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Abstract

Different from Laplacian or normal matrix, the
properties of the adjacency eigenspace received
much less attention. Recent work showed that
nodes projected into the adjacency eigenspace ex-
hibit an orthogonal line pattern and nodes from the
same community locate along the same line. In
this paper, we conduct theoretical studies based
on graph perturbation to demonstrate why this
line orthogonality property holds in the adjacency
eigenspace and why it generally disappears in the
Laplacian and normal eigenspaces. Using the or-
thogonality property in the adjacency eigenspace,
we present a graph partition algorithm, AdjClus-
ter, which first projects node coordinates to the unit
sphere and then applies the classic k-means to find
clusters. Empirical evaluations on synthetic data
and real-world social networks validate our theo-
retical findings and show the effectiveness of our
graph partition algorithm .

1 Introduction

Different from the Laplacian matrix or normal matrix, the
properties of the adjacency eigenspace received much less
attention except some recent work [Prakash et al., 2010;
Ying and Wu, 2009]. It was shown by Prakash et al.
[2010] that the singular vectors of mobile call graphs exhibit
an EigenSpokes pattern wherein, when plotted against each
other, they have clear, separate lines that neatly align along
specific axes. The authors suggested that EigenSpokes are
associated with the presence of a large number of tightly-
knit communities embedded in very sparse graphs. Ying
and Wu [2009] showed that node coordinates in the ad-
jacency eigenspace of a graph with well structured com-
munities form quasi-orthogonal lines (not necessarily axes
aligned) and developed a framework to quantify importance
(or non-randomness) of a node or a link by exploiting the
line orthogonality property. However, no theoretical analysis
was presented [Ying and Wu, 2009; Prakash et al., 2010] to
demonstrate why and when this line orthogonality property
holds.

In this paper, we conduct theoretical studies based on ma-
trix perturbation theory. Our theoretical results demonstrate

why the line orthogonality pattern exists in the adjacency
eigenspace. Specifically we show that 1) spectral coordinates
of nodes without direct links to other communities locate ex-
actly on the orthogonal lines; 2) spectral coordinates of nodes
with links to other communities deviate from lines; and 3) for
a network with k communities there exist k orthogonal lines
(and each community forms one line) in the spectral subspace
formed by the first k eigenvectors of the adjacency matrix.
We further give explicit formula (as well as its conditions) to
quantify how much orthogonal lines rotate from the canoni-
cal axes and how far spectral coordinates of nodes with di-
rect links to other communities deviate from the line of their
own community. We also examine the spectral spaces of the
Laplacian matrix and the normal matrix under the perturba-
tion framework. Our findings show that the line orthogonality
pattern in general does not hold in the Laplacian eigenspace
or the normal eigenspace. We further provide theoretical ex-
planations.

The discovered orthogonality property in the adjacency
eigenspace has potential for a series of applications. In this
paper, we present an effective graph partition algorithm, Ad-
jCluster, which utilizes the line orthogonality property in the
adjacency eigenspace. The idea is to project node coordinates
(along the orthogonal lines) onto the unit sphere in the spec-
tral space and then apply the classic k-means to find clusters.
Our empirical evaluations on synthetic data and real-world
social networks validate our theoretical findings and show the
effectiveness of our graph partition algorithm .

2 Preliminaries

2.1 Notation

A network or graph G is a set of n nodes connected by a set
of m links. The network considered here is binary, symmet-
ric, connected, and without self-loops. It can be represented
as the symmetric adjacency matrix An×n with aij = 1 if
node i is connected to node j and aij = 0 otherwise. Let λi

be the i-th largest eigenvalue of A and xi the corresponding
eigenvector. xij denotes the j-th entry of xi. Formula (1)
illustrates our notation. The eigenvector xi is represented as
a column vector. The leading eigenvectors xi (i = 1, · · · , k)
corresponding to the largest k eigenvalues contain most topo-
logical information of the original graph in the spectral space.
The k-dimensional spectral space is spanned by (x1, · · ·xk).
When we project node u in the k-dimensional subspace with
xi as the basis, the row vector αu = (x1u, x2u, · · · , xku)
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is its coordinate of in this subspace. We call αu the spec-
tral coordinate of node u. The eigenvector xi becomes the
canonical basis denoted by ξi = (0, . . . , 0, 1, 0 . . . , 0), where
the i-th entry of ξi is 1.

x1 xi xk xn

↓

αu →

⎛
⎜⎜⎜⎜⎜⎜⎝

x11 · · · xi1 · · · xk1

...
...

...

x1u · · · xiu · · · xku

.

..
.
..

.

..
x1n · · · xin · · · xkn

· · · xn1

.

..
· · · xnu

...
· · · xnn

⎞
⎟⎟⎟⎟⎟⎟⎠

(1)

2.2 Spectral Perturbation

Spectral perturbation analysis deals with the change of
the graph spectra (eigenvalues and eigenvector components)
when the graph is perturbed. For a symmetric n×n matrix A
with a symmetric perturbation E, the matrix after perturba-

tion can be written as Ã = A + E. Let λi be the i-th largest

eigenvalue of A with its eigenvector xi. Similarly, λ̃i and

x̃i denote the eigenvalue and eigenvector of Ã. It has been
shown that the perturbed eigenvector x̃i can be approximated
by a linear function involving all original eigenvectors (refer
to Theorem V.2.8 in [Stewart and Sun, 1990]). We quote it as
below.

Lemma 1. Let U = (x1, . . . ,xi−1,xi+1, . . . ,xn), S =
diag(λ1, . . . , λi−1, λi+1, . . . , λn), and βij = x

T
i Exj . The

eigenvector x̃i (i = 1, · · · , k) can be approximated as:

x̃i ≈ xi + U(λiI − S)−1UTExi (2)

when the following conditions hold:

1. δ = |λi − λi+1| − ‖xT
i Exi‖2 − ‖UTEU‖2 > 0;

2. γ = ‖UTExi‖2 < 1
2
δ.

In this paper, we simplify its approximation by only using
the leading k eigenvectors when the first k eigenvalues are
significantly greater than the rest ones. Based on the simpli-
fied approximation shown in Theorem 1, we are able to prove
the line orthogonality pattern in the adjacency eigenspace.

Theorem 1. Assume that the conditions in Lemma 1 hold.
Further assume that |λi| � |λj |, for any i = 1, · · · , k and
j = k + 1, · · · , n. Then, the eigenvector x̃i (i = 1, · · · , k)
can be approximated as:

x̃i ≈ xi +
k∑

j=1;j �=i

βji

λi − λj

xj +
1

λi

Exi. (3)

Proof. With Lemma 1, we have

x̃i ≈ xi + U(λiI − S)−1UTExi

= xi +
n∑

j=1;j �=i

βji

λi − λj

xj

= xi +

k∑
j=1;j �=i

βji

λi − λj

xj +

n∑
j=k+1

βji

λi − λj

xj.

Since |λi| � |λj | for all i = 1, . . . , k and j = k + 1, . . . , n,
βji

λi−λj
≈ βji

λi
, and we further have

x̃i ≈ xi +
k∑

j=1,j �=i

βji

λi − λj

xj +
n∑

j=k+1

βji

λi

xj . (4)

Note that
n∑

j=k+1

βji

λi

xj ≈
n∑

j=1

βji

λi

xj =

n∑
j=1

x
T
j Exi

λi

xj

=
1

λi

n∑
j=1

〈Exi,xj〉xj =
1

λi

Exi. (5)

The last equality of (5) is because xj (j = 1, . . . , n) forms an

orthogonal basis of the n-dimensional space, and x
T
j Exi is

just the projection of vector Exi onto one of the basis vector
xj . Combining (4) and (5), we get Equation (3).

3 Spectral Analysis of Graph Topology

We treat the observed graph as a k-block diagonal network
(with k disconnected communities) perturbed by a matrix
consisting all cross-community edges and examine perturba-
tion effects on the eigenvectors and spectral coordinates in the
adjacency eigenspace.

3.1 Graph with k Disconnected Communities

For a graph with k disconnected communities C1, · · · , Ck of
size n1, . . . , nk respectively (

∑
i ni = n), its adjacency ma-

trix A can be written as a block-wise diagonal matrix:

A =

⎛⎜⎝A1 0

. . .

0 Ak

⎞⎟⎠ , (6)

where Ai is the ni × ni adjacency matrix of Ci. Let λCi

be the largest eigenvalue of Ai in magnitude with eigen-
vector xCi

∈ R
ni . Without loss of generality, we assume

λC1
> · · · > λCk

. Since the entries of Ai are all non-
negative, with Perron-Frobenius theorem [Stewart and Sun,
1990], λCi

is positive and all the entriesxCi
are non-negative.

When Ci contains one dominant component or does not have
a clear inner-community structure, the magnitude of λCi

is
significantly larger than the rest eigenvalues of Ai [Chung et
al., 2003]. Hence when the k disconnected communities are
comparable, λi = λCi

, i = 1, . . . , k (the eigenvalues and
eigenvectors of Ai are naturally the eigenvalues of A). Here
we call two communities Ci and Cj are comparable if both of
the second largest eigenvalues of Ai and Aj are smaller than
λCi

and λCj
. Two communities are not comparable when

one of them contains either too few edges or nodes and hence
does not contribute much to the graph topology.

Lemma 2. For a graph with k disconnected comparable
communities as shown in (6), for all i = 1, · · · , k and
j = k + 1, . . . , n, λi � |λj |. The first k eigenvectors of
A have the following form:

(x1,x2, · · · ,xk) =

⎛⎜⎜⎝
xC1

0 · · · 0

0 xC2
· · · 0

...
...

. . .
...

0 0 · · · xCk

⎞⎟⎟⎠,
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and all the entries of xi are non-negative.

When we project each node in the subspace spanned by
x1,x2, · · · ,xk, we have the following result.

Proposition 1. For a graph with k disconnected compa-
rable communities as shown in (6), spectral coordinates
of all nodes locate on the k axes ξ1, · · · , ξk where ξi =
(0, . . . , 0, 1, 0 . . . , 0) is the canonical basis and the i-th en-
try of ξi is 1. Specifically, for any node u ∈ Ci, its spectral
coordinate has the form

αu = (0, · · · , 0, xiu, 0, · · · , 0). (7)

The position of non-zero xiu in (7) indicates the commu-
nity that node u belongs to; and the value of xiu indicates the
weight or importance of node u within the communityCi and
hence captures the magnitude of belongings.
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(c) Perturbed graph Ã

Figure 1: Blue circles are the 25 nodes in one community and
red squares are the 20 nodes in the other community. Edges
are added across two communities.

2-D case. For a graph with two disconnected communities
C1 and C2. All the nodes from C1 lie on the line that passes
through the origin and the point (1, 0) and nodes from C2 lie
on the line that passes through the origin and the point (0, 1).
We show a synthetic graph with two disconnected commu-
nities in Figure 1(a). The solid lines are links within each
community. Figure 1(b) shows the spectral coordinates in the
2-D scatter plot when the two communities are disconnected.
We can see that all nodes lie along the two axes.

3.2 Spectral Properties of Observed Graphs

Based on Theorem 1, we derive the approximation of the per-
turbed spectral coordinate αu, which is determined by the
original spectral coordinate of itself and that of its neighbors
in other communities.

Theorem 2. Denote an observed graph as Ã = A+E where
A is as shown in (6) and E denotes the edges across commu-
nities. For a node u ∈ Ci, let Γj

u denote its neighbors in Cj

for j �= i, and Γi
u = ∅. The spectral coordinate of u can be

approximated as

αu ≈ xiuri +

⎛⎝∑
v∈Γ1

u

euvx1v

λ1

, . . . ,
∑
v∈Γk

u

euvxkv

λk

⎞⎠ (8)

where scalar xiu is the only non-zero entry in its original
spectral coordinate shown in (7), euv is the (u, v) entry of E,
and ri is the i-th row of the following matrix

R =

⎛⎜⎜⎜⎜⎝
1 β12

λ2−λ1
· · · β1k

λk−λ1
β21

λ1−λ2
1 · · · β2k

λk−λ2

...
...

. . .
...

βk1

λ1−λk

βk2

λ2−λk
· · · 1

⎞⎟⎟⎟⎟⎠ . (9)

Proof. With Theorem 1, the leading k eigenvectors of Ã can
be approximated as

x̃i ≈ xi +
k∑

j=1;j �=i

βji

λi − λj

xj +
1

λi

Exi.

Putting the k columns together, we have

(x̃1, · · · , x̃k) ≈ (x1, · · · ,xk)R + E(
x1

λ1

, . . . ,
xk

λk

). (10)

Note that when A can be partitioned as in (6), and the original
coordinate αu has only one non-zero entry xiu as shown in
(7), the u-th row of (x̃i, · · · , x̃k) in (10) can be simplified as:

αu ≈ xiu(
βi1

λ1−λi
, · · · , βi,i−1

λi−1−λi
, 1,

βi,i+1

λi+1−λu
, · · · βik

λk−λi
)

+

(
1

λ1

∑
v∈C1

euvx1v, · · · , 1

λk

∑
v∈Ck

euvxkv

)
,

= xiuri +

⎛⎝∑
v∈Γ1

u

euvx1v

λ1

, . . . ,
∑
v∈Γk

u

euvxkv

λk

⎞⎠ .

Note that euv in the right hand side (RHS) of (8) can be
further removed since euv = 1 in our setting. We include
euv there for extension to general perturbations. Our next re-
sult shows that spectral coordinates also locate along k quasi-
orthogonal lines ri (the i-th row of R), instead of exactly on
the axes ξi when the graph is disconnected.

Proposition 2. For a graph Ã = A+E, spectral coordinates
form k approximately orthogonal lines. Specifically, for any
node u ∈ Ci, if it is not directly connected with other com-
munities, αu lies on the line ri; otherwise, αu deviates from
lines ri (i = 1, · · · , k), where ri is the i-th row of matrix R
shown in Equation (9).

Proof. First we prove that node u ∈ Ci locates on the line
ri. When node u has no connections to other communities,
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the second part of the RHS of (8) is 0. Hence αu ≈ xiuri.
When node u has some connections outside Ci, the second
part of its spectral coordinate in (8) is not equal to 0, and it
thus deviates from line ri.

Next we prove that lines ri are approximate orthogonal.
Let W = R − I , then WT + W = 0 since βij = βji.

Hence RTR = (I + WT )(I + W ) = I − WTW . The

(i, j) entry of matrix WTW is
∑

t�=i,j
βit

λt−λi

βtj

λj−λt
. Note

that the conditions of Theorem 1 imply that βit = x
T
i Ext is

much smaller than |λt − λi|, and hence WTW ≈ 0. Then,
RTR ≈ I , and we prove the orthogonality property.

2-D case. Nodes from C1 lie along line r1, while nodes from
C2 lie along line r2, where

r1 = (1,
β12

λ2 − λ1

), r2 = (
β21

λ1 − λ2

, 1).

Note that r1 and r2 are orthogonal since r1r
T
2 = 0. For

nodes that have connections to the other community, e.g.,
nodes u and v shown in Figure 1(a), their spectral coordinates
scatter between two lines. For node u, its spectral coordinate
can be approximated as

αu ≈ x1u

(
1,

β12

λ2 − λ1

)
+

(
0,

∑
v∈Γ2

u
x2v

λ2

)
. (11)

Its spectral coordinate jumps away from line r1. The mag-
nitude of jump is determined by spectral coordinates of its
connected nodes in the community C2, as shown by the sec-
ond parts of RHS of (11). Since the jump vector is non-
negative, node u gets closer to line r2. Similarly, we can see
for node v jumps towards line r1. In Figure 1(c), we can also
see that both r1 and r2 rotate clockwisely from the original
axes. This is because β12 = x

T
1 Ex2 =

∑
i,j eijx1ix2j > 0.

There is a negative angle θ between line r1 and x-axis since

tan θ = β12

λ2−λ1
< 0.

3.3 Laplacian and Normal Eigenspaces

Our perturbation framework based on the adjacency
eigenspace utilizes the eigenvectors of the largest k eigen-
values, which are generally stable (due to large eigen-gaps)
under perturbation. The line orthogonality property shown in
Theorem 2 and Proposition 2 is based on the approximation
shown in Theorem 1. Recall that Theorem 1 is derived from
Lemma 1 that involves two conditions. These two conditions
are naturally satisfied if the eigen-gap of any k leading eigen-
values is greater than 3‖E‖2 (‖E‖2 is the largest eigenvalue
of E), which guarantees the relative smaller change and the
order of the eigenvectors preserved after perturbation. For
condition 1, it is easy to verify that ‖xT

i Exi‖2 = 0. Since

‖UTEU‖2 ≤ ‖E‖2 for graph A with k disconnected com-
parable communities, the condition holds when the eigengap
λi − λi+1 is greater than ‖E‖2. For condition 2, we can see
‖UTExi‖2 is also much smaller than ‖E‖2. Hence, condi-
tion 2 is satisfied when the eigengap λi−λi+1 is greater than
3‖E‖2. Note that ‖E‖2 is bounded by the maximum row sum
of E and tends to be small when the perturbation edges are
randomly added.

Next we examine the spectral spaces of the Laplacian ma-
trix and the normal matrix and explain why the line orthogo-
nality does not hold in their eigenspaces. The Laplacian ma-
trix L is defined as L = D−A, where D = diag{d1, . . . , dn}
and di is the degree of node i. The normal matrixN is defined

as N = D− 1
2AD− 1

2 . We can easily derive that, for the block-
wise diagonal graph, the spectral coordinate of node u ∈ Ci

in the Laplacian eigenspace is (0, . . . , 1, . . . , 0) where the i-
th entry is 1, indicating the node u’s community whereas the
coordinate in the normal eigenspace is (0, . . . ,

√
du, . . . , 0).

Note that the k eigenvectors corresponding to the smallest
eigenvalues of L capture the community structure. However,

Lemma 1 is not applicable to L̃ in general under perturba-
tion, because the gap between the k smallest eigenvalues and
the rest ones is too small and the two conditions in Lemma
1 are violated. For the normal matrix, all the eigenvalues of
N are between 1 and −1. The conditions in Lemma 1 do
not hold either because the eigen-gaps is generally smaller
than ‖ΔN‖2. Hence it is impossible to explicitly express the
perturbed spectral coordinates using the original ones and the
perturbation matrix in the Laplacian or normal eigenspace.
As a result, the line orthogonality disappears in the Laplacian
or the normal eigenspace.

4 Adjacency Eigenspace based Clustering

In this section, we present a community partition algorithm,
AdjCluster, which utilizes the line orthogonality pattern in
the spectral space of the adjacency matrix. When a graph
contains k clear communities, there exist k quasi-orthogonal
lines in the k-dimensional spectral space and each line corre-
sponds to a community in the graph. The spectral coordinate
αu should be close to the line corresponding to the commu-
nity that the node u belongs to. In general, the idea of fitting k
orthogonal lines directly in the k-dimensional space is com-
plex. As shown in Algorithm 1, we project each spectral co-
ordinate αu to the unit sphere in the k-dimensional subspace
by normalizing αu to its unit length (line 3). We expect to
observe that nodes from one community form a cluster on the
unit sphere. Hence there will be k well separated clusters on
the unit sphere. We apply the clustering k-means algorithm
on the unit sphere to produce a partition of the graph (line 4).

Algorithm 1 AdjCluster: Adjacency Eigenspace based Clus-
tering

Input: A,K
Output: Clustering results

1: Compute x1,. . . ,xK by the eigen-decomposition of A
2: for k = 2,. . . , K do
3: αu = (x1u, . . . , xku) and ᾱu = αu

‖αu‖
;

4: Apply k-means algorithm on {ᾱu}u=1,...,n;
5: Compute fitting statistics from k-means algorithm ;
6: end for
7: Output partitions under k with the best fitting statistics.

To evaluate the quality of the partition and determine the
k, we use the classic Davies-Bouldin Index (DBI ) [Davies
and Bouldin, 1979]. The low DBI indicates output clus-
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ters with low intra-cluster distances and high inter-cluster dis-
tances. When the graph contains k clear communities, we
expect to have the minimum DBI after applying k-means in
the k-dimensional spectral space. We also expect all the an-
gles between centroids of the output clusters are close to 90◦

since spectral coordinates form quasi-orthogonal lines in the
determined k-dimensional spectral space. However, in the
subspace spanned by fewer or more eigenvectors, the coordi-
nates scatter in the spaces and do not form clear orthogonal
lines, hence we will not obtain a very good fit after applying
the k-means on the unit sphere.

Calculation of the eigenvectors of an n× n matrix takes in
general a number of operations O(n3), which is almost inap-
plicable for large networks. However, in our framework, we
only need to calculate the first K eigen-pairs. We can deter-
mine the appropriate K as examining the eigen-gaps [Stew-
art and Sun, 1990]. Furthermore, adjacency matrices in our
context are usually sparse. The Arnoldi/Lanczos algorithm
[Golub and Van Loan, 1996] generally needs O(n) rather
than O(n2) floating point operations at each iteration.

5 Evaluation

We use several real network data sets in our evaluation: Po-
litical books and Political blogs 1, Enron 2, and Facebook
dataset [Viswanath et al., 2009]. We also generate two syn-
thetic graphs: Syn-1 and Syn-2. The Syn-1 has 5 communities
with the number of nodes 200, 180, 170, 150, and 140 re-
spectively, and each community is generated separately with
a power law degree distribution with the parameter 2.3. We
add cross community edges randomly and keep the ratio be-
tween inter-community edges and inner-community edges as
20% in Syn-1. Syn-2 is the same as the Syn-1 except that we
increase the number of links between community C4 and C5

to 80%. As a result, the Syn-2 has four communities.

5.1 Line Orthogonality Property
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Figure 2: The plots of spectral coordinates for synthetic net-
works

We use spectral scatter plots to check the line orthogonality
property in various networks. We learn that for Syn-1 there
exist five orthogonal lines in the spectral space. Due to the

1http://www-personal.umich.edu/˜mejn/

netdata/
2
http://www.cs.cmu.edu/˜enron/

Table 1: Statistics of the spectra for some networks. δ values
for both Laplacian and normal (shown in bold) and ‖ΔL‖2
for Lapalcian and ‖ΔN‖2 for normal (shown in italic) violate
conditions in Lemma 1.

Polbooks Polblogs Syn-1 Syn-2

Adjacency matrix

γ 0.59 6.95 3.87 3.16

δ 3.08 30.8 2.44 3.23

|λk − λk+1| 5.82 39.6 7.65 8.26

‖E‖2 2.78 13.61 6.99 6.61

Laplacian matrix

γ 1.54 12.1 4.10 4.11

δ -11.7 -73.5 -23.7 -25.37

|μk − μk+1| 0.24 0.16 0.30 0.30

‖ΔL‖2 11.2 69.3 15.8 15.64

Normal matrix

γ 0.144 0.15 0.24 0.27

δ -0.526 -0.29 -1.04 -1.07

|νk − νk+1| 0.139 0.07 0.20 0.20

‖ΔN‖2 0.650 0.35 0.76 0.78

space limit, we only show the three orthogonal lines (corre-
sponding to communities C3, C4, and C5 denoted by differ-
ent colors) in the space spanned by x̃3, x̃4, x̃5 in Figure 2(a).
For Syn-2, we can observe in Figure 2(b) that there is no clear
line orthogonality pattern in the space spanned by x̃3, x̃4, x̃5

since there are actually four communities in Syn-2.
Our theoretical analysis in Section 3.3 showed that the or-

thogonality pattern does not held in either Laplacian or nor-
mal eigenspace because their small eigen-gap values affect
the stability of the spectral space (Recall the conditions in
Lemma 1 and Theorem 1). Table 1 shows the calculated val-
ues of γ, δ, eigen-gap, and the magnitude of perturbations
in adjacency, Laplacian, and normal eigenspaces for various
networks. We can see that for adjacency matrices, all the net-
works generally satisfy conditions, which explains line or-
thogonality patterns in their adjacency eigenspaces. How-
ever, for Laplacian or normal matrices, none of networks sat-
isfies the conditions. For example, all δ values for Laplacian
or normal matrix (shown in bold) are less than zero, violat-
ing Condition 1 in Lemma 1; all values of ‖ΔL‖2 or ‖ΔN‖2
(shown in italic) are less than their corresponding eigengaps,
incurring the violation of Condition 2 in Lemma 1; and the
eigengaps (|μk −μk+1|, |νk − νk+1|) are relatively small, vi-
olating the condition in Theorem 1. Hence, the orthogonality
pattern does not held in Laplacian or normal eigenspaces (we
skip their scatter plots due to space limitations).

5.2 Quality of Community Partition

Table 2 shows the quality of our graph partition algorithm
AdjCluster. The algorithm chooses the value of k that incurs
the minimum DBI for each network data set. For a network
with a clear community structure, we expect that the DBI is
small, the modularity is away from zero, and the average an-
gle is close to 90◦ since there exist k quasi-orthogonal lines in
the spectral space. We can see from Table 2 that all networks
show relatively clear community structures.

The original data descriptions of Polbooks and Polblogs
(and Syn-1/Syn-2) provide node-community relations. So we
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Table 2: Statistics of networks and partition quality of Adj-
Cluster (“k” is the number of communities, “DBI ” is the
Davies-Bouldin Index, “Angle” is the average angle between
centroids, and “Q” is the modularity.)

Dataset n m k DBI Angle Q
Syn-1 840 4917 5 0.45 80.7◦ 0.37

Syn-2 840 5389 4 0.49 76.5◦ 0.34

Polbooks 105 441 2 0.15 83.8◦ 0.45

Polblogs 1222 16714 2 0.17 90.4◦ 0.42

Enron 148 869 6 0.59 88.9◦ 0.48

Facebook 63392 816886 9 0.83 83.6◦ 0.51

Table 3: Accuracy (%) of clustering results (“Lap” denotes
the geometric Laplacian clustering, “NCut” denotes the nor-
malized cut, “HE′” denotes the modularity based clustering,
and SpokEn denotes EigenSpoke.)

Dataset AdjCluster Lap NCut HE′ SpokEn

Syn-1 90.8 57.5 84.4 49.1 40.2

Syn-2 85.1 62.8 80.1 45.9 44.7

Polbooks 96.7 93.5 96.7 88.0 93.5

Polblogs 94.7 58.8 95.3 92.4 91.9

are able to compare different algorithms in terms of accuracy.

The accuracy is defined as
∑

k
i=1

|Ci∩Ĉi|

n
where Ĉi denotes

the i-th community produced by different algorithms. In our
experiment, we compare our AdjCluster with four graph par-
tition algorithms: one Laplacian based algorithm (the geo-
metric spectral clustering) [Miller and Teng, 1998], one nor-
mal based algorithm (the normalized cut [Shi and Malik,
2000]), one modularity based agglomerative clustering algo-
rithm (HE′ [Wakita and Tsurumi, 2007]), and the EigenSpoke
algorithm (SpokEn [Prakash et al., 2010]). Table 3 shows the
accuracy values on the above four networks. Note that we
cannot report accuracy values for Enron or Facebook since
we do not know about their exact true community partitions.
We can see that the quality of the partitioning produced by
our algorithm AdjCluster is better than (or comparable with)
that produced by the normalized cut in terms of accuracy.
On the contrary, the Laplacian spectrum based algorithm, the
modularity based agglomerative clustering algorithm, and the
EigenSpoke algorithm produce significant low accuracy val-
ues, which matches our theoretical analysis.

6 Conclusion and Future Work

In this paper we have demonstrated the line orthogonality in
the adjacency eigenspace. Using this orthogonality property,
we presented our graph partition algorithm AdjCluster and
showed its effectiveness for community partition. Although
we mainly focused on theoretical studies of the line orthog-
onality property in this paper, we believe many applications
based on the line orthogonality property could be developed.
For example, we could develop adaptive clustering methods
using adjacency matrix perturbation for tracking changes in
clusters over time. We could also identify bridging nodes by
examining outliers from k-means output. Bridging nodes are
the nodes connecting to multiple communities. In the spec-

tral space, they are neither close to the origin, nor close to any
fitted orthogonal line corresponding to a certain community.
Therefore, we could mark a node as a bridging one if its pro-
jection in the unit sphere is not close to any centriod. In our
future work, we will explore the line orthogonality property
in more (and larger) social networks and conduct complete
comparisons with other recently developed spectral cluster-
ing algorithms (e.g., [Huang et al., 2008]). We also plan to
extend our studies to signed graphs which contain both posi-
tive and negative edges.
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