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Abstract

We investigate the possibility of using structured
data to improve search over unstructured docu-
ments. In particular, we use relevance feedback to
create a ‘virtuous cycle’ between structured data
from the Semantic Web and web-pages from the
hypertext Web. Previous approaches have gener-
ally considered searching over the Semantic Web
and hypertext Web to be entirely disparate, index-
ing and searching over different domains. Our
novel approach is to use relevance feedback from
hypertext Web results to improve Semantic Web
search, and results from the Semantic Web to im-
prove the retrieval of hypertext Web data. In both
cases, our evaluation is based on certain kinds of
informational queries (abstract concepts, people,
and places) selected from a real-life query log and
checked by human judges. We show our relevance
model-based system is better than the performance
of real-world search engines for both hypertext and
Semantic Web search, and we also investigate Se-
mantic Web inference and pseudo-relevance feed-
back.

1 Introduction

There has recently been gathering interest in combining struc-
tured and unstructured search. This seems at least partially
inspired by the Semantic Web initiative, which in the form
of the graph-based RDF (Resource Description Framework)
format has standardized a language for structured data on
the Web from a diverse range of sources. Recently, a large
amount of RDF has been deployed on the Web as “Linked
Data,” and so now enough RDF data exists to be reason-
ably crawled and indexed, but the rankings of Semantic Web
search engines are much less well-studied than hypertext Web
rankings, and so are thought likely to be sub-optimal [Oren et
al., 2008]. The hypothesis put forward by Baeza-Yates is that
the search for structured data can be used to improve tradi-
tional ad-hoc information retrieval for hypertext Web search
engines [Baeza-Yates, 2008], and that techniques from infor-
mation retrieval can be used to improve the search for struc-
tured data.

We are the first to suggest that relevance feedback may be
the primary method for creating a ‘virtuous cycle’ between
structured and unstructured search. Our novel approach is to
use relevance feedback from hypertext Web search, of which
there is a massive amount of data available to commercial
search engines, to improve the retrieval of structured Seman-
tic Web data, since Semantic Web data has little relevance
feedback data itself. This requires a Cranfield-style evalua-
tion on a set of hypertext pages and RDF graphs returned by
the same query from two different search engines. Even more
interestingly, we attempt to run the relevance feedback in re-
verse: Assuming we have structured Semantic Web data, can
it be used to improve hypertext search?

2 Related Literature

Relevance feedback is the use of explicit relevance judgments
from users of a search engine in order to expand the query.
By ‘expand the query,’ we mean that the usually short query
is expanded into a larger query by adding terms from known
relevant documents. For example, a query on the hypertext
Web for the Eiffel Tower given as ‘eiffel’ might be expanded
into ‘paris france eiffel tour.’ If the relevant pages instead
were about an Eiffel Tower replica in Texas, the same results
query could be expanded into ‘paris texas eiffel replica.’ The
hypothesis of relevance feedback is that the relevant docu-
ments will disambiguate the query and in general give a bet-
ter description of the information need of the query than the
query itself.

Relevance feedback often (but not always) improves infor-
mation retrieval performance, but almost always the feedback
is used to improve rankings over a single source of data and
has never been tested on the Semantic Web [Lavrenko, 2008].
Previous approaches have assumed that the Semantic Web
and the hypertext Web search are entirely disparate, indexing
and searching them differently [Cheng et al., 2008]. Other
approaches have tried to use the hypertext Web as a ‘backup’
when querying RDF fails [Pound et al., 2010]. On a more
related note, previous work has focused on deployed hyper-
text search engines over structured data (albeit without rele-
vance feedback) [Agrawal et al., 2009]. We are assuming that
more complex queries (SPARQL structured queries, natural
language queries) for the Semantic Web will require keyword
search to work reasonably well, so naturally keyword search
over RDF is the first part of Semantic Web search to address.
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3 System Design

However, could one use structured data in RDF about the Eif-
fel Tower to expand a query for ‘eiffel’ in a hypertext search
engine? Likewise, could one search over structured data for
‘eiffel’ and use relevant web-pages from the hypertext web to
expand the query? In our system, the query is run first against
the hypertext Web search engine and we collect relevance
judgments from the results or use pseudo-feedback (assum-
ing the top x results are relevant). We then use this feedback
to expand the query to the Semantic Web with certain words,
chosen by use of the algorithms described in Section 3.2,
from the relevant hypertext web-pages. Finally, the expanded
query is used to re-rank the results retrieved by a Semantic
Web search engine. We can compare both structured Seman-
tic Web and unstructured hypertext data by considering both
to be an unstructured ‘bags of words,’ albeit weighted by ei-
ther frequency in unstructured text, weights given to RDF
structure, or both. Semantic Web data is ‘flattened’ into a
‘document’ of terms derived from both the text and URIs in
the RDF graph. The URIs in RDF graphs can be reduced to
‘words’ by tokenizing on the rightmost hierarchical compo-
nent (right of fragment identifier if one exists) of the URI. So,
the URI http://www.example.org/hasArchitect
would be reduced to two tokens, ‘has’ and ‘architect.’ Of in-
terest for hypertext search, we can then run the process back-
wards, using relevant Semantic Web data as relevance feed-
back to improve hypertext Web search. This is not unfeasible,
as one could consider the consumption or link to Semantic
Web data by a program to be a judgment of relevance.

3.1 Experimental Design

In order to select real queries from users for our experiment,
we used the query log of a popular hypertext search engine,
the Web search query log of approximately 15 million dis-
tinct queries from Microsoft Live Search.1 This query log
contained 6,623,635 unique queries corrected for capitaliza-
tion. Given that the Semantic Web will not contain data about
transactional or navigational queries, we limit the experi-
ment to informational queries. A straightforward gazetteer-
based and rule-based named entity recognizer was employed
to discover the names of people and places, based off a list
of names maintained by the Social Security Administration
and a place name database provided by the Alexandria Dig-
ital Library Project. In order to select a subset of infor-
mational queries for evaluation, we randomly selected 100
queries identified as abstract concepts by WordNet and then
100 queries identified as either people or places by a named
entity recognizer, for a total of 200 queries to be used in eval-
uation. Constraints were placed on crawled URIs, such that at
least 10 documents from both the Semantic Web and hyper-
text Web had to be crawled for each query (using FALCON-S
and Yahoo! Search respectively), leading to a total of 4,000
results. The queries about entities and concepts are spread
across quite diverse domains, ranging from entities about
both locations (‘El Salvador’) and people (both fictional such
as ‘Harry Potter’ and non-fictional such as ‘Earl May’) to

1Made available due to an Microsoft ‘Beyond Search’ award.

concepts about a whole range of abstraction, from ‘sociol-
ogy’ to ‘ale.’

In order to aid the judges, a Web-based interface that pre-
sented rendered versions of both the web-page and the Se-
mantic Web result was created to present the queries and re-
sults to the judges. Each of the Semantic Web results were
rendered using a two-column table for the properties and
subjects of each resulting URI. Each result was judged by
three judges. Before judging, the judges were given instruc-
tions and trained on 10 sample results (5 web-pages and 5
Semantic Web documents). The human judges were forced
to make binary judgments of relevance, so each result must
be either relevant or irrelevant to the query. After the rat-
ings were completed, Fliess’s κ statistic was taken in order
to test the reliability of inter-judge agreement on relevancy
judgments. For both relevance judgments over Semantic Web
results and web-page results, κ = 0.5724 (p < .05, 95%Con-
fidence interval [0.5678, 0.5771]), indicating the rejection of
the null hypothesis and ‘moderate’ agreement. For web-page
results only, κ = 0.5216 (p < .05, 95% Confidence inter-
val [.5150, 0.5282]), also indicating the rejection of the null
hypothesis and ‘moderate’ agreement. Lastly, for only Se-
mantic Web results, κ = 0.5925 (p < .05, 95% Confidence
interval [0.5859, 0.5991]), also indicating the null hypothesis
is to be rejected and ‘moderate’ agreement. For the creation
of our evaluation data set, majority voting was used amongst
the three judges.

3.2 Language Models

For the relevance feedback methods used in this paper, we
employ the well-known language model approach as it a for-
mally principled and probabilistic approach to determining
the ranking and weighting function. The experiment was run
earlier using vector-space models and the results are in gen-
eral fairly similar although performing slightly worse. Lan-
guage modeling frameworks in information retrieval repre-
sent each document as a language model given by an underly-
ing multinomial probability distribution so that for each word
w ∈ V there is a value that gives how likely an observation of
word w is given D, i.e. P (w|uD(w)). The document model
distribution uD(w) is then estimated using the parameter εD,
which allows a linear interpolation that takes into account the
background probability of observing w in the entire collec-
tion C. This is given in Equation 1.

uD(w) = εD
n(w,D)

|D|
+ (1− εD)

n(w,C)∑
v∈V n(v, C)

(1)

The parameter εD just takes into account the relative likeli-
hood of the word as observed in the given document D com-
pared to the word given the entire collection of documents
C. |D| is the total number of words in document D, while
n(w,D) is the frequency of word d in document D. Further,
n(w,C) is the frequency of occurrence of the word w in the
entire collection C divided by the occurrence of each word v
(of the language V ) in collection C. Our baseline is called
query-likelihood, and ranks documents D by the probability
that the query Q could be observed during repeated random
sampling from the distribution uD(·). However, the classical
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language-modeling approach to IR does not provide a natu-
ral mechanism to perform relevance feedback. One extension
of the approach involves estimating a relevance-based model
uR in addition to the document-based model uD, and compar-
ing the resulting language models using information-theoretic
measures. Estimation of uD has been described above, so this
section will describe two ways of estimating the relevance
model uR, and a way of measuring distance between uQ and
uD for the purposes of document ranking.

Let R = r1. . .rk be the set of k relevant documents, iden-
tified during the feedback process. One way of constructing
a language model of R is to average the document models of
each document in the set:

uR,avg(w) =
1

k

k∑

i=1

uri(w) =
1

k

k∑

i=1

n(w, ri)

|ri|
(2)

Here n(w, ri) is the number of times the word w occurs in
the i′th relevant document, and |ri| is the length of that doc-
ument. Another way to estimate the same distribution would
be to concatenate all relevant documents into one long string
of text, and count word frequencies in that string as given by

equation 3. Here the numerator
∑k

i=1
n(w, ri) represents the

total number of times the word w occurs in the concatenated
string, and the denominator is the length of the concatenated
string. The difference between Equations 2 and 3 is that the
former treats every document equally, regardless of its length,
whereas the latter favors longer documents, i.e. they are not
individually penalized by dividing their contributing frequen-
cies n(w, ri) by their length |ri|.

uR,con(w) =

∑k

i=1
n(w, ri)∑k

i=1
|ri|

(3)

We now want to re-compute the retrieval score of document
D based on the estimated language model of the relevant class
uR. What is needed is a principled way of comparing a rele-
vance model uR against a document language modeluD. One
way of comparing probability that has shown the best perfor-
mance in empirical information retrieval research [Lavrenko,
2008] is cross entropy. If one considers that the uR = p and
that document model distribution uD = q, then the two mod-
els can be compared directly using cross-entropy, as shown
in Equation 4. Note that either the averaged relevance model
uR,avg or the concatenated relevance model uR,con can be
used in Equation 4. We refer to the former as rm and to the
latter as tf in the following experiments.

−H(uR||uD) =
∑

w∈V

uR(w) log uD(w) (4)

4 Feedback Evaluation

A number of parameters for our system were evaluated to de-
termine which parameters provide the best results. For each
of the parameter combinations, we compared the use of rel-
evance feedback to a baseline system which did not use rel-
evance feedback, yet used the same parameters with the ex-
ception of any relevance feedback-related parameters. For
evaluation we used mean average precision (MAP) with the

standard Wilcoxian sign-test (‘average precision’ in figures).
These scores will be supplemented with R-precision (RP) to
avoid bias.

4.1 Hypertext to Semantic Web Feedback

Both averaged relevance models rm and concatenated rel-
evance models tf were investigated, with the primary pa-
rameter being m, the number of non-zero probability words
used in the relevance model. For these experiments, the fea-
ture values (f ) were uniform. The parameter m was varied
between 100,300,1000,3000,and 10000. Remember that the
query model is the relevance model for the language model-
based frameworks. As is best practice in relevance modeling,
the relevance models were not smoothed, but a number of dif-
ferent smoothing parameters for ε were investigated for the
cross entropy comparison function, ranging ε between 0.01,
0.10, 0.20, 0.50, 0.80, 0.90, and 0.99. All ranking was done
over a pool of all Semantic Web documents crawled and eval-
uated for relevance earlier (the top 10 documents returned by
FALCON-S for each of the 200 queries, and so 2,000 docu-
ments total). The results are given in Figure 2. The highest
performing language model was tf with a cross-entropy ε of
.2 and a m of 10,000, which produced a MAP of 0.8611 and
RP of 0.8142, which was significantly higher than the lan-
guage model baseline of 0.5043 MAP and a RP of 0.4322
(p < .05) using again a m of 10,000 for document models
with a ε of .99.

Although these results confirm well-known optimal set-
tings for interpolation parameters, there is a new result for this
domain, namely that tf always outperformed rm, as rm’s
best performance had a MAP of 0.7223 and a RP of 0.6518
using an ε of .1 and a m of 10,000. FALCON-S, from which
we derived our original Semantic Web data in the experiment,
had the mean average precision of its original ranking of the
top 10 results given by FALCON-S to calculated as 0.6985.
To summarize, we compared both the best baseline, rm, as
well as the best system with feedback in Figure 1. As shown,
our system with feedback had significantly (p < .05) bet-
ter MAP (0.8611) than FALCON-S (0.6985), as well better
(p < .05) than the ‘best’ language model baseline without
feedback (0.5043) as well as relevance feedback from the Se-
mantic Web to itself (0.7111, p < .05).

Hypertext can boost Semantic Web search insofar as it pro-
vides more up-to-date and accurate terms in hypertext pages
about the information need than may easily be available in
the Semantic Web documents alone. One observation is in
order; note that tf always outperformed rm. The primary
difference is that rm normalizes by documents length: rm
constructs a relevance model on a per-relevant document ba-
sis before creating the average relevance model. In contrast,
tf does not normalize: tf constructs a relevance model by
combining all the relevance documents and then creating the
relevance model from the raw pool of all relevant document
models. So for this task, normalization by the length of the
document hurts performance. The reason for this is likely be-
cause the text automatically extracted from hypertext docu-
ments is ‘messy,’ being of low quality and bursty, with highly
varying document lengths. As observed earlier [Oren et al.,
2008], Semantic Web data also follows a non-normal distri-
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Figure 1: Summary of Best Mean Average Precision Scores: Rele-
vance Feedback From Hypertext to Semantic Web

Figure 2: Mean Average Precision Scores for Language Model Pa-
rameters: Relevance Feedback From Hypertext to Semantic Web

bution, so there are wildly varying document lengths for both
the relevance model and the document models. So document
length is a good predictor of relevance on the Semantic Web,
as long as the document contains (often as a consequence of
its length) high-quality text with informative keywords. Due
to these factors, it is unwise to normalize the models, as that
will almost certainly dampen the effect of document length
and maybe even of crucial keywords in the text.

4.2 Semantic Web to Hypertext Feedback

The results for using Semantic Web documents as relevance
feedback for hypertext Web search are surprisingly promis-
ing. The results for language modeling were similar to the
results in Section 4.1 and are given in Figure 3, although a
few differences are worth commenting upon. The best per-
forming language model was tf with m of 10,000 and a ε=.2,
which produced an average precision of 0.6549 with a RP of
0.6116 (p < .05). In contrast, the best-performing rm, with

Figure 3: Mean Average Precision Scores for Language Model Pa-
rameters: Relevance Feedback From Semantic Web to Hypertext

a m of 3,000 and ε=.5, only had a MAP of 0.4858 and a RP
of 0.4486 (p < .05). The tf relevance models consistently
performed better than rm relevance models (p < .05). The
baseline for language modeling was also fairly poor with a
MAP of 0.4284 and a RP of 0.3990 (p < .05). This was
the ‘best’ baseline using again a m of 10,000 for document
models and a smoothing ε of .99. The hypertext results for
our experiment were given by Yahoo! Web search, and we
calculated the MAP for Yahoo! Web search to be 0.4039.
This is slightly less than our baseline language model rank-
ing, which had an average precision of 0.4284. To summa-
rize, in Figure 4, given that our feedback based system had
an average precision of 0.6549, our relevance feedback sys-
tem performs significantly (p < .05) better than Yahoo! Web
search and (p < .05) the baseline rm system as well as rel-
evance feedback from hypertext results to the search engine
itself (0.5095,p < .05).

Figure 4: Summary of Best Mean Average Precision Scores: Rele-
vance Feedback From Semantic Web to Hypertext

The general trends from the previous experiment then held,
except the smoothing factor was more moderate and the dif-
ference between tf and rm was even more pronounced. Why
does tf relevance modeling allow data from the Semantic
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Web to boost hypertext Results? Rather shockingly, as the
Semantic Web data often has manually high-quality curated
data from sources like DBpedia as its primary components,
the actual natural language fragments on the Semantic Web
(found for example in Wikipedia abstracts) are much better
samples of natural language than the natural language sam-
ples found in hypertext. It is on some level not surprising that
even hypertext Web search results can be improved by Se-
mantic Web data, because used in combination with the right
relevance feedback parameters, the hypertext search engine is
being ‘seeded’ with a high-quality accurate description of the
information need expressed by the query.

5 Pseudo-relevance feedback

Using pseudo-relevance feedback, we assume that the top x
documents returned are relevant. Using the same optimal pa-
rameters as discovered in Section 4.1, tf with a m = 10, 000
and ε = .2 was again deployed, but this time using pseudo-
relevance feedback. Can pseudo-relevance feedback from
hypertext Web search help improve the rankings of Seman-
tic Web data? The answer is clearly positive. Employing
all ten results as pseudo-relevance feedback (with the same
previously optimized parameters), the best pseudo-relevance
feedback result had a MAP of 0.6240 and a RP of 0.5617.
This was considerably better than the baseline of just using
pseudo-relevance feedback from the Semantic Web to Se-
mantic Web search, which only had a MAP of 0.5251 with
a RP of 0.4482 (p < .05), and also clearly above the ‘best’
baseline of 0.5043 MAP and a RP 0.4322 (p < .05). How-
ever, as shown by Figure 5, the results are still not nearly as
good as using actual relevant hypertext pages, which had a
MAP of 0.8611 with a RP of 0.8142 (p < .05). This is likely
because, not surprisingly, the hypertext Web results contain
many irrelevant queries that serve as noise, preventing the
feedback from boosting the results. Can pseudo-relevance
feedback from the Semantic Web improve hypertext search?
The answer is yes, but barely. The best result for mean av-
erage precision is 0.4321 (p < .05), which is better than the
baseline of just using pseudo-relevance feedback from hyper-
text Web results to themselves, which has a mean average pre-
cision of 0.3945 (p < .05) and the baseline without feedback
at all of 0.4284 (p < .05). However, the pseudo-relevance
feedback results still significantly have a worse performance
by a large margin than using relevant Semantic Web data,
which had a mean average precision of 0.6549 (p < .05).
These results can be explained because, given the usual am-
biguous and short one or two word queries, the Semantic Web
tends to return structured data spread out of over multiple
topics even more than the hypertext Web. Therefore, adding
pseudo-relevance feedback increases the amount of noise in
the language model but still helps performance.

6 Inference

One of the characteristics of structured data in general is
that the structure should allow one - at least ‘in theory’ -
to discover more relevant data. In our experiment, we fol-
lowed both Semantic Web sub-class and type links for one-
level. The resulting retrieved and inferred Semantic Web data

Figure 5: Comparing Pseudo-relevance Feedback (red) to Manual
Feedback (blue) on the Semantic Web (RDF) and Hypertext Web
(HTML)

were concatenated together. In this way, Semantic Web in-
ference was used as document expansion, where the original
RDF graph was expanded by adding inferred RDF content
[Mayfield and Finin, 2003]. Relevance feedback was tried
with these documents expanded by inference, again with the
same best-performing parameters (tf with m = 10, 000 and
ε = .2). In the first case, inference is used to expand the
Semantic Web data, and then the hypertext results are used
as relevance feedback. However, as shown in Figure 6, de-
ploying inference only causes a drop in performance. In par-
ticular, using hypertext Web results as relevance feedback to
Semantic Web search, the system drops from a performance
of 0.8611 MAP (0.8142 RP) to a performance of 0.4991 MAP
with a RP of 0.4266 (p < .05).

Figure 6: Comparing the Relevance Feedback on the Semantic Web
(RDF) and Hypertext Web (HTML) both without (blue) and with
(green) Semantic Web inference

Why does inference not help performance in this case?
We were assuming the knowledge gained through inference
would somehow lead to the discovery of terms also found
in relevant documents. However, in some cases of inference
with the Semantic Web, adding new terms does not help sat-
isfy the user’s information need. For example, simply con-
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sider the structured Semantic Web data about the query for the
singer ‘Shakira.’ While the first Semantic Web article about
Shakira gives a number of useful facts about her, such as a
list of her albums and the fact that her real name is Shakira
Isabel Mebarak Ripoll, determining that Shakira is a person
via the use of inference is of vastly less utility. For example,
the Cyc ontology declares that Shakira is a person, namely
that “Something is an instance of Person if it is an individ-
ual Intelligent Agent with perceptual sensibility, capable of
complex social relationships, and possessing a certain moral
sophistication and an intrinsic moral value.” This is proba-
bly not of interest to whoever is searching about Shakira. In
this regard, using inference to expand Semantic Web data can
add terms that are irrelevant to the user’s information need,
so possibly adding distracting noise to the language model.
However, using such inference could help in the case of am-
biguous queries, such as distinguishing if a query about ‘John
Deere’ is a person or a company.

7 Conclusions

These results show relevance feedback between the Semantic
Web and hypertext increases performance for both kinds of
search, as our relevance feedback-based system outperforms
baselines without feedback as well as state of the art com-
mercial hypertext search engines and research Semantic Web
search engines. A thorough discussion of the precise reasons
particular algorithms and parameters were chosen has already
been given in Section 4.2 and Section 4.1. The gain of our
relevance feedback system, a respectable 16% in MAP over
FALCON-S, intuitively makes the system’s ability to place a
relevant structured Semantic Web data in the top rank accept-
able for most users. More surprisingly, by incorporating hu-
man relevance from Linked Data, we make substantial gains
over state of the art systems for hypertext Web search, a 25%
gain in MAP over Yahoo! search.

There are a number of further areas of research. One ex-
pected criticism of this work is likely the choice of FALCON-
S and Yahoo! Web search as a baseline and source of crawled
documents, and that we should try this methodology over
other Semantic Web search engines and hypertext Web search
engines. Also, comparing the Semantic Web to Wikipedia-
based relevance feedback would also be of interest, as would
collecting a larger standard evaluation corpus for Semantic
Web information retrieval. Our experiment was only a proof
of concept done only over a relatively small (yet statistically
significant) set of queries and data, although the “real-world”
nature of the sample should allow us to deduce the results
will generalize. For actual deployment, detailed performance
statistics should be taken and relevance feedback would need
to be approximated through click-through logs, which is non-
trivial. More analysis should be done on how Semantic Web
data can be used in a more structured form; for example, the
entity name as given by rds:label is usually of higher impor-
tance than other features of a RDF graph, so we can now op-
timize our results by weighing the various terms in the rele-
vance model by weights derived from the structure. Lastly,
complex queries (SPARQL and natural language) could be
built on top of the current keyword interface.

While relevance feedback is known to in general improve
results, our use of wildly disparate sources of data such as the
structured Semantic Web and the unstructured hypertext Web
to serve as relevance feedback for each other is novel. These
results demonstrate that our approach of using feedback from
hypertext Web search helps users discover relevant Semantic
Web data, and vice versa. The gain is significant over base-
line systems without feedback and the algorithms used by
FALCON-S and Yahoo! Web search. Furthermore, retrieving
relevant Semantic Web data can even be improved by pseudo-
relevance feedback from hypertext search while further work
should be done to explore whether inference can help, as a
straightforward approach does not improve results. Yet over-
all our results point to a high potential for relevance feed-
back between the hypertext Web and the Semantic Web be-
ing deployed on a larger scale to improve search, and this can
be extended to feedback between structured and unstructured
data in general. The question is: Why does relevance feed-
back work between seemingly disparate data-sources work
on the Web? It is precisely because information about the
same things is encoded in both hypertext web-pages and the
Semantic Web regardless of their particular representation on
the Web.
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