Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence

Fast Algorithm for Affinity Propagation

Yasuhiro Fujiwara’, Go Irie*, Tomoe Kitahara*

TNTT Cyber Space Laboratories, {NTT Cyber Solutions Laboratories, *Nihon University
{fujiwara.yasuhiro, irie.go } @lab.ntt.co.jp, csto10004 @ g.nihon-u.ac.jp

Abstract

Affinity Propagation is a state-of-the-art cluster-
ing method recently proposed by Frey and Dueck.
It has been successfully applied to broad areas of
computer science research because it has much bet-
ter clustering performance than traditional cluster-
ing methods such as k-means. In order to obtain
high quality sets of clusters, the original Affinity
Propagation algorithm iteratively exchanges real-
valued messages between all pairs of data points
until convergence. However, this algorithm does
not scale for large datasets because it requires
quadratic CPU time in the number of data points to
compute the messages. This paper proposes an ef-
ficient Affinity Propagation algorithm that guaran-
tees the same clustering result as the original algo-
rithm after convergence. The heart of our approach
is (1) to prune unnecessary message exchanges in
the iterations and (2) to compute the convergence
values of pruned messages after the iterations to de-
termine clusters. Experimental evaluations on sev-
eral different datasets demonstrate the effectiveness
of our algorithm.

1 Introduction

Cluster analysis is an important component of scientific and
industrial data analysis, and many clustering methods have
been proposed [Jain et al., 1999]. When a set of data points
is given, clustering assigns each data point into a group (clus-
ter). By using clustering, we can extract representative exam-
ples from the dataset or discover the structures present in the
raw data.

Recently, Frey and Dueck proposed a novel clustering
method, named Affinity Propagation [Frey and Dueck, 2007].
Affinity Propagation recursively transmits real-valued mes-
sages between all pairs of data points until message values
converge. And it determines a set of clusters and their rep-
resentative data points called exemplars’, based on the con-
verged message values. Affinity Propagation has a number
of noteworthy advantages. For instance, (1) it achieves much
lower clustering error than existing clustering methods such
as k-means clustering [Jain ef al., 1999], (2) it can support

2238

similarities that are not symmetric or do not satisfy the tri-
angle inequality, and (3) it is deterministic, i.e., its clustering
results do not depend on initialization, unlike most clustering
methods such as k-means. Therefore, it has been successfully
used in many applications in various disciplines such as ini-
tial training set selection in active learning [Hu et al., 2010],
keyphrase extraction [Liu et al., 2009], image clustering [Jia
et al., 2008] [Dueck and Frey, 2007], representative image
extraction [Zha er al., 2009], and supervised dimensionality
reduction [Chang and Zheng, 2009].

Although Affinity Propagation has been receiving a lot of
attention for use in many applications, one of the most im-
portant research issues is its speed, especially for large scale
datasets [Jia ef al., 2008]. This is because the original Affin-
ity Propagation algorithm requires quadratic CPU time in the
number of data points to compute the messages. For resolv-
ing this issue, Jia et al. recently proposed FSAP, a fast al-
gorithm for Affinity Propagation [Jia et al., 2008]. However,
their algorithm achieves its efficiency at the expense of clus-
tering result accuracys; its clustering results are not the same
as those of the original Affinity Propagation algorithm. Sac-
rificing clustering accuracy makes it difficult to realize truly
effective applications.

In this paper, we propose an efficient clustering algorithm
for Affinity Propagation that gives the same clustering result
as the original algorithm after convergence. In order to re-
duce computation cost without loss of clustering accuracy,
the proposal (1) prunes unnecessary message exchanges be-
tween data pairs in the iterations to compute the convergence
values, and (2) computes the convergence values of pruned
messages from those of unpruned messages. Moreover, our
algorithm does not require users to set any inner-parameters,
unlike FSAP. FSAP has a specific inner-parameter that must
be carefully set if the clustering results are not to be nega-
tively impacted. We conduct evaluation experiments on sev-
eral different datasets to compare our algorithm against ex-
isting algorithms. The results demonstrate the superiority of
our algorithm. It is much faster than the existing algorithms
while it guarantees exactness of the clustering results. This
confirms the practicality of our algorithm for real world ap-
plications. With our method, many applications can be pro-
cessed more efficiently.

The remainder of this paper is organized as follows. Sec-
tion 2 gives a brief review of the original Affinity Propagation

Table 1: Definition of main symbols.

[Symbol | Definition

N Number of data points
T Number of iterations
sli, g Similarity between data point ¢ and j
rli, J Responsibility between data point ¢ and j
ali, j Availability between data point ¢ and j
pli, g Propagating responsibility between data point ¢ and j
ali, j Propagating availability between data point ¢ and j
A Damping factor, 0 < A < 1

algorithm and FSAP. Section 3 introduces the main ideas and
details of our algorithm. Section 4 reviews the results of our
experiments. Section 5 provides our conclusions.

2 Preliminary

In this section, we briefly review the original Affinity Prop-
agation algorithm proposed by Frey and Dueck [Frey and
Dueck, 20071, as well as FSAP [Jia et al., 2008], a state-of-
the-art fast algorithm for Affinity Propagation. Table 1 lists
the main symbols and their definitions.

2.1 Affinity Propagation

Affinity Propagation is a clustering algorithm that identi-
fies a set of ’exemplars’ that represents the dataset [Frey
and Dueck, 2007]. The input of Affinity Propagation is
the pair-wise similarities between each pair of data points,
sli,§](i,5 = 1,2,...,N) 1. Any type of similarities is ac-
ceptable, e.g. negative Euclidean distance for real valued
data and Jaccard coefficient for non-metric data, thus Affinity
Propagation is widely applicable.

Given similarity matrix s[i,j], Affinity Propagation at-
tempts to find the exemplars that maximize the net similar-
ity, i.e. the overall sum of similarities between all exemplars
and their member data points. The process of Affinity Propa-
gation can be viewed as a message passing process with two
kinds of messages exchanged among data points: responsi-
bility and availability. Responsibility, r[¢, j], is a message
from data point ¢ to j that reflects the accumulated evidence
for how well-suited data point j is to serve as the exemplar
for data point i. Availability, a[¢, j], is a message from data
point 7 to ¢ that reflects the accumulated evidence for how ap-
propriate it would be for data point 7 to choose data point j as
its exemplar. All responsibilities and availabilities are set to
0 initially, and their values are iteratively updated as follows
to compute convergence values:

T[ivj] = (1 -)‘)p[lvj] +)‘T[Zaj]

ali,] = (1 - Nali, 7] + Aafi, W

where A is a damping factor introduced to avoid numerical os-
cillations, and p[i, j] and /i, j] are, we call, propagating re-
sponsibility and propagating availability, respectively. pli, j]
and «/[i, j] are computed by the following equations:

! s[t, 1] for each data point is called preference and impacts the number of clusters.

. Js[i, §] — max j{a[z’,k] + s[i, K]} (i #J)
”“’J]—{sm ~maxie {sli. K]} i=j) @

 fming0,rfj 1+ Sy ma{0, ik, A1 HG £)
ol = {5 o 1 =)@

That is, messages between data points are computed from the
corresponding propagating messages. The exemplar of data
point ¢ is finally defined as:

argmax{r(i,j| +ali,j]:5=1,2,...,N} 4

As described above, the original algorithm requires
O(N?T) time to update massages, where N and T are the
number of data points and the number of iterations, respec-
tively. This incurs excessive CPU time, especially when the
number of data points is large. Therefore, a fast Affinity Prop-
agation algorithm is demanded as pointed out in [Jia et al.,
2008].

2.2 FSAP

For resolving the computation time issue of the original Affin-
ity Propagation algorithm, Jia et al. recently proposed FSAP
[Jia er al., 2008]. One promising idea for improving the
speed of Affinity Propagation is to reduce the number of mes-
sage values that need to be computed. FSAP aims to reflect
this idea as follows. The first stage of FSAP constructs a
K -nearest neighbor graph. If data point ¢ is among the K
data points that have the largest similarity with data point j,
then data point ¢ and j are connected by an edge, otherwise
not. Since FSAP performs message transmissions on the K-
nearest neighbor graph, too many exemplars (at least N/K)
might be generated. Therefore, in order to merge multiple ex-
emplars into one cluster, the second stage adds further edges
based on the following three criteria:

1. If data point 7 is the exemplar of data point j, then data
point ¢ and j are connected by an edge;

2. For two data points ¢ and j, if there exists two data points
m and n that take data point ¢ and j as their exemplar, re-
spectively, and data point m and n are K -nearest neigh-
bor to each other, and so data point ¢ and j are connected
by an edge; and

3. For two data points ¢ and j, if they are connected by
criterion 2, then all data points that choose data point ¢
as exemplar are connected to data point j, and vise versa.

After convergence, the exemplar of data point ¢ is finally de-
termined by Equation (4).

They showed that their approach is much faster than the
original algorithm described in Section 2.1. However, FSAP
is based on heuristic ideas, i.e., the linked edges are de-
termined based on K-nearest neighbor approximation and
heuristic criteria. Therefore, FSAP does not guarantee the
same result as the original Affinity Propagation algorithm.
As we will show in Section 4, this fact seriously degrades
the clustering accuracy. Our algorithm presented in this pa-
per is faster than FSAP while it still theoretically guarantees
the exactness of the clustering results after convergence.

2239

3 Proposed method

In this section, we present our fast Affinity Propagation algo-
rithm which gives the same clustering result as the original
algorithm after convergence. First, we give an overview of
the ideas underlying the proposed algorithm and then a full
description. We also give some theoretical analyses of its per-
formance.

3.1 Ideas

In order to improve running speed, we construct a sparse
graph structure G = [V, E] where node set V' and edge set
E correspond to data points and a part of the messages be-
tween any two of the data points, respectively. This allows us
to compute the message values efficiently. This is because the
propagating responsibility and propagating availability that
need to be computed are limited to those on existing edges.
However, one may easily raise the following questions: how
can we identify a set of necessary edges that yields the same
clustering result as the original algorithm?

We can identify the edges whose convergence values do
not need to be computed by estimating their upper and lower
bounds. Based on this idea, we can construct a sparse graph
that has no unnecessary edges. Moreover, as we describe
later, the convergence values of pruned (unnecessary) mes-
sages can be computed from that of unpruned (necessary)
messages. Therefore, after the iterations, we can compute
the convergence values of pruned messages. This is our an-
swer to the question. As a result, we can efficiently obtain the
same clustering result as the original algorithm.

These new ideas provide a further advantage. Our up-
per/lower bound estimation does not need any user-defined
inner-parameters, whereas FSAP has one parameter, K, for
determining the K -nearest neighbor graph. The value of K
impacts the clustering result. That is, our algorithm is user
friendly.

3.2 Approach

We first describe how to construct the sparse graph structure,
and give some theoretical highlights of the sparse graph struc-
ture. And then, we detail our clustering algorithm.

Sparse graph structure

We reduce the number of messages between data points in
the iterations in order to compute the convergence values at
low cost. To realize efficient computation, we construct graph
G = [V, E] where node set V consists of data points. We
prune unnecessary messages by estimating upper/lower val-
ues of convergence values. We show the following lemma of
convergence message values:

Lemma 1 (Convergence message) After convergence, mes-
sage values of responsibility and availability are r[i,j] =
pli, j] and ali, j] = ali, j], respectively.

Proof. Itis easily found from Equation 1. O
This lemma implies that if the Affinity Propagation algorithm
converges, its convergence values can be computed from the
definition of propagating messages (Equation (2) and (3)).

By utilizing the above lemma, upper/lower values of con-
vergence messages can be obtained from just pair-wise sim-
ilarities. Formally, the following equations give upper/lower
values of convergence message values:

Definition 1 (Upper/lower bound) The following defini-
tions give upper/lower bounding estimations alt, j|, T[i, j),
and ali, j| for convergence messages:

oo Jsli, j] — maxgz{ali, k] + s[i, K]} (@ # J)

ri.dl = 2] - meetel Gly) ©
o minf0,7, 44 Y, max{0, 7k, 51} #)
1= {5 e 7T =7

Note that a[i, j] can be computed just from pair-wise sim-
ilarities sz, j](i,5 = 1,2,...,N) since r[j,j] = s[4, 4] —
maxy;{s[j, k|} (Equation (2)). In addition, 7[¢, j] and @[¢, j]
can be computed from a7, j] and 7[i, 5], respectively. There-
fore, we do not need any iterations to compute these up-
per/lower bounding values.

We show the following lemmas to introduce the up-
per/lower properties of a[i, j], T[¢, j], and a[é, j].

Lemma 2 (Upper/lower bound) For any node pairs i and j
in graph G, ali, j] < ali,j], 7[i,j] = r[i,j], and ali,j] >
ali, j] hold after convergence.

Proof. We first prove that afi,j] < afi,j]. From
Lemma 1, afi,j] = «fi,j] holds after convergence. If
i # j, then afi, j] > min{0,r[j,j]} = ali, j] holds since
> oppij max{0,r[k, j]} > 0. If i = j, then afi, j] < ali, j]
holds since }; ,; max{0,r[k,i]} > 0. We next prove that
7[i, 4] > r[i, 7] This is obvious from Lemma 1, Equation (2),
and ali, j] < afi,j]. We finally prove that @[z, j| > al[i, j].
This is similarly obvious given Lemma 1, Equation (3), and
7[i, j] = r[i, j]. O

We construct the sparse graph structure by pruning un-
necessary messages by using upper/lower bound estimations.
Formally, we obtain the edge between node ¢ and j as follows:

Definition 2 (Sparse graph) The sparse graph G, where
node set V' consists of data points, has an edge between node
1 and j if and only if:

(Drli, i1 > 0, or
(2)ali.)+ olis) > mac{ali, K]+ sfi. K})

We introduce the following two lemmas to describe the
property of our graph structure:

Lemma 3 (Convergence availability values) For any node
pair i and j, convergence values of availabilities can be ex-
actly computed just from the convergence responsibilities that
satisfy 7i, j] > 0.

Proof. From Lemma 1, afi, j] = «f¢, j] holds after conver-
gence. If 7[i, j] < 0 holds for a pair, the responsibility of the
pair does not affect the values of >, ; ; max{0, r[k, j]} and

> i max{0, [k, j]} in Equation (3) after convergence. O

2240

Algorithm 1 Proposed algorithm

Input: pair-wise similarities

Output: exemplars of each data point
1: for each data point pair [z, j] do

2: compute afi, j], T[¢, j], and @[, j] by Equation (5-7);
3: end for

4: for each data point pair [z, j] do

5. ifT[i, j] > 0orals, jl+s[i, j] > maxg-;{ali, k]+s[i, k] jthen
6: link data point pair [, j];

7: endif

8: end for

9: fort =1toT do

10: for each linked data point pair [z, j] do

11: update 7z, j] and ali, j] by Equation (1);

12: end for

13: end for

14: for each unlinked data point pair [z, j] do

15: compute i, j] = p[¢, j] and a[i, j] = ¢, j];

16: end for

17: for each data point ¢ do
18: compute exemplar by Equation (4);
19: end for

Lemma 4 (Convergence responsibility values) For any
node pair t and j, convergence values of responsibilities can
be exactly computed just from the convergence availabilities
that satisfy ali, j| + s[i, j] > maxp.;{ali, k] + s[i, k]}.

Proof. From Lemma 1, r[i,j] = pli,j] holds after con-
vergence. If i # j, r[i,j] = s[i,j] — maxpx;{ali, k] +
s[i, k]} holds from Equation (2) after convergence. Since
maxyx;{ali, k] + s[i, k]} > maxgx;{ali, k] + s[i, k] } holds,
if maxy;{ali, k] + s[i, k]} > @i, 7] + s[i, 5] holds for node
pair ¢ and j, then maxy-;{ali, k] + s[t, k]} > ali, j] + si, j]
holds for the node pair. Therefore, the availability values of
the pair does not affect the values of responsibilities. If ¢ = j,
responsibilities can be computed just from pair-wise similar-
ities (see Equation (2)). O

From Lemma 3 and 4, we introduce the following lemma:

Lemma 5 (Convergence in the sparse graph structure)
For any node pair i and j, convergence values of messages
can be exactly obtained by computing convergence values of
edge messages in sparse graph G.

Proof. This is obvious given Lemma 1, 3, and 4. O

Lemma 5 provides our algorithm with the property of clus-
tering results which is the same as the original Affinity Prop-
agation algorithm.

Clustering algorithm

Algorithm 1 is the full description of our algorithm. We
first compute the upper/lower values of convergence mes-
sages by Definition 1 (lines 1-3), and then construct the graph
structure by Definition 2 (lines 4-8). Since we can compute
the convergence message values of all data point pairs from
those of graph edges (Lemma 5), we iteratively update the
message values of graph edges to compute convergence val-
ues (lines 9-13). Then we compute convergence message val-
ues of unlinked data point pairs after the iterations (lines 14-
16). These values can be computed by propagating messages

2241

after the iterations (Lemma 1). We finally compute exemplars
for all data points (lines 17-19).

Note that, our algorithm itself does not require any user-
defined inner-parameters. Thus it provides to the user with a
simple solution to Affinity Propagation with enhanced clus-
tering speed.

3.3 Theoretical analyses

We provide theoretical analyses with regard to the clustering
results and computation cost of our algorithm. Let M be the
number of edges in the graph. Thatis M = |E)|.

Theorem 1 (Clustering results) After convergence, the
clustering results of our algorithm are same as those of the
original Affinity Propagation.

Proof. It is obvious from Lemma 5. O

Theorem 2 (Computation cost) Our algorithm requires
O(N? + MT) time to obtain exemplars for all data points.

Proof. In the clustering process of our algorithm, we first
compute the upper/lower values of convergence messages of
all data point pairs, and construct the graph structure. These
procedures require O(NN?) time since the upper/lower values
can be computed just from pair-wise similarities. Then, we
iteratively compute the convergence message values for all
edges in the graph, which needs O(MT) time. We finally
compute convergence message values of unlinked edges and
exemplars for all data points which require O(N? — M) and
O(N?) time, respectively. Therefore, the computation cost of
our algorithm is O(N? + MT). O

4 Experimental evaluation

We conducted evaluation experiments to confirm the effec-
tiveness of our algorithm. In these evaluations, we compare
our algorithm to the original Affinity Propagation algorithm
[Frey and Dueck, 2007] and FSAP [Jia et al., 2008].

Our experiments will demonstrate that:

e Efficiency: Our algorithm outperforms the original al-
gorithm and FSAP in terms of computation time (Sec-
tion 4.1).

o Exactness: Unlike FSAP, our algorithm yields the same
clustering result as the original algorithm (Section 4.2).

e Applicability: Case-studies on real world datasets shows
that our algorithm and FSAP output different clustering
results, and that the results of our algorithm are reason-
able (Section 4.3). That is, our algorithm can be a better
alternative for the original algorithm.

In this section, Proposed and Original represent the re-
sults of our algorithm and the original algorithm, respec-
tively. FSAP is tested under several different values of K.
FSAP(5%), FSAP(10%), and FSAP(20%) refer to the results
of FSAP gained with K values of 0.05N, 0.1N, and 0.2N,
respectively. We iteratively computed responsibilities and
availabilities a thousand times to obtain convergence values.
We set the damping parameter, A, to 0.5.

In the experiments, we used the following three datasets of
different application domains that have different characteris-
tics each other:

T

Proposed C——1
FSAP(5%) =—=
FSAP(10%) ==
FSAP(20%) ==
Original - m—

=

Wall clock time [s]

10°

Wall clock time [s]

FSAP(20%)

1 L L

Proposed —+— E
FSAP(5%) ——x—
FSAP(10%) -~
o
Original ——=—

4000 6000
Number of data points

8000

Traffic

Geo Dictionary

Figure 1: Clustering time. Figure 2: Scalability.

e Geo: This dataset was collected by downloading geo-
tagged photographs from Flickr 2 using the site’s public
API 3. The crawled data consists of 10, 000 photographs
and their associated geotag data. All photos were taken
in the central area of New York City, the United States
between January 1st, 2006 and June 31st, 2009. Geo
location of each photo is represented as its longitude and
latitude (z, y). Similarity between photo ¢ and j is the
negative Euclidean distance.

Dictionary *: This dataset was taken from word net-
work in FOLDOC °. FOLDOC is a famous on-line,
searchable, encyclopedic dictionary of computing sub-
jects. Similarity between term ¢ and j is computed by
random walk with restart [Tong et al., 2008] where rele-
vance from term ¢ to j is the frequency with which term
7 is used to describe the meaning of term ¢. The number
of terms is 13, 356.

Traffic %: This dataset contains loop sensor measure-
ments of the Freeway Performance Measurement Sys-
tem. This loop sensor dataset was collected in Los Ange-
les from April 10th, 2005 to October 1st, 2005 (5 minute
count aggregates). We extracted 10, 000 sequences from
the sensor measurements. Similarity between sequence
1 and j is taken as the negative Euclidean distance.

All experiments were conducted on a Linux quad 3.33 GHz
Intel Xeon server with 32GB of main memory. We imple-
mented all algorithms using GCC.

4.1 Efficiency

We evaluated the clustering performance of each algorithm
through wall clock time. Figure 1 shows the results. We also
show the scalability of each algorithm in Figure 2; this figure
shows the wall clock time as a function of the number of data
points. We show only the result of Geo in Figure 2 due to
space limitations.

These figures show that our algorithm is significantly faster
than the original algorithm under all conditions examined.
Specifically, our algorithm is more than 30 times faster than
the original algorithm. As described in Section 2, the origi-
nal algorithm requires O(N2T') while our algorithm requires
O(MT) time (see Theorem 2) in the iterations. And, as

2http://www.flickr.com/

3 http://maps.google.com/
http://vlado.fmf.uni-lj.si/pub/networks/data/dic/foldoc/foldoc.zip

3 http://foldoc.org/

6http://archive.ics.uci.edu/ml/dalasets/Dodgers+Loop+Sensor

10000

2242

1

08 0.8

06 [0.6

Precision
Recall

04 0.4

Proposed
FSAP(5%) ---+--
FSAP(10%) -
) _ FSAP(20%)
4000 6000 8000
Number of data points

(2) Recall

Proposed
FSAP(5%) -+ 1
FSAP(10%) -~
FSAP(20%) %

02 0.2

1 1
4000 6000 8000
Number of data points

(1) Precision

0 0
2000 10000 2000

Figure 3: Accuracy of our algorithm and FSAP.

Table 2: Number of edges in each algorithm.

. Data set
Algorithm Geo | Dictionary | Traffic
Proposed 10,009,002 2,799,319 10,034,228
Original 100,000,000 | 178,382,736 | 100,000,000

shown in Table 2, there are very few edges in our sparse
graph (i.e., M < N?)7. This is because a significant num-
ber of messages are pruned by our upper and lower bounding
strategies. Therefore, our algorithm is an extremely efficient
variant of the original algorithm.

And our algorithm is much faster than FSAP whose effi-
ciency depends on the value of inner-parameter K as shown
in the results. FSAP is a two-stage approach and it needs
iterations in each stage (see Section 2.2). Therefore, our al-
gorithm is faster than FSAP.

4.2 Exactness

One major advantage of our algorithm is that it guarantees
the same clustering result as that of the original algorithm
after convergence. However, this raises the following sim-
ple question: how successful is FSAP in providing the same
clustering results?

To answer this question, we compared the exemplars ex-
tracted by our algorithm and FSAP to those extracted by the
original algorithm. As the measures of accuracy, we used pre-
cision and recall. Precision is the fraction of exemplars by our
algorithm that are match those of the original algorithm. And
recall is the fraction of exemplars extracted by the original
algorithm that were successfully extracted by our algorithm.
We used Geo as the dataset in these experiments.

Figure 3-(1) and 3-(2) show the precision and recall, re-
spectively. As we can see from Figure 3-(1) and 3-(2), the
precision and recall of our algorithm are always 1. Because
our algorithm is theoretically designed to compute conver-
gence message values exactly, our algorithm does not sacri-
fice clustering accuracy. FSAP, on the other hand, has lower
precision and recall. This is because FSAP determines edges
based on heuristic ideas (see Section 2.2). The results shown
in Figure 1, 2, and 3 confirm that our algorithm is superior to
the original algorithm in terms of speed, and to FSAP in both
of accuracy and speed.

7 Our additional experiments confirmed that a data pair which has higher similarity
value has a higher chance to have an edge.

2: Grand Central
rminal

7

(1) Proposed (2) FSAP(5%

)
Figure 4: Top five popular landmarks to take photos in New York City detected by each algorithm.

4.3 Application example

To demonstrate the impact of our algorithm on real world ap-
plications, we give some examples of its clustering perfor-
mance on Geo. The clustering of a geo-tagged photo dataset
is regarded as the detection of popular landmarks that are fre-
quently taken into photos, and this is recognized as a key
process in many geo-location oriented applications such as
geo-referenced image browsing [Crandall er al., 2009] and
landmark image search [Kennedy and Naaman, 2008].

Figure 4 shows exemplars of the top 5 (largest) clusters
extracted by our algorithm and FSAP. To find a place name
for a given exemplar (longitude/latitude), we used a public
reverse geocoding tool based on georeferenced Wikipedia ar-
ticles®. All algorithms detected famous landmarks such as
the Empire State Building, Times Square, and Grand Central
Terminal. However, FSAP detected the same landmark more
than once. For instance, FSAP(5%) redundantly detected the
Empire State Building (3rd and 5th) and Times Square (1st
and 4th). On the other hand, all popular landmarks extracted
by our algorithm were different from each other. The result
of our algorithm is reasonable, and is consistent with our in-
tuition. Note that the result of our algorithm equals that of the
original algorithm. These results imply that our algorithm can
be another option for the research community for clustering
large datasets.

5 Conclusions

This paper proposed an efficient clustering algorithm for
Affinity Propagation that gives the same clustering result as
the original algorithm after convergence. Our algorithm is
based on two ideas: (1) it prunes unnecessary message ex-
changes in the iterations, and (2) it computes the convergence
values of pruned messages from those of unpruned messages.
Experiments show that our algorithm can achieve efficient
clustering without sacrificing clustering accuracy. Affinity
Propagation is fundamental for many applications in various
disciplines. The proposed solution allows many applications
to be processed more efficiently, and helps to improve the ef-
fectiveness of future applications.

References

[Chang and Zheng, 2009] Xueping Chang and Zhonglong
Zheng. Laplacian discriminant projection based on affin-

8 http://www.geonames.org/export/wikipedia-webservice.html

2243

Empire State
Building rand Central
Terminal

M) S
(3) FSAP(10%) (4) FSAP(20%

)

ity propagation. In Int. Conf. Artificial Intelligence and
Computational Intelligence (AICI), pages 313-321, 2009.

[Crandall et al., 2009] David J. Crandall, Lars Backstrom,
Daniel Huttenlocher, and Jon Kleinberg. Mapping the
world’s photos. In Int. World Wide Web Conf. (WWW),
pages 761-770, 2009.

[Dueck and Frey, 2007] Delbert Dueck and Brendan J. Frey.
Non-metric affinity propagation for unsupervised image
categorization. In IEEE Int. Conf. Computer Vision
(ICCV), pages 1-8, 2007.

[Frey and Dueck, 2007] Brendan J. Frey and Delbert Dueck.
Clustering by passing messages between data points. Sci-
ence, 315:2007, 2007.

[Hu et al., 2010] Rong Hu, Brian Mac Namee, and
Sarah Jane Delany. Off to a good start: Using clus-
tering to select the initial training set in active learning.
In Florida Artificial Intelligence Research Society Conf.
(FLAIRS), 2010.

[Jain et al., 1999] Anil K. Jain, M. Narasimha Murty, and
Patrick J. Flynn. Data clustering: A review. ACM Comput.
Surv., 31(3):264-323, 1999.

[Jia er al., 2008] Yangging Jia, Jingdong Wang, Changshui
Zhang, and Xian-Sheng Hua. Finding image exemplars
using fast sparse affinity propagation. In ACM Int. Conf.
Multimedia (ACM MM), pages 639—642, 2008.

[Kennedy and Naaman, 2008] Lyndon S. Kennedy and Mor
Naaman. Generating diverse and representative image
search results for landmarks. In Int. World Wide Web Conf.
(WWW), pages 297-306, 2008.

[Liu ef al., 2009] Zhiyuan Liu, Peng Li, Yabin Zheng, and
Maosong Sun. Clustering to find exemplar terms for
keyphrase extraction. In Conf. Empirical Methods in Natu-
ral Language Processing (EMNLP), pages 257-266, 2009.

[Tong et al., 2008] Hanghang Tong, Christos Faloutsos, and
Jia-Yu Pan. Random walk with restart: fast solutions and
applications. Knowl. Inf. Syst., 14(3):327-346,2008.

[Zha et al., 2009] Zheng-Jun Zha, Linjun Yang, Tao Mei,
Meng Wang, and Zengfu Wang. Visual query suggestion.
In ACM Int. Conf. Multimedia (ACM MM), pages 15-24,
2009.

