrate our method consider the example shown in Ta-
ble 1. The leaderOf relation exists between a country and
its current leader, whereas the ceoOf relation exist between
a company and the chief executive officer of that company.
Assuming that we are given contexts in which instances of
the relation leaderOf occurs, we intend to train a relational
classifier for the ceoOf relation. The two relations under con-
sideration have very different distributions. Consequently, a
relational classifier trained on one relation is not guaranteed
to work well for the other relation. In Table 1, two con-
texts are provided for the leaderOf relation instance entity

Relation Specific 
Patterns

Relation Independent 
Patterns

Y president X

X ceo Y

X direct Y

1

1

Figure 1: A bipartite graph between relation-specific patterns
and relation-independent patterns shown in Table 1

pair (George Bush, U.S.) and for the ceoOf relation instance
entity pair (Steve Jobs, Apple).

To represent a semantic relation, we extract lexical and
syntactic patterns as described later in Section 2.3. To illus-
trate our example, we assume that we extract the lexical pat-
terns shown within brackets alongside with contexts in Table
1. The pattern, X direct Y appears in both relation types. We
designate such patterns as relation-independent (RI) patterns.
However, patterns such as Y president X and X ceo Y ap-
pear in only one of the two relation types. We designate such
patterns as relation-specific (RS) patterns. For relation adap-
tation, we assume that we have sufficiently numerous source
relation entity pairs, but only a few entity pairs for the tar-
get relation. Therefore, it is particularly challenging to learn
proper weights for the target relation-specific patterns such as
X ceo Y. However, relation-specific patterns in the target re-
lation are extremely useful when determining whether a par-
ticular entity pair belongs to the target relation.

As a solution to this mismatch between source and tar-
get relation-specific patterns, we propose a method to find
a mapping between source and target relations using relation-
independent patterns as pivots. First, Figure 1 shows that we
create a bipartite graph between relation-specific patterns and
relation-independent patterns. Each pattern is represented as
a vertex in the bipartite graph. Two vertices are connected by
a weighted undirected edge if the corresponding patterns are
extracted from the same entity pair. For instance, in Table 1,
the two patterns X direct Y and Y president X are extracted
from contexts for the entity pair (George Bush, U.S.). There-
fore, those patterns are connected by an edge in the bipartite
graph portrayed in Figure 1. Similarly, the relation specific
pattern X ceo Y and the relation independent pattern X direct
Y are connected by an edge because those two patterns are ex-
tracted from the contexts for the same entity pair (Steve Jobs,
Apple). Next, we perform spectral clustering on this bipartite
graph to compute a latent mapping between relation-specific
and relation-independent patterns. This mapping is then used
to project feature vectors to train a relation classifier.

2.3 Relation Representation
The contexts in which two entities A and B co-occur on the
Web provide useful clues to the relations existing between
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Table 1: Example contexts for two relation types: leaderOf and ceoOf. Entities between which the specified relation exist are
marked in boldface. Words that contribute to important lexical patterns are shown in italic. Some lexical patterns extracted by
the proposed method are shown within squared brackets.

leaderOf (source relation) ceoOf (target relation)
President George Bush directed U.S. to an unnecessary war
against Iraq. [X direct Y]

Steve Jobs personally directs Apple and makes final decisions
on various UI designs. [X direct Y]

U.S. president George Bush attended the G8 summit last month.
[Y president X]

Steve Jobs is the CEO of Apple, which he co-founded in 1976.
[X ceo Y]

those entities. We use the term context to refer a window
of text in which two entities co-occur. A context might not
necessarily be a complete sentence. Retrieving contexts in
which two entities co-occur has been studied in previous work
on relation extraction [Banko and Etzioni, 2008; Bollegala
et al., 2009]. In our work, we assume that we are provided
with contexts in which entities co-occur and only specifically
examine the relation adaptation problem.

Given a pair of entities (A, B), the first step is to express
the relation between A and B using some feature represen-
tation. Lexical or syntactic patterns have been successfully
used in numerous natural language processing tasks involv-
ing relation extraction such as extracting hypernyms [Hearst,
1992]. We use the subsequence pattern extraction algorithm
proposed by Bollegala et al. [2010] to extract lexical and syn-
tactic patterns from contexts. Because of the limited avail-
ability of space we omit the details of this algorithm. Subse-
quence patterns are particularly useful to represent semantic
relations between entities because they consider all the words
in a context, and is not limited to extracting patterns only
from the mid-fix (i.e., the portion of text in a context that
appears between a pair of entities). Moreover, the consider-
ation of gaps enables us to capture relations between entities
located at some distance in a context. All lexical and syntac-
tic patterns extracted from all contexts in which two entities
A and B co-occur are arranged in a pattern frequency vector
xAB to represent the entity pair (A, B). The elements of xAB

correspond to, f(ρ,A,B), the total number of times a pattern
ρ is extracted from contexts in which A and B co-occur. It
is analogous to the term frequency vector used in information
retrieval.

We propose a strategy for selecting relation independent
patterns using the entropy of a pattern over the distribution
of entity pairs. The proposed strategy is inspired by the fact
that if a pattern is relation-independent, then its distribution
over the entity pairs tends to become more uniform. How-
ever, if a pattern is relation-specific, then its distribution is
concentrated over a small set of entity pairs that belong to a
specific relation type. The entropy of a pattern increases as its
distribution becomes more uniform. The entropy, H(ρ), of a
pattern ρ is computed as

H(ρ) =
∑

R∈Ω

∑

(A,B)∈R
p(ρ,A,B) log2 p(ρ,A,B). (1)

Here, the joint probability between a pattern ρ and an entity
pair (A,B) is given as

p(ρ,A,B) =
f(ρ,A,B)∑

ρ∈Φ

∑
R∈Ω

∑
(A,B)∈R f(ρ,A,B)

. (2)
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Figure 2: Distributions of four patterns over entity pairs. En-
tropies are shown within brackets.

Figure 2 presents an example in which we plot the distri-
butions over entity pairs (numeric ids are assigned to en-
tity pairs and grouped by their relation types for illustrative
purposes) for four lexical patterns. From Figure 2, it is ap-
parent that relation-specific patterns such as Y directed by
X (directed relation), and Y wife X (isMarriedTo relation)
are concentrated over a small set of entity pairs, whereas
relation-independent patterns such as Y from X, and Y for X
are distributed over a large set of entity pairs. Consequently,
relation-independent patterns have higher entropy values than
relation-specific patterns do. Note that the number of entity
pairs must be balanced across different relation types prior to
computing pattern entropy using Equation 1.

For the set of all patterns Φ (total no. of patterns, |Φ| =
n) extracted for all entity pairs in source and target rela-
tions (i.e. Ω), we use pattern entropy to identify a set
ΦRS ⊆ Φ of relation-specific patterns, and a set ΦRI ⊆ Φ
of relation-independent patterns. Here, ΦRS ∪ ΦRI = Φ
and ΦRS ∩ ΦRI = φ. We construct a bipartite graph,
G = (VRS ∪ VRI , E) between relation-specific and relation-
independent patterns to represent the intrinsic relationship
between those patterns. Each vertex in VRS corresponds
to a relation-specific pattern, and each vertex in VRI corre-
sponds to a relation-independent pattern. A vertex in VRS

(corresponding to a relation-specific pattern ρi ∈ ΦRS) is
connected to a vertex in VRI (corresponding to a relation-
independent pattern ρj ∈ ΦRI ) by an undirected edge eij ∈
E. Note that there are no intra-set edges connecting vertices
in VRS and VRI . Moreover, each edge eij ∈ E is associated
with a non-negative weight mij , that measures the strength
of association between the corresponding patterns ρi and ρj .
We set mij to the number of different entity pairs from which
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Algorithm 1 Mapping patterns extracted from source and tar-
get relations to a lower-dimensional space.
Input: An edge-weight matrix, M ∈ R

(n−l)×l of a bipartite graph
G(VRS ∪ VRI , E), and the number of clusters (latent dimen-
sions) k.

Output: A projection matrix, U ∈ R
n×k.

1: Compute the affinity matrix, A ∈ R
n×n, of the bipartite graph

G as A =

[
0 M

M� 0

]
.

2: Compute the Laplacian, L, of the bipartite graph G as L =
I − D−1A, where the diagonal matrix D has elements Dii =∑

j Aij , and I ∈ R
n×n is the unit matrix.

3: Find the eigenvectors corresponding to the k smallest eigenval-
ues of L, u1, . . . ,uk, and arrange them in columns to form the
projection matrix U = [u1, . . . ,uk] ∈ R

n×k.
4: return U

both ρi and ρj are extracted. Edge weights mij are repre-
sented collectively by an edge-weight matrix M of the bipar-
tite graph G. Figure 1 portrays a bipartite graph constructed
from the example shown in Table 1.

2.4 Relational Mapping
In relation adaptation, we assume that: (1) if two relation-
specific patterns are connected to many common relation-
independent patterns, then those relation-specific patterns
must be mutually similar, (2) if two relation-independent pat-
terns are connected to many common relation-specific pat-
terns, then those relation-independent patterns must be mu-
tually similar, and (3) there exist a lower-dimensional latent
space in which similar patterns in the original space are lo-
cated close together in this lower-dimensional space. Under
those assumptions, we can use spectral graph theory to find
a latent mapping between patterns extracted for source and
target relation types, as shown in Algorithm 1.

In previous work on spectral clustering [Ding and He,
2004], it has been shown that the k smallest eigenvectors
of the Laplacian matrix can be used to cluster a set of data
points by mapping them into a k dimensional space spanned
by those eigenvectors. Moreover, the k smallest eigenvec-
tors act as the continuous solution of the cluster member-
ship indicators. Consequently, we arrange the k smallest
eigenvectors, u1, . . . ,uk in columns to construct a projec-
tion matrix U. Once the projection matrix U is computed
as described in Algorithm 1, we use it to project entity pairs
that belong to different relation types into a common latent
subspace. Specifically, for an entity pair (A,B) represented
by a pattern-frequency vector xAB , its projection into the k-
dimensional latent space is given as UxAB .

In relation adaptation, the number of target relation train-
ing instances (entity pairs) is significantly smaller than that
of the source relations. Given such an unbalanced training
dataset, most supervised classification algorithms treat the
minority class (target relation) instances as noise or outliers.
Therefore, learning a classifier for a target relation type which
has only a few instances is difficult in practice. To over-
come this problem, we present a one-sided under-sampling
algorithm (Algorithm 2), which first selects a subset of the

Algorithm 2 One-sided under-sampling algorithm to select a
subset of source relation instances.
Input: Set Λ that contains entity pairs for all source relations

S1, . . . ,SN and the target relation T .
Output: A set Γ ⊆ Λ.

1: Initialize Γ to the set containing all entity pairs of T .
2: Randomly select an entity pair from each source relation Si and

add to Γ.
3: Classify Λ with the 1-NN rule using the instances in Γ, and

compare the assigned relation labels with the original ones.
4: Move all misclassified instances from Λ into Γ.
5: return Γ

source relation training data and then uses that subset to train
a multi-class classifier. One-sided under-sampling methods
have been used to select a subset of the majority class in previ-
ous work investigating the problem of machine learning with
unbalanced datasets [Provost, 2000].

Algorithm 2 takes a set, Λ = {(A,B)|(A,B) ∈ R, ∀R ∈
Ω}, of all the entity pairs for source and target relations and
creates a set Γ ⊆ Λ that contains all target relation entity pairs
and a subset of the source relation entity pairs. In Algorithm
2, we first select all target relation entity pairs as the set Γ
(Line 1). In relation adaptation problem setting, the number
of target relation entity pairs is small and we do not sample
from the target relation (hence the name one-sided sampling).
Next, we randomly select an entity pair from each source re-
lation type and include those entity pairs in Γ (Line 2). We
then use the single nearest neighbor (1-NN) rule to classify
the entity pairs in Λ using the entity pairs in Γ as the labeled
instances (Line 3). We use the Euclidean distance between
the projected feature vectors to identify the nearest neighbors.
All misclassified entity pairs in Λ are then moved to Γ (Line
4). After this operation, we obtain a set Γ that is consistent
with the set Λ, although it contains fewer source domain en-
tity pairs, thereby decreasing the imbalance between source
and target relation entity pairs. In general, any classification
algorithm is useful to train from the feature vectors. For sim-
plicity, we use multi-class logistic regression as our classi-
fier1.

3 Experiments
To evaluate the proposed method, we select 20 relation types
from the YAGO ontology2. For each selected relation, we
randomly selected 100 entity pairs listed for that relation in
the YAGO ontology. Overall, the dataset contains 2000 (20
relations × 100 instances) entity pairs. We use the Yahoo
BOSS search API3 to download contexts for the entity pairs
in the dataset. Specifically, we construct numerous contex-
tual queries that include the two entities in an entity pair
and download snippets that contain those entities using the
method proposed in [Bollegala et al., 2009]. On average, we
have ca. 7000 snippets for a pair of entities in the dataset.
The dataset and the source code for the proposed method is

1http://www.chokkan.org/software/classias/
2http://www.mpi-inf.mpg.de/yago-naga/yago/
3http://developer.yahoo.com/search/boss/
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Table 2: Macro-average results for various methods.

Method Precision Recall F
Random 7.25 7.33 7.24
RS patterns 77.08 29.99 41.41
RI patterns 81.38 40.22 51.40
All patterns 79.34 37.11 47.94
Projected 78.48 33.56 44.86
Comb. (all patterns + projected) 84.21 45.11 56.99
RS patterns + Samp. 83.58 38.44 49.78
RI patterns + Samp. 75.60 45.11 54.83
All patterns + Samp. 80.94 47.11 57.62
Projected + Samp. 72.07 37.33 47.61
Jiang [Jiang, 2009] 81.06 44.89 55.62
Comb. + Samp. (PROPOSED) 86.47 51.78 62.77

publicly available4.
We extract 68, 822 patterns for the entity pairs in the

dataset and use those for the remainder of the experiments
described in the paper (i.e. n = 68822). We then use
the entropy-based relation-independent pattern selection cri-
terion and select the top 1000 ranked patterns as relation-
independent patterns (i.e. l = 1000). The remaining 67, 822
patterns are selected as relation-specific patterns. Next, we
apply Algorithm 1 on the created bipartite graph to compute
feature vector projections. We set the number of clusters to
k = 1000 in our experiments 5.

For each relation type R, we randomly allocated its 100
instances (entity pairs) into three groups: 60 instances as
training instances when R is a source relation, 10 instances
as training instances when R is a target relation, and 30 in-
stances as test instances for R. For each target relation type,
therefore we have 1140 (19× 60) source relation training in-
stances and 10 target relation training instances, which well
simulates the problem setting in relation adaptation. We re-
peat the above-described data splitting and report the average
results of 5 random times. To evaluate the performance of a
relation adaptation method, we select one relation type in the
dataset as a target relation and train a multi-class classifier
as described in Section 2. We use macro-averaged precision,
recall, and F -measure over the 20 relation types as the evalu-
ation metrics.

For comparison, Table 2 presents results obtained using the
proposed method with 10 baselines and a previously proposed
weakly-supervised relation extraction system on our dataset.
The Random baseline randomly infers a relation for an en-
tity pair out of the 20 relation types in the dataset. The RS
patterns, RI patterns, and All patterns baselines respec-
tively simulates the cases where we only use relation-specific,
relation-independent, and all patterns as features to represent
an entity pair to train a multi-class classifier. The Projected
baseline use Algorithm 1 to compute a projection matrix U
and project a feature vector xAB for an entity pair (A,B) to
a lower-dimensional vector UxAB . This baseline is expected
to show the level of performance we would have obtained if

4www.iba.t.u-tokyo.ac.jp/˜danushka/RA/
5The performance of the proposed method is insensitive across a

wide range of parameter values

we had used only the lower-dimensional representation. The
Comb (combined) baseline uses both the original feature vec-
tors as well as their projection into the k-dimensional latent
space and train a multi-class classifier using those augmented
feature vectors. All of the above-mentioned baselines are im-
plemented with and without one-sided under-sampling (indi-
cated by +Samp).

Jiang is the current state-of-the-art cross-domain relation
classification method [Jiang, 2009]. In this method, first,
an entity-pair is represented as a set of lexical and syntactic
features. Second, a multi-class logistic regression model is
trained using those feature vectors. Some features are shared
across different relations and the weight parameters for those
features are learned in a joint fashion. We ran the original
implementation that is publicly available6 on our dataset.

From Table 2, we see that the proposed method
(PROPOSED) has the best macro-average precision, recall,
and F -measure among all the different methods. In partic-
ular, improvement against the previously proposed state-of-
the-art weakly-supervised relation extraction method [Jiang,
2009] is statistically significant (paired t-test with p < 0.05
inferred as significant). The Random baseline on this bal-
anced dataset only yields a very low F -score of 7.25. The
RI patterns baseline that uses only relation-independent pat-
terns outperforms the RS patterns baseline that uses only
relation-specific patterns. This result is particularly interest-
ing considering that only 1000 relation-independent patterns
exist, whereas 67, 822 relation-specific patterns exist. Even
with a few relation-independent patterns, we can learn a better
relational adaptation model than using many relation-specific
patterns. Relation-specific patterns occur in only few rela-
tion types. Therefore, a model trained using those patterns do
not generalize well to a novel target relation type. Moreover,
among the 1000 relation-independent patterns, we have 454
lexical patterns and 546 syntactic patterns, whereas among
the 67, 822 relation-specific patterns we have 65, 771 lexical
patterns and 2051 syntactic patterns. Considering the fact
that part-of-speech tags abstract individual words, it is not
surprising that a major proportion of the relation-independent
patterns are indeed syntactic patterns.

Using all the patterns (All patterns) performs slightly
worse than when using only relation-independent patterns.
One reason for this is that the overall performance of the
All patterns baseline is dominated by the numerous relation-
specific patterns, which adapt poorly to target relations.
Pattern entropy-based relation-independent pattern selection
method might not detect all relation-independent patterns
thereby introducing some noise in the created bipartite graph.
This might in turn lead to incorrect projections. Conse-
quently, using only the Projected features is not satisfactory.
However, by augmenting the original features to the projected
features (Comb), this problem can be overcome. Moreover,
by sampling, we consistently improve all the baselines. In
fact, the proposed method, which uses augmented feature
vectors with sampling, shows a 6 percent improvement over
not using sampling (Comb). This underscores the importance

6www.mysmu.edu/faculty/jingjiang/software/
DALR.html
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Figure 3: Effect of varying the number of target relation train-
ing instances.

of selecting a subset of source relation instances when train-
ing a classifier for a target relation. In relation adaptation, the
number of source relation labeled instances significantly out-
performs that for a target relation. Without proper sampling,
any information related to the target relation, encoded in the
small number of target relation instances, gets “washed-out”
during training.

Figure 3 depicts the performance of the proposed method
as a function of the number of training instances for the tar-
get relation. The figure shows that the performance increases
steadily with the number of training instances we have for
the target relation. This result emphasizes the importance of
target relation instances for relation adaptation. It also justi-
fies our decision to retain all target relation instances during
sampling.

4 Related Work
Bootstrapping methods [Pasca et al., 2006] to relation extrac-
tion are attractive because they require markedly fewer train-
ing instances than supervised approaches do. Bootstrapping
methods are initialized with a few instances of the target rela-
tion. During subsequent iterations of the bootstrapping pro-
cess, new extraction patterns are discovered and are used to
extract new instances. However, the quality of the extracted
relations depends heavily upon the initial seeds provided to
the bootstrapping system [Kozareva and Hovy, 2010]. Dif-
ferent from bootstrapping, we not only use target relation
seeds, but also use the existing training instances for numer-
ous source relations to train a robust relation extractor for a
target relation.

Open Information Extraction (Open IE) [Banko et al.,
2007] is a domain-independent information extraction
paradigm. Open IE systems are initialized with a few man-
ually provided domain independent extraction patterns. In
contrast, we learn the domain-independent relation patterns
using source and target relation instances. Moreover, open IE
systems attempt to extract all relations that exist in a corpus;
users cannot specify in advance which relation types (targets)
they want to extract. Therefore, it is not guaranteed that we
will be able to extract instances for the target relation type in
which we are interested.

Jiang [2009] proposed a multi-task transfer learning

method to train a relation extraction system. She models com-
monality among different relation types by a shared weight
vector. Next, a multi-class logistic regression model is trained
using both source and target relations. To determine which
features to share between relation types, they propose an al-
ternating optimization procedure as well as several heuris-
tics. Unlike our proposed method, they do not compute a
projection of features among relation types. Consequently, as
shown in our experiments, our proposed method outperforms
their multi-task transfer learning algorithm.

5 Conclusion
We proposed and investigated a method to learn a relational
classifier for a target relation using multiple source relations.
Both feature projection and sampling positively contribute to
the proposed method. In future, we intend to apply the pro-
posed method to other classification tasks.

References
[Banko and Etzioni, 2008] M. Banko and O. Etzioni. The

tradeoffs between traditional and open relation extraction.
In ACL’08, pages 28–36, 2008.

[Banko et al., 2007] M. Banko, M. Cafarella, S. Soderland,
M. Broadhead, and O. Etzioni. Open information extrac-
tion from the web. In IJCAI’07, pages 2670–2676, 2007.

[Bollegala et al., 2009] Danushka Bollegala, Yutaka Mat-
suo, and Mitsuru Ishizuka. Measuring the similarity
between implicit semantic relations from the web. In
WWW’09, pages 651 – 660, 2009.

[Bollegala et al., 2010] Danushka Bollegala, Yutaka Mat-
suo, and Mitsuru Ishizuka. Relational duality: Unsuper-
vised extraction of semantic relations between entities on
the web. In WWW’10, pages 151 – 160, 2010.

[Ding and He, 2004] Chris Ding and Xiaofeng He. K-means
clustering via principal component analysis. In ICML’04,
pages 225 – 232, 2004.

[GuoDong et al., 2005] Zhou GuoDong, Su Jian, Zhang Jie,
and Zhang Min. Exploring various knowledge in relation
extraction. In ACL’05, pages 427 – 434, 2005.

[Hearst, 1992] M.A. Hearst. Automatic acquisition of hy-
ponyms from large text corpora. In COLING’92, pages
539–545, 1992.

[Jiang, 2009] Jing Jiang. Multi-task transfer learning for
weakly-supervised relation extraction. In ACL’09, pages
1012–1020, 2009.

[Kozareva and Hovy, 2010] Zornista Kozareva and Eduard
Hovy. Not all seeds are equal: Measuring the quality of
text mining seeds. In NAACL’10, 2010.

[Pasca et al., 2006] M. Pasca, D. Lin, J. Bigham, A. Lifchits,
and A. Jain. Organizing and searching the world wide web
of facts - step one: the one-million fact extraction chal-
lenge. In Proc. of AAAI’06, pages 1400–1405, 2006.

[Provost, 2000] Foster Provost. Machine learning from im-
balanced data sets. In AAAI’00 Workshop on Imbalanced
Data Sets, 2000.

2210




